Properties

Label 1764.3.d.f.685.3
Level $1764$
Weight $3$
Character 1764.685
Analytic conductor $48.066$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1764,3,Mod(685,1764)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1764, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1764.685");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1764 = 2^{2} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1764.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(48.0655186332\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{65})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 17x^{2} + 16x + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2}\cdot 3 \)
Twist minimal: no (minimal twist has level 84)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 685.3
Root \(-1.76556 + 3.05805i\) of defining polynomial
Character \(\chi\) \(=\) 1764.685
Dual form 1764.3.d.f.685.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.38404i q^{5} +19.5934 q^{11} -6.11609i q^{13} -8.76809i q^{17} +30.3648i q^{19} +24.0000 q^{23} +5.78016 q^{25} -13.5934 q^{29} -28.0363i q^{31} -48.5934 q^{37} -7.14387i q^{41} +53.7802 q^{43} -39.9450i q^{47} +61.5934 q^{53} +85.8983i q^{55} -77.1302i q^{59} -0.431334i q^{61} +26.8132 q^{65} -56.9669 q^{67} +123.560 q^{71} +35.8845i q^{73} -52.1868 q^{79} +136.883i q^{83} +38.4397 q^{85} +15.2650i q^{89} -133.121 q^{95} -34.1524i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 30 q^{11} + 96 q^{23} - 122 q^{25} - 6 q^{29} - 146 q^{37} + 70 q^{43} + 198 q^{53} + 204 q^{65} + 14 q^{67} + 204 q^{71} - 112 q^{79} + 444 q^{85} + 48 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1764\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(883\) \(1081\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 4.38404i 0.876809i 0.898778 + 0.438404i \(0.144456\pi\)
−0.898778 + 0.438404i \(0.855544\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 19.5934 1.78122 0.890608 0.454771i \(-0.150279\pi\)
0.890608 + 0.454771i \(0.150279\pi\)
\(12\) 0 0
\(13\) − 6.11609i − 0.470469i −0.971939 0.235234i \(-0.924414\pi\)
0.971939 0.235234i \(-0.0755858\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 8.76809i − 0.515770i −0.966176 0.257885i \(-0.916974\pi\)
0.966176 0.257885i \(-0.0830255\pi\)
\(18\) 0 0
\(19\) 30.3648i 1.59815i 0.601233 + 0.799074i \(0.294676\pi\)
−0.601233 + 0.799074i \(0.705324\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 24.0000 1.04348 0.521739 0.853105i \(-0.325283\pi\)
0.521739 + 0.853105i \(0.325283\pi\)
\(24\) 0 0
\(25\) 5.78016 0.231206
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −13.5934 −0.468737 −0.234369 0.972148i \(-0.575302\pi\)
−0.234369 + 0.972148i \(0.575302\pi\)
\(30\) 0 0
\(31\) − 28.0363i − 0.904397i −0.891917 0.452199i \(-0.850640\pi\)
0.891917 0.452199i \(-0.149360\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −48.5934 −1.31333 −0.656667 0.754180i \(-0.728034\pi\)
−0.656667 + 0.754180i \(0.728034\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) − 7.14387i − 0.174241i −0.996198 0.0871204i \(-0.972234\pi\)
0.996198 0.0871204i \(-0.0277665\pi\)
\(42\) 0 0
\(43\) 53.7802 1.25070 0.625351 0.780344i \(-0.284956\pi\)
0.625351 + 0.780344i \(0.284956\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 39.9450i − 0.849894i −0.905218 0.424947i \(-0.860293\pi\)
0.905218 0.424947i \(-0.139707\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 61.5934 1.16214 0.581070 0.813854i \(-0.302634\pi\)
0.581070 + 0.813854i \(0.302634\pi\)
\(54\) 0 0
\(55\) 85.8983i 1.56179i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) − 77.1302i − 1.30729i −0.756801 0.653646i \(-0.773239\pi\)
0.756801 0.653646i \(-0.226761\pi\)
\(60\) 0 0
\(61\) − 0.431334i − 0.00707105i −0.999994 0.00353553i \(-0.998875\pi\)
0.999994 0.00353553i \(-0.00112540\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 26.8132 0.412511
\(66\) 0 0
\(67\) −56.9669 −0.850253 −0.425126 0.905134i \(-0.639770\pi\)
−0.425126 + 0.905134i \(0.639770\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 123.560 1.74029 0.870143 0.492799i \(-0.164026\pi\)
0.870143 + 0.492799i \(0.164026\pi\)
\(72\) 0 0
\(73\) 35.8845i 0.491568i 0.969325 + 0.245784i \(0.0790454\pi\)
−0.969325 + 0.245784i \(0.920955\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −52.1868 −0.660592 −0.330296 0.943877i \(-0.607149\pi\)
−0.330296 + 0.943877i \(0.607149\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 136.883i 1.64919i 0.565725 + 0.824594i \(0.308596\pi\)
−0.565725 + 0.824594i \(0.691404\pi\)
\(84\) 0 0
\(85\) 38.4397 0.452232
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 15.2650i 0.171516i 0.996316 + 0.0857582i \(0.0273312\pi\)
−0.996316 + 0.0857582i \(0.972669\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −133.121 −1.40127
\(96\) 0 0
\(97\) − 34.1524i − 0.352087i −0.984382 0.176043i \(-0.943670\pi\)
0.984382 0.176043i \(-0.0563299\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 130.874i 1.29579i 0.761732 + 0.647893i \(0.224349\pi\)
−0.761732 + 0.647893i \(0.775651\pi\)
\(102\) 0 0
\(103\) 162.648i 1.57910i 0.613684 + 0.789552i \(0.289687\pi\)
−0.613684 + 0.789552i \(0.710313\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 103.967 0.971654 0.485827 0.874055i \(-0.338519\pi\)
0.485827 + 0.874055i \(0.338519\pi\)
\(108\) 0 0
\(109\) −15.7802 −0.144772 −0.0723861 0.997377i \(-0.523061\pi\)
−0.0723861 + 0.997377i \(0.523061\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 59.6265 0.527668 0.263834 0.964568i \(-0.415013\pi\)
0.263834 + 0.964568i \(0.415013\pi\)
\(114\) 0 0
\(115\) 105.217i 0.914931i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 262.901 2.17273
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 134.942i 1.07953i
\(126\) 0 0
\(127\) −25.0000 −0.196850 −0.0984252 0.995144i \(-0.531381\pi\)
−0.0984252 + 0.995144i \(0.531381\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 226.518i 1.72914i 0.502509 + 0.864572i \(0.332410\pi\)
−0.502509 + 0.864572i \(0.667590\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 247.121 1.80380 0.901900 0.431945i \(-0.142172\pi\)
0.901900 + 0.431945i \(0.142172\pi\)
\(138\) 0 0
\(139\) 147.383i 1.06031i 0.847902 + 0.530154i \(0.177866\pi\)
−0.847902 + 0.530154i \(0.822134\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) − 119.835i − 0.838007i
\(144\) 0 0
\(145\) − 59.5940i − 0.410993i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −128.813 −0.864518 −0.432259 0.901749i \(-0.642283\pi\)
−0.432259 + 0.901749i \(0.642283\pi\)
\(150\) 0 0
\(151\) 62.0331 0.410815 0.205408 0.978677i \(-0.434148\pi\)
0.205408 + 0.978677i \(0.434148\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 122.912 0.792983
\(156\) 0 0
\(157\) − 250.709i − 1.59687i −0.602078 0.798437i \(-0.705660\pi\)
0.602078 0.798437i \(-0.294340\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −97.9339 −0.600821 −0.300411 0.953810i \(-0.597124\pi\)
−0.300411 + 0.953810i \(0.597124\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 71.7689i − 0.429754i −0.976641 0.214877i \(-0.931065\pi\)
0.976641 0.214877i \(-0.0689351\pi\)
\(168\) 0 0
\(169\) 131.593 0.778659
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 302.024i 1.74580i 0.487897 + 0.872901i \(0.337764\pi\)
−0.487897 + 0.872901i \(0.662236\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −138.000 −0.770950 −0.385475 0.922718i \(-0.625962\pi\)
−0.385475 + 0.922718i \(0.625962\pi\)
\(180\) 0 0
\(181\) − 82.9733i − 0.458416i −0.973377 0.229208i \(-0.926386\pi\)
0.973377 0.229208i \(-0.0736136\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) − 213.036i − 1.15154i
\(186\) 0 0
\(187\) − 171.797i − 0.918698i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −172.307 −0.902133 −0.451067 0.892490i \(-0.648956\pi\)
−0.451067 + 0.892490i \(0.648956\pi\)
\(192\) 0 0
\(193\) 275.307 1.42646 0.713232 0.700928i \(-0.247231\pi\)
0.713232 + 0.700928i \(0.247231\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 154.307 0.783286 0.391643 0.920117i \(-0.371907\pi\)
0.391643 + 0.920117i \(0.371907\pi\)
\(198\) 0 0
\(199\) − 187.924i − 0.944342i −0.881507 0.472171i \(-0.843470\pi\)
0.881507 0.472171i \(-0.156530\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 31.3190 0.152776
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 594.949i 2.84665i
\(210\) 0 0
\(211\) −348.307 −1.65075 −0.825373 0.564588i \(-0.809035\pi\)
−0.825373 + 0.564588i \(0.809035\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 235.775i 1.09663i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −53.6265 −0.242654
\(222\) 0 0
\(223\) − 30.3581i − 0.136135i −0.997681 0.0680675i \(-0.978317\pi\)
0.997681 0.0680675i \(-0.0216833\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 64.4667i − 0.283994i −0.989867 0.141997i \(-0.954648\pi\)
0.989867 0.141997i \(-0.0453523\pi\)
\(228\) 0 0
\(229\) − 10.0115i − 0.0437185i −0.999761 0.0218592i \(-0.993041\pi\)
0.999761 0.0218592i \(-0.00695857\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −28.5058 −0.122343 −0.0611713 0.998127i \(-0.519484\pi\)
−0.0611713 + 0.998127i \(0.519484\pi\)
\(234\) 0 0
\(235\) 175.121 0.745194
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 256.307 1.07242 0.536208 0.844086i \(-0.319856\pi\)
0.536208 + 0.844086i \(0.319856\pi\)
\(240\) 0 0
\(241\) 215.694i 0.894997i 0.894285 + 0.447498i \(0.147685\pi\)
−0.894285 + 0.447498i \(0.852315\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 185.714 0.751879
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) − 371.680i − 1.48080i −0.672168 0.740398i \(-0.734637\pi\)
0.672168 0.740398i \(-0.265363\pi\)
\(252\) 0 0
\(253\) 470.241 1.85866
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 74.0401i − 0.288094i −0.989571 0.144047i \(-0.953988\pi\)
0.989571 0.144047i \(-0.0460116\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −19.3190 −0.0734564 −0.0367282 0.999325i \(-0.511694\pi\)
−0.0367282 + 0.999325i \(0.511694\pi\)
\(264\) 0 0
\(265\) 270.028i 1.01897i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 208.982i 0.776884i 0.921473 + 0.388442i \(0.126987\pi\)
−0.921473 + 0.388442i \(0.873013\pi\)
\(270\) 0 0
\(271\) − 122.811i − 0.453175i −0.973991 0.226588i \(-0.927243\pi\)
0.973991 0.226588i \(-0.0727570\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 113.253 0.411829
\(276\) 0 0
\(277\) 27.7802 0.100289 0.0501447 0.998742i \(-0.484032\pi\)
0.0501447 + 0.998742i \(0.484032\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −61.4942 −0.218841 −0.109420 0.993996i \(-0.534899\pi\)
−0.109420 + 0.993996i \(0.534899\pi\)
\(282\) 0 0
\(283\) − 43.8910i − 0.155092i −0.996989 0.0775459i \(-0.975292\pi\)
0.996989 0.0775459i \(-0.0247084\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 212.121 0.733981
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 223.600i 0.763139i 0.924340 + 0.381569i \(0.124616\pi\)
−0.924340 + 0.381569i \(0.875384\pi\)
\(294\) 0 0
\(295\) 338.142 1.14624
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) − 146.786i − 0.490924i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 1.89099 0.00619996
\(306\) 0 0
\(307\) − 66.8457i − 0.217738i −0.994056 0.108869i \(-0.965277\pi\)
0.994056 0.108869i \(-0.0347230\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 29.2225i 0.0939630i 0.998896 + 0.0469815i \(0.0149602\pi\)
−0.998896 + 0.0469815i \(0.985040\pi\)
\(312\) 0 0
\(313\) 248.115i 0.792698i 0.918100 + 0.396349i \(0.129723\pi\)
−0.918100 + 0.396349i \(0.870277\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −12.6479 −0.0398987 −0.0199494 0.999801i \(-0.506350\pi\)
−0.0199494 + 0.999801i \(0.506350\pi\)
\(318\) 0 0
\(319\) −266.340 −0.834923
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 266.241 0.824276
\(324\) 0 0
\(325\) − 35.3520i − 0.108775i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −502.901 −1.51934 −0.759669 0.650310i \(-0.774639\pi\)
−0.759669 + 0.650310i \(0.774639\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) − 249.746i − 0.745509i
\(336\) 0 0
\(337\) −123.681 −0.367006 −0.183503 0.983019i \(-0.558744\pi\)
−0.183503 + 0.983019i \(0.558744\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) − 549.326i − 1.61093i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 226.307 0.652183 0.326091 0.945338i \(-0.394268\pi\)
0.326091 + 0.945338i \(0.394268\pi\)
\(348\) 0 0
\(349\) − 155.669i − 0.446043i −0.974814 0.223021i \(-0.928408\pi\)
0.974814 0.223021i \(-0.0715920\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 63.9780i 0.181241i 0.995886 + 0.0906205i \(0.0288850\pi\)
−0.995886 + 0.0906205i \(0.971115\pi\)
\(354\) 0 0
\(355\) 541.694i 1.52590i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 302.988 0.843979 0.421989 0.906601i \(-0.361332\pi\)
0.421989 + 0.906601i \(0.361332\pi\)
\(360\) 0 0
\(361\) −561.021 −1.55408
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −157.319 −0.431011
\(366\) 0 0
\(367\) − 0.00671348i 0 1.82929e-5i −1.00000 9.14643e-6i \(-0.999997\pi\)
1.00000 9.14643e-6i \(-2.91140e-6\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −125.780 −0.337212 −0.168606 0.985684i \(-0.553927\pi\)
−0.168606 + 0.985684i \(0.553927\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 83.1384i 0.220526i
\(378\) 0 0
\(379\) −485.076 −1.27988 −0.639942 0.768423i \(-0.721042\pi\)
−0.639942 + 0.768423i \(0.721042\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) − 260.138i − 0.679211i −0.940568 0.339606i \(-0.889706\pi\)
0.940568 0.339606i \(-0.110294\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −85.8677 −0.220740 −0.110370 0.993891i \(-0.535204\pi\)
−0.110370 + 0.993891i \(0.535204\pi\)
\(390\) 0 0
\(391\) − 210.434i − 0.538195i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) − 228.789i − 0.579213i
\(396\) 0 0
\(397\) − 463.809i − 1.16828i −0.811651 0.584142i \(-0.801431\pi\)
0.811651 0.584142i \(-0.198569\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 463.868 1.15678 0.578389 0.815761i \(-0.303682\pi\)
0.578389 + 0.815761i \(0.303682\pi\)
\(402\) 0 0
\(403\) −171.473 −0.425491
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −952.109 −2.33933
\(408\) 0 0
\(409\) 466.137i 1.13970i 0.821749 + 0.569850i \(0.192999\pi\)
−0.821749 + 0.569850i \(0.807001\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −600.099 −1.44602
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) − 89.9655i − 0.214715i −0.994220 0.107357i \(-0.965761\pi\)
0.994220 0.107357i \(-0.0342389\pi\)
\(420\) 0 0
\(421\) −413.582 −0.982379 −0.491190 0.871053i \(-0.663438\pi\)
−0.491190 + 0.871053i \(0.663438\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) − 50.6809i − 0.119249i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −70.1323 −0.162720 −0.0813599 0.996685i \(-0.525926\pi\)
−0.0813599 + 0.996685i \(0.525926\pi\)
\(432\) 0 0
\(433\) 431.223i 0.995897i 0.867207 + 0.497948i \(0.165913\pi\)
−0.867207 + 0.497948i \(0.834087\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 728.755i 1.66763i
\(438\) 0 0
\(439\) 94.3496i 0.214919i 0.994209 + 0.107460i \(0.0342716\pi\)
−0.994209 + 0.107460i \(0.965728\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −412.582 −0.931336 −0.465668 0.884960i \(-0.654186\pi\)
−0.465668 + 0.884960i \(0.654186\pi\)
\(444\) 0 0
\(445\) −66.9222 −0.150387
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −617.802 −1.37595 −0.687975 0.725734i \(-0.741500\pi\)
−0.687975 + 0.725734i \(0.741500\pi\)
\(450\) 0 0
\(451\) − 139.973i − 0.310361i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −11.0000 −0.0240700 −0.0120350 0.999928i \(-0.503831\pi\)
−0.0120350 + 0.999928i \(0.503831\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) − 859.960i − 1.86542i −0.360624 0.932711i \(-0.617436\pi\)
0.360624 0.932711i \(-0.382564\pi\)
\(462\) 0 0
\(463\) 397.340 0.858187 0.429093 0.903260i \(-0.358833\pi\)
0.429093 + 0.903260i \(0.358833\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 297.151i 0.636298i 0.948041 + 0.318149i \(0.103061\pi\)
−0.948041 + 0.318149i \(0.896939\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 1053.74 2.22777
\(474\) 0 0
\(475\) 175.513i 0.369502i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) − 804.420i − 1.67937i −0.543071 0.839687i \(-0.682739\pi\)
0.543071 0.839687i \(-0.317261\pi\)
\(480\) 0 0
\(481\) 297.202i 0.617883i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 149.726 0.308713
\(486\) 0 0
\(487\) 60.8016 0.124849 0.0624246 0.998050i \(-0.480117\pi\)
0.0624246 + 0.998050i \(0.480117\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −514.955 −1.04879 −0.524394 0.851475i \(-0.675708\pi\)
−0.524394 + 0.851475i \(0.675708\pi\)
\(492\) 0 0
\(493\) 119.188i 0.241761i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 888.901 1.78136 0.890682 0.454627i \(-0.150227\pi\)
0.890682 + 0.454627i \(0.150227\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) − 822.920i − 1.63602i −0.575202 0.818012i \(-0.695076\pi\)
0.575202 0.818012i \(-0.304924\pi\)
\(504\) 0 0
\(505\) −573.759 −1.13616
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) − 568.157i − 1.11622i −0.829767 0.558111i \(-0.811527\pi\)
0.829767 0.558111i \(-0.188473\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −713.055 −1.38457
\(516\) 0 0
\(517\) − 782.658i − 1.51385i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) − 136.724i − 0.262426i −0.991354 0.131213i \(-0.958113\pi\)
0.991354 0.131213i \(-0.0418873\pi\)
\(522\) 0 0
\(523\) − 14.5674i − 0.0278535i −0.999903 0.0139268i \(-0.995567\pi\)
0.999903 0.0139268i \(-0.00443317\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −245.825 −0.466461
\(528\) 0 0
\(529\) 47.0000 0.0888469
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −43.6926 −0.0819748
\(534\) 0 0
\(535\) 455.796i 0.851954i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −924.901 −1.70961 −0.854807 0.518947i \(-0.826324\pi\)
−0.854807 + 0.518947i \(0.826324\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) − 69.1809i − 0.126937i
\(546\) 0 0
\(547\) 103.626 0.189445 0.0947225 0.995504i \(-0.469804\pi\)
0.0947225 + 0.995504i \(0.469804\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) − 412.761i − 0.749112i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −412.407 −0.740407 −0.370203 0.928951i \(-0.620712\pi\)
−0.370203 + 0.928951i \(0.620712\pi\)
\(558\) 0 0
\(559\) − 328.925i − 0.588416i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 686.367i 1.21912i 0.792738 + 0.609562i \(0.208655\pi\)
−0.792738 + 0.609562i \(0.791345\pi\)
\(564\) 0 0
\(565\) 261.405i 0.462664i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 146.615 0.257671 0.128836 0.991666i \(-0.458876\pi\)
0.128836 + 0.991666i \(0.458876\pi\)
\(570\) 0 0
\(571\) 356.263 0.623928 0.311964 0.950094i \(-0.399013\pi\)
0.311964 + 0.950094i \(0.399013\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 138.724 0.241259
\(576\) 0 0
\(577\) − 171.028i − 0.296409i −0.988957 0.148205i \(-0.952651\pi\)
0.988957 0.148205i \(-0.0473495\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 1206.82 2.07002
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 24.8384i 0.0423142i 0.999776 + 0.0211571i \(0.00673502\pi\)
−0.999776 + 0.0211571i \(0.993265\pi\)
\(588\) 0 0
\(589\) 851.317 1.44536
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) − 136.077i − 0.229472i −0.993396 0.114736i \(-0.963398\pi\)
0.993396 0.114736i \(-0.0366023\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −989.230 −1.65147 −0.825734 0.564059i \(-0.809239\pi\)
−0.825734 + 0.564059i \(0.809239\pi\)
\(600\) 0 0
\(601\) 78.8184i 0.131145i 0.997848 + 0.0655727i \(0.0208874\pi\)
−0.997848 + 0.0655727i \(0.979113\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 1152.57i 1.90507i
\(606\) 0 0
\(607\) − 840.449i − 1.38459i −0.721612 0.692297i \(-0.756599\pi\)
0.721612 0.692297i \(-0.243401\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −244.307 −0.399848
\(612\) 0 0
\(613\) 847.428 1.38243 0.691214 0.722650i \(-0.257076\pi\)
0.691214 + 0.722650i \(0.257076\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 649.669 1.05295 0.526474 0.850191i \(-0.323514\pi\)
0.526474 + 0.850191i \(0.323514\pi\)
\(618\) 0 0
\(619\) − 488.044i − 0.788440i −0.919016 0.394220i \(-0.871015\pi\)
0.919016 0.394220i \(-0.128985\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −447.086 −0.715337
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 426.071i 0.677378i
\(630\) 0 0
\(631\) −820.473 −1.30027 −0.650137 0.759817i \(-0.725288\pi\)
−0.650137 + 0.759817i \(0.725288\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) − 109.601i − 0.172600i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 19.8677 0.0309949 0.0154975 0.999880i \(-0.495067\pi\)
0.0154975 + 0.999880i \(0.495067\pi\)
\(642\) 0 0
\(643\) − 1013.95i − 1.57691i −0.615092 0.788456i \(-0.710881\pi\)
0.615092 0.788456i \(-0.289119\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 133.462i − 0.206279i −0.994667 0.103139i \(-0.967111\pi\)
0.994667 0.103139i \(-0.0328888\pi\)
\(648\) 0 0
\(649\) − 1511.24i − 2.32857i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −604.757 −0.926121 −0.463060 0.886327i \(-0.653249\pi\)
−0.463060 + 0.886327i \(0.653249\pi\)
\(654\) 0 0
\(655\) −993.064 −1.51613
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −335.451 −0.509031 −0.254515 0.967069i \(-0.581916\pi\)
−0.254515 + 0.967069i \(0.581916\pi\)
\(660\) 0 0
\(661\) 702.273i 1.06244i 0.847234 + 0.531220i \(0.178266\pi\)
−0.847234 + 0.531220i \(0.821734\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −326.241 −0.489117
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) − 8.45130i − 0.0125951i
\(672\) 0 0
\(673\) −1119.48 −1.66342 −0.831711 0.555209i \(-0.812638\pi\)
−0.831711 + 0.555209i \(0.812638\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 260.626i 0.384973i 0.981300 + 0.192486i \(0.0616551\pi\)
−0.981300 + 0.192486i \(0.938345\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 200.516 0.293581 0.146790 0.989168i \(-0.453106\pi\)
0.146790 + 0.989168i \(0.453106\pi\)
\(684\) 0 0
\(685\) 1083.39i 1.58159i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) − 376.711i − 0.546750i
\(690\) 0 0
\(691\) − 994.120i − 1.43867i −0.694664 0.719334i \(-0.744447\pi\)
0.694664 0.719334i \(-0.255553\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −646.132 −0.929687
\(696\) 0 0
\(697\) −62.6381 −0.0898681
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 148.231 0.211457 0.105729 0.994395i \(-0.466283\pi\)
0.105729 + 0.994395i \(0.466283\pi\)
\(702\) 0 0
\(703\) − 1475.53i − 2.09890i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 711.977 1.00420 0.502099 0.864810i \(-0.332561\pi\)
0.502099 + 0.864810i \(0.332561\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) − 672.872i − 0.943719i
\(714\) 0 0
\(715\) 525.362 0.734772
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) − 749.527i − 1.04246i −0.853417 0.521228i \(-0.825474\pi\)
0.853417 0.521228i \(-0.174526\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −78.5719 −0.108375
\(726\) 0 0
\(727\) − 865.702i − 1.19079i −0.803434 0.595393i \(-0.796996\pi\)
0.803434 0.595393i \(-0.203004\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) − 471.549i − 0.645074i
\(732\) 0 0
\(733\) − 96.4995i − 0.131650i −0.997831 0.0658251i \(-0.979032\pi\)
0.997831 0.0658251i \(-0.0209679\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −1116.18 −1.51448
\(738\) 0 0
\(739\) −420.901 −0.569555 −0.284777 0.958594i \(-0.591920\pi\)
−0.284777 + 0.958594i \(0.591920\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −920.043 −1.23828 −0.619141 0.785280i \(-0.712519\pi\)
−0.619141 + 0.785280i \(0.712519\pi\)
\(744\) 0 0
\(745\) − 564.723i − 0.758017i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −320.362 −0.426580 −0.213290 0.976989i \(-0.568418\pi\)
−0.213290 + 0.976989i \(0.568418\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 271.956i 0.360206i
\(756\) 0 0
\(757\) 330.813 0.437006 0.218503 0.975836i \(-0.429883\pi\)
0.218503 + 0.975836i \(0.429883\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 266.291i 0.349923i 0.984575 + 0.174961i \(0.0559800\pi\)
−0.984575 + 0.174961i \(0.944020\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −471.735 −0.615040
\(768\) 0 0
\(769\) − 241.301i − 0.313785i −0.987616 0.156893i \(-0.949852\pi\)
0.987616 0.156893i \(-0.0501477\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 929.774i 1.20281i 0.798943 + 0.601406i \(0.205393\pi\)
−0.798943 + 0.601406i \(0.794607\pi\)
\(774\) 0 0
\(775\) − 162.054i − 0.209102i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 216.922 0.278462
\(780\) 0 0
\(781\) 2420.97 3.09983
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 1099.12 1.40015
\(786\) 0 0
\(787\) 1109.78i 1.41014i 0.709138 + 0.705070i \(0.249084\pi\)
−0.709138 + 0.705070i \(0.750916\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −2.63808 −0.00332671
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 231.047i − 0.289896i −0.989439 0.144948i \(-0.953699\pi\)
0.989439 0.144948i \(-0.0463014\pi\)
\(798\) 0 0
\(799\) −350.241 −0.438350
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 703.098i 0.875589i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 318.945 0.394247 0.197123 0.980379i \(-0.436840\pi\)
0.197123 + 0.980379i \(0.436840\pi\)
\(810\) 0 0
\(811\) 196.807i 0.242672i 0.992612 + 0.121336i \(0.0387178\pi\)
−0.992612 + 0.121336i \(0.961282\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) − 429.346i − 0.526805i
\(816\) 0 0
\(817\) 1633.02i 1.99881i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 1384.01 1.68576 0.842881 0.538101i \(-0.180858\pi\)
0.842881 + 0.538101i \(0.180858\pi\)
\(822\) 0 0
\(823\) 276.506 0.335973 0.167987 0.985789i \(-0.446273\pi\)
0.167987 + 0.985789i \(0.446273\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −1467.81 −1.77486 −0.887431 0.460940i \(-0.847512\pi\)
−0.887431 + 0.460940i \(0.847512\pi\)
\(828\) 0 0
\(829\) 78.7343i 0.0949750i 0.998872 + 0.0474875i \(0.0151214\pi\)
−0.998872 + 0.0474875i \(0.984879\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 314.638 0.376812
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 591.398i 0.704884i 0.935834 + 0.352442i \(0.114649\pi\)
−0.935834 + 0.352442i \(0.885351\pi\)
\(840\) 0 0
\(841\) −656.220 −0.780285
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 576.911i 0.682735i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −1166.24 −1.37044
\(852\) 0 0
\(853\) 1048.80i 1.22954i 0.788707 + 0.614770i \(0.210751\pi\)
−0.788707 + 0.614770i \(0.789249\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 107.171i − 0.125054i −0.998043 0.0625271i \(-0.980084\pi\)
0.998043 0.0625271i \(-0.0199160\pi\)
\(858\) 0 0
\(859\) 1506.32i 1.75358i 0.480874 + 0.876790i \(0.340320\pi\)
−0.480874 + 0.876790i \(0.659680\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −375.362 −0.434950 −0.217475 0.976066i \(-0.569782\pi\)
−0.217475 + 0.976066i \(0.569782\pi\)
\(864\) 0 0
\(865\) −1324.09 −1.53073
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −1022.52 −1.17666
\(870\) 0 0
\(871\) 348.415i 0.400017i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 1408.79 1.60637 0.803187 0.595727i \(-0.203136\pi\)
0.803187 + 0.595727i \(0.203136\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) − 1236.04i − 1.40299i −0.712673 0.701497i \(-0.752515\pi\)
0.712673 0.701497i \(-0.247485\pi\)
\(882\) 0 0
\(883\) −72.9437 −0.0826089 −0.0413045 0.999147i \(-0.513151\pi\)
−0.0413045 + 0.999147i \(0.513151\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 1442.23i 1.62597i 0.582287 + 0.812983i \(0.302158\pi\)
−0.582287 + 0.812983i \(0.697842\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 1212.92 1.35826
\(894\) 0 0
\(895\) − 604.998i − 0.675975i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 381.108i 0.423925i
\(900\) 0 0
\(901\) − 540.056i − 0.599396i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 363.759 0.401943
\(906\) 0 0
\(907\) −1209.76 −1.33380 −0.666900 0.745147i \(-0.732379\pi\)
−0.666900 + 0.745147i \(0.732379\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 1328.22 1.45798 0.728989 0.684525i \(-0.239991\pi\)
0.728989 + 0.684525i \(0.239991\pi\)
\(912\) 0 0
\(913\) 2681.99i 2.93756i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −488.858 −0.531946 −0.265973 0.963981i \(-0.585693\pi\)
−0.265973 + 0.963981i \(0.585693\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) − 755.707i − 0.818750i
\(924\) 0 0
\(925\) −280.878 −0.303651
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) − 951.536i − 1.02426i −0.858908 0.512129i \(-0.828857\pi\)
0.858908 0.512129i \(-0.171143\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 753.164 0.805522
\(936\) 0 0
\(937\) − 309.707i − 0.330530i −0.986249 0.165265i \(-0.947152\pi\)
0.986249 0.165265i \(-0.0528480\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) − 1172.51i − 1.24602i −0.782213 0.623011i \(-0.785909\pi\)
0.782213 0.623011i \(-0.214091\pi\)
\(942\) 0 0
\(943\) − 171.453i − 0.181816i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 724.856 0.765424 0.382712 0.923868i \(-0.374990\pi\)
0.382712 + 0.923868i \(0.374990\pi\)
\(948\) 0 0
\(949\) 219.473 0.231267
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −27.5371 −0.0288951 −0.0144476 0.999896i \(-0.504599\pi\)
−0.0144476 + 0.999896i \(0.504599\pi\)
\(954\) 0 0
\(955\) − 755.403i − 0.790998i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 174.965 0.182066
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 1206.96i 1.25074i
\(966\) 0 0
\(967\) 1279.81 1.32349 0.661744 0.749730i \(-0.269817\pi\)
0.661744 + 0.749730i \(0.269817\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 1112.77i 1.14600i 0.819554 + 0.573001i \(0.194221\pi\)
−0.819554 + 0.573001i \(0.805779\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 435.759 0.446017 0.223009 0.974816i \(-0.428412\pi\)
0.223009 + 0.974816i \(0.428412\pi\)
\(978\) 0 0
\(979\) 299.092i 0.305508i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 281.556i 0.286425i 0.989692 + 0.143213i \(0.0457433\pi\)
−0.989692 + 0.143213i \(0.954257\pi\)
\(984\) 0 0
\(985\) 676.490i 0.686792i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 1290.72 1.30508
\(990\) 0 0
\(991\) −617.572 −0.623181 −0.311590 0.950217i \(-0.600862\pi\)
−0.311590 + 0.950217i \(0.600862\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 823.868 0.828008
\(996\) 0 0
\(997\) − 1505.63i − 1.51016i −0.655634 0.755079i \(-0.727599\pi\)
0.655634 0.755079i \(-0.272401\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1764.3.d.f.685.3 4
3.2 odd 2 588.3.d.b.97.1 4
7.2 even 3 1764.3.z.h.325.2 4
7.3 odd 6 1764.3.z.h.901.2 4
7.4 even 3 252.3.z.e.145.1 4
7.5 odd 6 252.3.z.e.73.1 4
7.6 odd 2 inner 1764.3.d.f.685.2 4
12.11 even 2 2352.3.f.f.97.3 4
21.2 odd 6 588.3.m.d.325.1 4
21.5 even 6 84.3.m.b.73.2 yes 4
21.11 odd 6 84.3.m.b.61.2 4
21.17 even 6 588.3.m.d.313.1 4
21.20 even 2 588.3.d.b.97.4 4
28.11 odd 6 1008.3.cg.m.145.1 4
28.19 even 6 1008.3.cg.m.577.1 4
84.11 even 6 336.3.bh.f.145.2 4
84.47 odd 6 336.3.bh.f.241.2 4
84.83 odd 2 2352.3.f.f.97.2 4
105.32 even 12 2100.3.be.d.649.3 8
105.47 odd 12 2100.3.be.d.1249.2 8
105.53 even 12 2100.3.be.d.649.2 8
105.68 odd 12 2100.3.be.d.1249.3 8
105.74 odd 6 2100.3.bd.f.901.1 4
105.89 even 6 2100.3.bd.f.1501.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
84.3.m.b.61.2 4 21.11 odd 6
84.3.m.b.73.2 yes 4 21.5 even 6
252.3.z.e.73.1 4 7.5 odd 6
252.3.z.e.145.1 4 7.4 even 3
336.3.bh.f.145.2 4 84.11 even 6
336.3.bh.f.241.2 4 84.47 odd 6
588.3.d.b.97.1 4 3.2 odd 2
588.3.d.b.97.4 4 21.20 even 2
588.3.m.d.313.1 4 21.17 even 6
588.3.m.d.325.1 4 21.2 odd 6
1008.3.cg.m.145.1 4 28.11 odd 6
1008.3.cg.m.577.1 4 28.19 even 6
1764.3.d.f.685.2 4 7.6 odd 2 inner
1764.3.d.f.685.3 4 1.1 even 1 trivial
1764.3.z.h.325.2 4 7.2 even 3
1764.3.z.h.901.2 4 7.3 odd 6
2100.3.bd.f.901.1 4 105.74 odd 6
2100.3.bd.f.1501.2 4 105.89 even 6
2100.3.be.d.649.2 8 105.53 even 12
2100.3.be.d.649.3 8 105.32 even 12
2100.3.be.d.1249.2 8 105.47 odd 12
2100.3.be.d.1249.3 8 105.68 odd 12
2352.3.f.f.97.2 4 84.83 odd 2
2352.3.f.f.97.3 4 12.11 even 2