L(s) = 1 | + 4.38i·5-s + 19.5·11-s − 6.11i·13-s − 8.76i·17-s + 30.3i·19-s + 24·23-s + 5.78·25-s − 13.5·29-s − 28.0i·31-s − 48.5·37-s − 7.14i·41-s + 53.7·43-s − 39.9i·47-s + 61.5·53-s + 85.8i·55-s + ⋯ |
L(s) = 1 | + 0.876i·5-s + 1.78·11-s − 0.470i·13-s − 0.515i·17-s + 1.59i·19-s + 1.04·23-s + 0.231·25-s − 0.468·29-s − 0.904i·31-s − 1.31·37-s − 0.174i·41-s + 1.25·43-s − 0.849i·47-s + 1.16·53-s + 1.56i·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1764 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.755 - 0.654i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1764 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.755 - 0.654i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(2.355756269\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.355756269\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 5 | \( 1 - 4.38iT - 25T^{2} \) |
| 11 | \( 1 - 19.5T + 121T^{2} \) |
| 13 | \( 1 + 6.11iT - 169T^{2} \) |
| 17 | \( 1 + 8.76iT - 289T^{2} \) |
| 19 | \( 1 - 30.3iT - 361T^{2} \) |
| 23 | \( 1 - 24T + 529T^{2} \) |
| 29 | \( 1 + 13.5T + 841T^{2} \) |
| 31 | \( 1 + 28.0iT - 961T^{2} \) |
| 37 | \( 1 + 48.5T + 1.36e3T^{2} \) |
| 41 | \( 1 + 7.14iT - 1.68e3T^{2} \) |
| 43 | \( 1 - 53.7T + 1.84e3T^{2} \) |
| 47 | \( 1 + 39.9iT - 2.20e3T^{2} \) |
| 53 | \( 1 - 61.5T + 2.80e3T^{2} \) |
| 59 | \( 1 + 77.1iT - 3.48e3T^{2} \) |
| 61 | \( 1 + 0.431iT - 3.72e3T^{2} \) |
| 67 | \( 1 + 56.9T + 4.48e3T^{2} \) |
| 71 | \( 1 - 123.T + 5.04e3T^{2} \) |
| 73 | \( 1 - 35.8iT - 5.32e3T^{2} \) |
| 79 | \( 1 + 52.1T + 6.24e3T^{2} \) |
| 83 | \( 1 - 136. iT - 6.88e3T^{2} \) |
| 89 | \( 1 - 15.2iT - 7.92e3T^{2} \) |
| 97 | \( 1 + 34.1iT - 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.248311134608381635041376101625, −8.477170677953135499167259102756, −7.44989512732185554754619194005, −6.83922450734427148828868598204, −6.12151797581128092623335910944, −5.22842258423072833223954604427, −3.92963554592816514517888787965, −3.42699980448201111041797743362, −2.19915311749716856525432044457, −0.990314654495647411382131251969,
0.815025384034264472307507300434, 1.67359547770289489340340626888, 3.09854387516345170495380595859, 4.19034380837962249929046958912, 4.76784762398889158911777897511, 5.77688359503502679700417396490, 6.77772447326506209061889484559, 7.21974140822332698252377171637, 8.675492110359903974445603290899, 8.909085092575065100670283199681