Properties

Label 2-42e2-7.6-c2-0-15
Degree $2$
Conductor $1764$
Sign $0.755 - 0.654i$
Analytic cond. $48.0655$
Root an. cond. $6.93293$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4.38i·5-s + 19.5·11-s − 6.11i·13-s − 8.76i·17-s + 30.3i·19-s + 24·23-s + 5.78·25-s − 13.5·29-s − 28.0i·31-s − 48.5·37-s − 7.14i·41-s + 53.7·43-s − 39.9i·47-s + 61.5·53-s + 85.8i·55-s + ⋯
L(s)  = 1  + 0.876i·5-s + 1.78·11-s − 0.470i·13-s − 0.515i·17-s + 1.59i·19-s + 1.04·23-s + 0.231·25-s − 0.468·29-s − 0.904i·31-s − 1.31·37-s − 0.174i·41-s + 1.25·43-s − 0.849i·47-s + 1.16·53-s + 1.56i·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1764 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.755 - 0.654i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1764 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.755 - 0.654i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1764\)    =    \(2^{2} \cdot 3^{2} \cdot 7^{2}\)
Sign: $0.755 - 0.654i$
Analytic conductor: \(48.0655\)
Root analytic conductor: \(6.93293\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{1764} (685, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1764,\ (\ :1),\ 0.755 - 0.654i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(2.355756269\)
\(L(\frac12)\) \(\approx\) \(2.355756269\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
good5 \( 1 - 4.38iT - 25T^{2} \)
11 \( 1 - 19.5T + 121T^{2} \)
13 \( 1 + 6.11iT - 169T^{2} \)
17 \( 1 + 8.76iT - 289T^{2} \)
19 \( 1 - 30.3iT - 361T^{2} \)
23 \( 1 - 24T + 529T^{2} \)
29 \( 1 + 13.5T + 841T^{2} \)
31 \( 1 + 28.0iT - 961T^{2} \)
37 \( 1 + 48.5T + 1.36e3T^{2} \)
41 \( 1 + 7.14iT - 1.68e3T^{2} \)
43 \( 1 - 53.7T + 1.84e3T^{2} \)
47 \( 1 + 39.9iT - 2.20e3T^{2} \)
53 \( 1 - 61.5T + 2.80e3T^{2} \)
59 \( 1 + 77.1iT - 3.48e3T^{2} \)
61 \( 1 + 0.431iT - 3.72e3T^{2} \)
67 \( 1 + 56.9T + 4.48e3T^{2} \)
71 \( 1 - 123.T + 5.04e3T^{2} \)
73 \( 1 - 35.8iT - 5.32e3T^{2} \)
79 \( 1 + 52.1T + 6.24e3T^{2} \)
83 \( 1 - 136. iT - 6.88e3T^{2} \)
89 \( 1 - 15.2iT - 7.92e3T^{2} \)
97 \( 1 + 34.1iT - 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.248311134608381635041376101625, −8.477170677953135499167259102756, −7.44989512732185554754619194005, −6.83922450734427148828868598204, −6.12151797581128092623335910944, −5.22842258423072833223954604427, −3.92963554592816514517888787965, −3.42699980448201111041797743362, −2.19915311749716856525432044457, −0.990314654495647411382131251969, 0.815025384034264472307507300434, 1.67359547770289489340340626888, 3.09854387516345170495380595859, 4.19034380837962249929046958912, 4.76784762398889158911777897511, 5.77688359503502679700417396490, 6.77772447326506209061889484559, 7.21974140822332698252377171637, 8.675492110359903974445603290899, 8.909085092575065100670283199681

Graph of the $Z$-function along the critical line