Properties

Label 1008.3.cg.m.145.1
Level $1008$
Weight $3$
Character 1008.145
Analytic conductor $27.466$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1008,3,Mod(145,1008)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1008, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 5]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1008.145");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1008.cg (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(27.4660106475\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{65})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 17x^{2} + 16x + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 84)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 145.1
Root \(-1.76556 - 3.05805i\) of defining polynomial
Character \(\chi\) \(=\) 1008.145
Dual form 1008.3.cg.m.577.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-3.79669 - 2.19202i) q^{5} +(-0.500000 - 6.98212i) q^{7} +(9.79669 + 16.9684i) q^{11} -6.11609i q^{13} +(-7.59339 + 4.38404i) q^{17} +(26.2967 + 15.1824i) q^{19} +(12.0000 - 20.7846i) q^{23} +(-2.89008 - 5.00577i) q^{25} -13.5934 q^{29} +(24.2802 - 14.0182i) q^{31} +(-13.4066 + 27.6050i) q^{35} +(24.2967 - 42.0831i) q^{37} -7.14387i q^{41} -53.7802 q^{43} +(-34.5934 - 19.9725i) q^{47} +(-48.5000 + 6.98212i) q^{49} +(-30.7967 - 53.3414i) q^{53} -85.8983i q^{55} +(66.7967 - 38.5651i) q^{59} +(0.373546 + 0.215667i) q^{61} +(-13.4066 + 23.2209i) q^{65} +(-28.4835 - 49.3348i) q^{67} -123.560 q^{71} +(31.0769 - 17.9422i) q^{73} +(113.577 - 76.8859i) q^{77} +(-26.0934 + 45.1951i) q^{79} -136.883i q^{83} +38.4397 q^{85} +(-13.2198 - 7.63248i) q^{89} +(-42.7033 + 3.05805i) q^{91} +(-66.5603 - 115.286i) q^{95} -34.1524i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 9 q^{5} - 2 q^{7} + 15 q^{11} + 18 q^{17} + 81 q^{19} + 48 q^{23} + 61 q^{25} - 6 q^{29} - 48 q^{31} - 102 q^{35} + 73 q^{37} - 70 q^{43} - 90 q^{47} - 194 q^{49} - 99 q^{53} + 243 q^{59} - 192 q^{61}+ \cdots + 24 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −3.79669 2.19202i −0.759339 0.438404i 0.0697196 0.997567i \(-0.477790\pi\)
−0.829058 + 0.559162i \(0.811123\pi\)
\(6\) 0 0
\(7\) −0.500000 6.98212i −0.0714286 0.997446i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 9.79669 + 16.9684i 0.890608 + 1.54258i 0.839147 + 0.543904i \(0.183054\pi\)
0.0514611 + 0.998675i \(0.483612\pi\)
\(12\) 0 0
\(13\) 6.11609i 0.470469i −0.971939 0.235234i \(-0.924414\pi\)
0.971939 0.235234i \(-0.0755858\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −7.59339 + 4.38404i −0.446670 + 0.257885i −0.706423 0.707790i \(-0.749692\pi\)
0.259753 + 0.965675i \(0.416359\pi\)
\(18\) 0 0
\(19\) 26.2967 + 15.1824i 1.38404 + 0.799074i 0.992635 0.121146i \(-0.0386569\pi\)
0.391402 + 0.920220i \(0.371990\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 12.0000 20.7846i 0.521739 0.903679i −0.477941 0.878392i \(-0.658617\pi\)
0.999680 0.0252868i \(-0.00804990\pi\)
\(24\) 0 0
\(25\) −2.89008 5.00577i −0.115603 0.200231i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −13.5934 −0.468737 −0.234369 0.972148i \(-0.575302\pi\)
−0.234369 + 0.972148i \(0.575302\pi\)
\(30\) 0 0
\(31\) 24.2802 14.0182i 0.783231 0.452199i −0.0543432 0.998522i \(-0.517306\pi\)
0.837574 + 0.546324i \(0.183973\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −13.4066 + 27.6050i −0.383046 + 0.788714i
\(36\) 0 0
\(37\) 24.2967 42.0831i 0.656667 1.13738i −0.324806 0.945781i \(-0.605299\pi\)
0.981473 0.191600i \(-0.0613678\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 7.14387i 0.174241i −0.996198 0.0871204i \(-0.972234\pi\)
0.996198 0.0871204i \(-0.0277665\pi\)
\(42\) 0 0
\(43\) −53.7802 −1.25070 −0.625351 0.780344i \(-0.715044\pi\)
−0.625351 + 0.780344i \(0.715044\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −34.5934 19.9725i −0.736030 0.424947i 0.0845944 0.996415i \(-0.473041\pi\)
−0.820624 + 0.571469i \(0.806374\pi\)
\(48\) 0 0
\(49\) −48.5000 + 6.98212i −0.989796 + 0.142492i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −30.7967 53.3414i −0.581070 1.00644i −0.995353 0.0962942i \(-0.969301\pi\)
0.414283 0.910148i \(-0.364032\pi\)
\(54\) 0 0
\(55\) 85.8983i 1.56179i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 66.7967 38.5651i 1.13215 0.653646i 0.187673 0.982232i \(-0.439905\pi\)
0.944474 + 0.328586i \(0.106572\pi\)
\(60\) 0 0
\(61\) 0.373546 + 0.215667i 0.00612371 + 0.00353553i 0.503059 0.864252i \(-0.332208\pi\)
−0.496935 + 0.867788i \(0.665541\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −13.4066 + 23.2209i −0.206256 + 0.357245i
\(66\) 0 0
\(67\) −28.4835 49.3348i −0.425126 0.736340i 0.571306 0.820737i \(-0.306437\pi\)
−0.996432 + 0.0843968i \(0.973104\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −123.560 −1.74029 −0.870143 0.492799i \(-0.835974\pi\)
−0.870143 + 0.492799i \(0.835974\pi\)
\(72\) 0 0
\(73\) 31.0769 17.9422i 0.425710 0.245784i −0.271807 0.962352i \(-0.587621\pi\)
0.697517 + 0.716568i \(0.254288\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 113.577 76.8859i 1.47502 0.998518i
\(78\) 0 0
\(79\) −26.0934 + 45.1951i −0.330296 + 0.572090i −0.982570 0.185894i \(-0.940482\pi\)
0.652274 + 0.757983i \(0.273815\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 136.883i 1.64919i −0.565725 0.824594i \(-0.691404\pi\)
0.565725 0.824594i \(-0.308596\pi\)
\(84\) 0 0
\(85\) 38.4397 0.452232
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −13.2198 7.63248i −0.148538 0.0857582i 0.423889 0.905714i \(-0.360665\pi\)
−0.572427 + 0.819956i \(0.693998\pi\)
\(90\) 0 0
\(91\) −42.7033 + 3.05805i −0.469267 + 0.0336049i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −66.5603 115.286i −0.700635 1.21354i
\(96\) 0 0
\(97\) 34.1524i 0.352087i −0.984382 0.176043i \(-0.943670\pi\)
0.984382 0.176043i \(-0.0563299\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 113.340 65.4372i 1.12218 0.647893i 0.180226 0.983625i \(-0.442317\pi\)
0.941957 + 0.335733i \(0.108984\pi\)
\(102\) 0 0
\(103\) 140.857 + 81.3238i 1.36754 + 0.789552i 0.990614 0.136690i \(-0.0436464\pi\)
0.376930 + 0.926242i \(0.376980\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 51.9835 90.0380i 0.485827 0.841477i −0.514041 0.857766i \(-0.671852\pi\)
0.999867 + 0.0162892i \(0.00518525\pi\)
\(108\) 0 0
\(109\) 7.89008 + 13.6660i 0.0723861 + 0.125376i 0.899947 0.436000i \(-0.143605\pi\)
−0.827561 + 0.561377i \(0.810272\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 59.6265 0.527668 0.263834 0.964568i \(-0.415013\pi\)
0.263834 + 0.964568i \(0.415013\pi\)
\(114\) 0 0
\(115\) −91.1206 + 52.6085i −0.792353 + 0.457465i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 34.4066 + 50.8259i 0.289131 + 0.427109i
\(120\) 0 0
\(121\) −131.450 + 227.679i −1.08637 + 1.88164i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 134.942i 1.07953i
\(126\) 0 0
\(127\) 25.0000 0.196850 0.0984252 0.995144i \(-0.468619\pi\)
0.0984252 + 0.995144i \(0.468619\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 196.170 + 113.259i 1.49748 + 0.864572i 0.999996 0.00289939i \(-0.000922907\pi\)
0.497487 + 0.867471i \(0.334256\pi\)
\(132\) 0 0
\(133\) 92.8570 191.198i 0.698173 1.43758i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −123.560 214.013i −0.901900 1.56214i −0.825025 0.565096i \(-0.808839\pi\)
−0.0768751 0.997041i \(-0.524494\pi\)
\(138\) 0 0
\(139\) 147.383i 1.06031i −0.847902 0.530154i \(-0.822134\pi\)
0.847902 0.530154i \(-0.177866\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 103.780 59.9175i 0.725735 0.419004i
\(144\) 0 0
\(145\) 51.6099 + 29.7970i 0.355930 + 0.205497i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 64.4066 111.556i 0.432259 0.748695i −0.564808 0.825222i \(-0.691050\pi\)
0.997067 + 0.0765273i \(0.0243832\pi\)
\(150\) 0 0
\(151\) 31.0165 + 53.7222i 0.205408 + 0.355776i 0.950262 0.311450i \(-0.100815\pi\)
−0.744855 + 0.667226i \(0.767481\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −122.912 −0.792983
\(156\) 0 0
\(157\) −217.121 + 125.355i −1.38293 + 0.798437i −0.992506 0.122196i \(-0.961006\pi\)
−0.390428 + 0.920633i \(0.627673\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −151.121 73.3931i −0.938638 0.455858i
\(162\) 0 0
\(163\) −48.9669 + 84.8132i −0.300411 + 0.520326i −0.976229 0.216742i \(-0.930457\pi\)
0.675818 + 0.737068i \(0.263790\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 71.7689i 0.429754i 0.976641 + 0.214877i \(0.0689351\pi\)
−0.976641 + 0.214877i \(0.931065\pi\)
\(168\) 0 0
\(169\) 131.593 0.778659
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −261.560 151.012i −1.51191 0.872901i −0.999903 0.0139196i \(-0.995569\pi\)
−0.512006 0.858982i \(-0.671098\pi\)
\(174\) 0 0
\(175\) −33.5058 + 22.6818i −0.191462 + 0.129610i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −69.0000 119.512i −0.385475 0.667662i 0.606360 0.795190i \(-0.292629\pi\)
−0.991835 + 0.127528i \(0.959296\pi\)
\(180\) 0 0
\(181\) 82.9733i 0.458416i −0.973377 0.229208i \(-0.926386\pi\)
0.973377 0.229208i \(-0.0736136\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −184.494 + 106.518i −0.997266 + 0.575772i
\(186\) 0 0
\(187\) −148.780 85.8983i −0.795616 0.459349i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −86.1537 + 149.223i −0.451067 + 0.781270i −0.998453 0.0556101i \(-0.982290\pi\)
0.547386 + 0.836880i \(0.315623\pi\)
\(192\) 0 0
\(193\) −137.654 238.423i −0.713232 1.23535i −0.963638 0.267213i \(-0.913897\pi\)
0.250406 0.968141i \(-0.419436\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 154.307 0.783286 0.391643 0.920117i \(-0.371907\pi\)
0.391643 + 0.920117i \(0.371907\pi\)
\(198\) 0 0
\(199\) 162.747 93.9621i 0.817825 0.472171i −0.0318411 0.999493i \(-0.510137\pi\)
0.849666 + 0.527322i \(0.176804\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 6.79669 + 94.9107i 0.0334812 + 0.467540i
\(204\) 0 0
\(205\) −15.6595 + 27.1231i −0.0763879 + 0.132308i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 594.949i 2.84665i
\(210\) 0 0
\(211\) 348.307 1.65075 0.825373 0.564588i \(-0.190965\pi\)
0.825373 + 0.564588i \(0.190965\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 204.187 + 117.887i 0.949706 + 0.548313i
\(216\) 0 0
\(217\) −110.017 162.518i −0.506989 0.748930i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 26.8132 + 46.4419i 0.121327 + 0.210144i
\(222\) 0 0
\(223\) 30.3581i 0.136135i 0.997681 + 0.0680675i \(0.0216833\pi\)
−0.997681 + 0.0680675i \(0.978317\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 55.8298 32.2333i 0.245946 0.141997i −0.371961 0.928249i \(-0.621314\pi\)
0.617907 + 0.786252i \(0.287981\pi\)
\(228\) 0 0
\(229\) 8.67024 + 5.00577i 0.0378613 + 0.0218592i 0.518811 0.854889i \(-0.326375\pi\)
−0.480950 + 0.876748i \(0.659708\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 14.2529 24.6868i 0.0611713 0.105952i −0.833818 0.552040i \(-0.813850\pi\)
0.894989 + 0.446088i \(0.147183\pi\)
\(234\) 0 0
\(235\) 87.5603 + 151.659i 0.372597 + 0.645357i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −256.307 −1.07242 −0.536208 0.844086i \(-0.680144\pi\)
−0.536208 + 0.844086i \(0.680144\pi\)
\(240\) 0 0
\(241\) 186.797 107.847i 0.775090 0.447498i −0.0595974 0.998222i \(-0.518982\pi\)
0.834687 + 0.550724i \(0.185648\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 199.445 + 79.8041i 0.814060 + 0.325731i
\(246\) 0 0
\(247\) 92.8570 160.833i 0.375939 0.651146i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 371.680i 1.48080i 0.672168 + 0.740398i \(0.265363\pi\)
−0.672168 + 0.740398i \(0.734637\pi\)
\(252\) 0 0
\(253\) 470.241 1.85866
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 64.1206 + 37.0201i 0.249497 + 0.144047i 0.619534 0.784970i \(-0.287322\pi\)
−0.370037 + 0.929017i \(0.620655\pi\)
\(258\) 0 0
\(259\) −305.978 148.601i −1.18138 0.573749i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −9.65952 16.7308i −0.0367282 0.0636151i 0.847077 0.531470i \(-0.178360\pi\)
−0.883805 + 0.467855i \(0.845027\pi\)
\(264\) 0 0
\(265\) 270.028i 1.01897i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 180.983 104.491i 0.672801 0.388442i −0.124336 0.992240i \(-0.539680\pi\)
0.797137 + 0.603798i \(0.206347\pi\)
\(270\) 0 0
\(271\) −106.357 61.4053i −0.392461 0.226588i 0.290765 0.956795i \(-0.406090\pi\)
−0.683226 + 0.730207i \(0.739424\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 56.6265 98.0799i 0.205914 0.356654i
\(276\) 0 0
\(277\) −13.8901 24.0583i −0.0501447 0.0868532i 0.839864 0.542798i \(-0.182635\pi\)
−0.890008 + 0.455944i \(0.849302\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −61.4942 −0.218841 −0.109420 0.993996i \(-0.534899\pi\)
−0.109420 + 0.993996i \(0.534899\pi\)
\(282\) 0 0
\(283\) 38.0107 21.9455i 0.134313 0.0775459i −0.431338 0.902191i \(-0.641958\pi\)
0.565651 + 0.824645i \(0.308625\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −49.8794 + 3.57194i −0.173796 + 0.0124458i
\(288\) 0 0
\(289\) −106.060 + 183.702i −0.366991 + 0.635647i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 223.600i 0.763139i 0.924340 + 0.381569i \(0.124616\pi\)
−0.924340 + 0.381569i \(0.875384\pi\)
\(294\) 0 0
\(295\) −338.142 −1.14624
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −127.121 73.3931i −0.425153 0.245462i
\(300\) 0 0
\(301\) 26.8901 + 375.500i 0.0893358 + 1.24751i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −0.945494 1.63764i −0.00309998 0.00536933i
\(306\) 0 0
\(307\) 66.8457i 0.217738i 0.994056 + 0.108869i \(0.0347230\pi\)
−0.994056 + 0.108869i \(0.965277\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −25.3074 + 14.6112i −0.0813743 + 0.0469815i −0.540135 0.841578i \(-0.681627\pi\)
0.458761 + 0.888560i \(0.348294\pi\)
\(312\) 0 0
\(313\) −214.874 124.057i −0.686497 0.396349i 0.115801 0.993272i \(-0.463056\pi\)
−0.802298 + 0.596923i \(0.796390\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 6.32395 10.9534i 0.0199494 0.0345533i −0.855878 0.517177i \(-0.826983\pi\)
0.875828 + 0.482624i \(0.160316\pi\)
\(318\) 0 0
\(319\) −133.170 230.658i −0.417462 0.723065i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −266.241 −0.824276
\(324\) 0 0
\(325\) −30.6157 + 17.6760i −0.0942023 + 0.0543877i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −122.154 + 251.521i −0.371288 + 0.764503i
\(330\) 0 0
\(331\) −251.450 + 435.525i −0.759669 + 1.31579i 0.183351 + 0.983048i \(0.441306\pi\)
−0.943019 + 0.332738i \(0.892028\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 249.746i 0.745509i
\(336\) 0 0
\(337\) −123.681 −0.367006 −0.183503 0.983019i \(-0.558744\pi\)
−0.183503 + 0.983019i \(0.558744\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 475.731 + 274.663i 1.39510 + 0.805464i
\(342\) 0 0
\(343\) 73.0000 + 335.142i 0.212828 + 0.977090i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 113.154 + 195.988i 0.326091 + 0.564807i 0.981733 0.190266i \(-0.0609350\pi\)
−0.655641 + 0.755073i \(0.727602\pi\)
\(348\) 0 0
\(349\) 155.669i 0.446043i −0.974814 0.223021i \(-0.928408\pi\)
0.974814 0.223021i \(-0.0715920\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 55.4066 31.9890i 0.156959 0.0906205i −0.419463 0.907772i \(-0.637782\pi\)
0.576422 + 0.817152i \(0.304448\pi\)
\(354\) 0 0
\(355\) 469.121 + 270.847i 1.32147 + 0.762949i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 151.494 262.396i 0.421989 0.730907i −0.574145 0.818754i \(-0.694665\pi\)
0.996134 + 0.0878469i \(0.0279986\pi\)
\(360\) 0 0
\(361\) 280.511 + 485.859i 0.777038 + 1.34587i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −157.319 −0.431011
\(366\) 0 0
\(367\) 0.00581404 0.00335674i 1.58421e−5 9.14643e-6i −0.499992 0.866030i \(-0.666664\pi\)
0.500008 + 0.866021i \(0.333330\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −357.038 + 241.697i −0.962367 + 0.651474i
\(372\) 0 0
\(373\) 62.8901 108.929i 0.168606 0.292034i −0.769324 0.638859i \(-0.779407\pi\)
0.937930 + 0.346825i \(0.112740\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 83.1384i 0.220526i
\(378\) 0 0
\(379\) 485.076 1.27988 0.639942 0.768423i \(-0.278958\pi\)
0.639942 + 0.768423i \(0.278958\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −225.286 130.069i −0.588214 0.339606i 0.176177 0.984359i \(-0.443627\pi\)
−0.764391 + 0.644753i \(0.776960\pi\)
\(384\) 0 0
\(385\) −599.752 + 42.9491i −1.55780 + 0.111556i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 42.9339 + 74.3636i 0.110370 + 0.191166i 0.915919 0.401362i \(-0.131463\pi\)
−0.805550 + 0.592528i \(0.798130\pi\)
\(390\) 0 0
\(391\) 210.434i 0.538195i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 198.137 114.395i 0.501613 0.289606i
\(396\) 0 0
\(397\) 401.670 + 231.904i 1.01176 + 0.584142i 0.911708 0.410840i \(-0.134764\pi\)
0.100056 + 0.994982i \(0.468098\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −231.934 + 401.721i −0.578389 + 1.00180i 0.417276 + 0.908780i \(0.362985\pi\)
−0.995664 + 0.0930186i \(0.970348\pi\)
\(402\) 0 0
\(403\) −85.7364 148.500i −0.212745 0.368486i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 952.109 2.33933
\(408\) 0 0
\(409\) 403.687 233.069i 0.987009 0.569850i 0.0826303 0.996580i \(-0.473668\pi\)
0.904379 + 0.426730i \(0.140335\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −302.664 447.100i −0.732844 1.08257i
\(414\) 0 0
\(415\) −300.050 + 519.701i −0.723011 + 1.25229i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 89.9655i 0.214715i 0.994220 + 0.107357i \(0.0342389\pi\)
−0.994220 + 0.107357i \(0.965761\pi\)
\(420\) 0 0
\(421\) −413.582 −0.982379 −0.491190 0.871053i \(-0.663438\pi\)
−0.491190 + 0.871053i \(0.663438\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 43.8910 + 25.3405i 0.103273 + 0.0596246i
\(426\) 0 0
\(427\) 1.31904 2.71598i 0.00308909 0.00636061i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −35.0661 60.7363i −0.0813599 0.140920i 0.822474 0.568802i \(-0.192593\pi\)
−0.903834 + 0.427883i \(0.859260\pi\)
\(432\) 0 0
\(433\) 431.223i 0.995897i 0.867207 + 0.497948i \(0.165913\pi\)
−0.867207 + 0.497948i \(0.834087\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 631.121 364.378i 1.44421 0.833816i
\(438\) 0 0
\(439\) 81.7091 + 47.1748i 0.186126 + 0.107460i 0.590168 0.807281i \(-0.299062\pi\)
−0.404042 + 0.914740i \(0.632395\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −206.291 + 357.306i −0.465668 + 0.806560i −0.999231 0.0391995i \(-0.987519\pi\)
0.533564 + 0.845760i \(0.320853\pi\)
\(444\) 0 0
\(445\) 33.4611 + 57.9564i 0.0751935 + 0.130239i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −617.802 −1.37595 −0.687975 0.725734i \(-0.741500\pi\)
−0.687975 + 0.725734i \(0.741500\pi\)
\(450\) 0 0
\(451\) 121.220 69.9863i 0.268780 0.155180i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 168.835 + 81.9961i 0.371065 + 0.180211i
\(456\) 0 0
\(457\) 5.50000 9.52628i 0.0120350 0.0208453i −0.859945 0.510386i \(-0.829502\pi\)
0.871980 + 0.489541i \(0.162836\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 859.960i 1.86542i −0.360624 0.932711i \(-0.617436\pi\)
0.360624 0.932711i \(-0.382564\pi\)
\(462\) 0 0
\(463\) −397.340 −0.858187 −0.429093 0.903260i \(-0.641167\pi\)
−0.429093 + 0.903260i \(0.641167\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 257.340 + 148.576i 0.551050 + 0.318149i 0.749545 0.661953i \(-0.230272\pi\)
−0.198495 + 0.980102i \(0.563605\pi\)
\(468\) 0 0
\(469\) −330.220 + 223.542i −0.704093 + 0.476636i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −526.868 912.562i −1.11389 1.92931i
\(474\) 0 0
\(475\) 175.513i 0.369502i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 696.648 402.210i 1.45438 0.839687i 0.455654 0.890157i \(-0.349405\pi\)
0.998726 + 0.0504704i \(0.0160720\pi\)
\(480\) 0 0
\(481\) −257.384 148.601i −0.535102 0.308942i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −74.8628 + 129.666i −0.154356 + 0.267353i
\(486\) 0 0
\(487\) 30.4008 + 52.6557i 0.0624246 + 0.108123i 0.895549 0.444964i \(-0.146783\pi\)
−0.833124 + 0.553086i \(0.813450\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 514.955 1.04879 0.524394 0.851475i \(-0.324292\pi\)
0.524394 + 0.851475i \(0.324292\pi\)
\(492\) 0 0
\(493\) 103.220 59.5940i 0.209371 0.120880i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 61.7802 + 862.713i 0.124306 + 1.73584i
\(498\) 0 0
\(499\) 444.450 769.811i 0.890682 1.54271i 0.0516230 0.998667i \(-0.483561\pi\)
0.839059 0.544040i \(-0.183106\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 822.920i 1.63602i 0.575202 + 0.818012i \(0.304924\pi\)
−0.575202 + 0.818012i \(0.695076\pi\)
\(504\) 0 0
\(505\) −573.759 −1.13616
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 492.038 + 284.078i 0.966676 + 0.558111i 0.898221 0.439544i \(-0.144860\pi\)
0.0684546 + 0.997654i \(0.478193\pi\)
\(510\) 0 0
\(511\) −140.813 208.011i −0.275564 0.407067i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −356.527 617.523i −0.692286 1.19907i
\(516\) 0 0
\(517\) 782.658i 1.51385i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −118.407 + 68.3621i −0.227268 + 0.131213i −0.609311 0.792931i \(-0.708554\pi\)
0.382043 + 0.924145i \(0.375221\pi\)
\(522\) 0 0
\(523\) −12.6157 7.28370i −0.0241219 0.0139268i 0.487891 0.872905i \(-0.337767\pi\)
−0.512012 + 0.858978i \(0.671100\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −122.912 + 212.891i −0.233230 + 0.403967i
\(528\) 0 0
\(529\) −23.5000 40.7032i −0.0444234 0.0769437i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −43.6926 −0.0819748
\(534\) 0 0
\(535\) −394.731 + 227.898i −0.737814 + 0.425977i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −593.615 754.564i −1.10133 1.39993i
\(540\) 0 0
\(541\) 462.450 800.988i 0.854807 1.48057i −0.0220176 0.999758i \(-0.507009\pi\)
0.876824 0.480811i \(-0.159658\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 69.1809i 0.126937i
\(546\) 0 0
\(547\) −103.626 −0.189445 −0.0947225 0.995504i \(-0.530196\pi\)
−0.0947225 + 0.995504i \(0.530196\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −357.461 206.380i −0.648750 0.374556i
\(552\) 0 0
\(553\) 328.604 + 159.590i 0.594221 + 0.288589i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 206.203 + 357.155i 0.370203 + 0.641211i 0.989597 0.143870i \(-0.0459546\pi\)
−0.619393 + 0.785081i \(0.712621\pi\)
\(558\) 0 0
\(559\) 328.925i 0.588416i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −594.412 + 343.184i −1.05579 + 0.609562i −0.924266 0.381750i \(-0.875322\pi\)
−0.131528 + 0.991313i \(0.541988\pi\)
\(564\) 0 0
\(565\) −226.383 130.702i −0.400679 0.231332i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −73.3074 + 126.972i −0.128836 + 0.223150i −0.923226 0.384258i \(-0.874457\pi\)
0.794390 + 0.607408i \(0.207791\pi\)
\(570\) 0 0
\(571\) 178.131 + 308.533i 0.311964 + 0.540337i 0.978787 0.204878i \(-0.0656799\pi\)
−0.666824 + 0.745216i \(0.732347\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −138.724 −0.241259
\(576\) 0 0
\(577\) −148.115 + 85.5141i −0.256698 + 0.148205i −0.622827 0.782359i \(-0.714016\pi\)
0.366129 + 0.930564i \(0.380683\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −955.731 + 68.4413i −1.64498 + 0.117799i
\(582\) 0 0
\(583\) 603.412 1045.14i 1.03501 1.79269i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 24.8384i 0.0423142i −0.999776 0.0211571i \(-0.993265\pi\)
0.999776 0.0211571i \(-0.00673502\pi\)
\(588\) 0 0
\(589\) 851.317 1.44536
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 117.846 + 68.0386i 0.198729 + 0.114736i 0.596062 0.802938i \(-0.296731\pi\)
−0.397333 + 0.917674i \(0.630064\pi\)
\(594\) 0 0
\(595\) −19.2198 268.390i −0.0323023 0.451076i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −494.615 856.698i −0.825734 1.43021i −0.901357 0.433077i \(-0.857428\pi\)
0.0756226 0.997137i \(-0.475906\pi\)
\(600\) 0 0
\(601\) 78.8184i 0.131145i 0.997848 + 0.0655727i \(0.0208874\pi\)
−0.997848 + 0.0655727i \(0.979113\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 998.154 576.284i 1.64984 0.952536i
\(606\) 0 0
\(607\) −727.850 420.225i −1.19909 0.692297i −0.238741 0.971083i \(-0.576735\pi\)
−0.960353 + 0.278786i \(0.910068\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −122.154 + 211.576i −0.199924 + 0.346279i
\(612\) 0 0
\(613\) −423.714 733.894i −0.691214 1.19722i −0.971440 0.237283i \(-0.923743\pi\)
0.280227 0.959934i \(-0.409590\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 649.669 1.05295 0.526474 0.850191i \(-0.323514\pi\)
0.526474 + 0.850191i \(0.323514\pi\)
\(618\) 0 0
\(619\) 422.659 244.022i 0.682809 0.394220i −0.118104 0.993001i \(-0.537682\pi\)
0.800912 + 0.598781i \(0.204348\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −46.6810 + 96.1187i −0.0749293 + 0.154284i
\(624\) 0 0
\(625\) 223.543 387.188i 0.357669 0.619500i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 426.071i 0.677378i
\(630\) 0 0
\(631\) 820.473 1.30027 0.650137 0.759817i \(-0.274712\pi\)
0.650137 + 0.759817i \(0.274712\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −94.9173 54.8005i −0.149476 0.0863001i
\(636\) 0 0
\(637\) 42.7033 + 296.631i 0.0670382 + 0.465668i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −9.93387 17.2060i −0.0154975 0.0268424i 0.858173 0.513361i \(-0.171600\pi\)
−0.873670 + 0.486519i \(0.838267\pi\)
\(642\) 0 0
\(643\) 1013.95i 1.57691i 0.615092 + 0.788456i \(0.289119\pi\)
−0.615092 + 0.788456i \(0.710881\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 115.582 66.7312i 0.178643 0.103139i −0.408012 0.912976i \(-0.633778\pi\)
0.586655 + 0.809837i \(0.300445\pi\)
\(648\) 0 0
\(649\) 1308.77 + 755.621i 2.01660 + 1.16428i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 302.378 523.735i 0.463060 0.802044i −0.536051 0.844185i \(-0.680085\pi\)
0.999112 + 0.0421413i \(0.0134180\pi\)
\(654\) 0 0
\(655\) −496.532 860.019i −0.758064 1.31301i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 335.451 0.509031 0.254515 0.967069i \(-0.418084\pi\)
0.254515 + 0.967069i \(0.418084\pi\)
\(660\) 0 0
\(661\) 608.186 351.136i 0.920100 0.531220i 0.0364328 0.999336i \(-0.488401\pi\)
0.883667 + 0.468116i \(0.155067\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −771.660 + 522.375i −1.16039 + 0.785526i
\(666\) 0 0
\(667\) −163.121 + 282.533i −0.244559 + 0.423588i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 8.45130i 0.0125951i
\(672\) 0 0
\(673\) −1119.48 −1.66342 −0.831711 0.555209i \(-0.812638\pi\)
−0.831711 + 0.555209i \(0.812638\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −225.709 130.313i −0.333396 0.192486i 0.323952 0.946074i \(-0.394988\pi\)
−0.657348 + 0.753587i \(0.728322\pi\)
\(678\) 0 0
\(679\) −238.456 + 17.0762i −0.351187 + 0.0251490i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 100.258 + 173.652i 0.146790 + 0.254248i 0.930039 0.367460i \(-0.119772\pi\)
−0.783249 + 0.621708i \(0.786439\pi\)
\(684\) 0 0
\(685\) 1083.39i 1.58159i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −326.241 + 188.355i −0.473500 + 0.273375i
\(690\) 0 0
\(691\) −860.933 497.060i −1.24592 0.719334i −0.275629 0.961264i \(-0.588886\pi\)
−0.970294 + 0.241930i \(0.922220\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −323.066 + 559.567i −0.464843 + 0.805132i
\(696\) 0 0
\(697\) 31.3190 + 54.2462i 0.0449341 + 0.0778281i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 148.231 0.211457 0.105729 0.994395i \(-0.466283\pi\)
0.105729 + 0.994395i \(0.466283\pi\)
\(702\) 0 0
\(703\) 1277.85 737.764i 1.81770 1.04945i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −513.560 758.638i −0.726394 1.07304i
\(708\) 0 0
\(709\) −355.988 + 616.590i −0.502099 + 0.869661i 0.497898 + 0.867236i \(0.334105\pi\)
−0.999997 + 0.00242571i \(0.999228\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 672.872i 0.943719i
\(714\) 0 0
\(715\) −525.362 −0.734772
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −649.109 374.763i −0.902794 0.521228i −0.0246885 0.999695i \(-0.507859\pi\)
−0.878106 + 0.478467i \(0.841193\pi\)
\(720\) 0 0
\(721\) 497.384 1024.14i 0.689853 1.42045i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 39.2860 + 68.0453i 0.0541876 + 0.0938556i
\(726\) 0 0
\(727\) 865.702i 1.19079i 0.803434 + 0.595393i \(0.203004\pi\)
−0.803434 + 0.595393i \(0.796996\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 408.374 235.775i 0.558651 0.322537i
\(732\) 0 0
\(733\) 83.5710 + 48.2498i 0.114012 + 0.0658251i 0.555922 0.831235i \(-0.312365\pi\)
−0.441909 + 0.897060i \(0.645699\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 558.088 966.636i 0.757242 1.31158i
\(738\) 0 0
\(739\) −210.450 364.511i −0.284777 0.493249i 0.687778 0.725921i \(-0.258586\pi\)
−0.972555 + 0.232673i \(0.925253\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 920.043 1.23828 0.619141 0.785280i \(-0.287481\pi\)
0.619141 + 0.785280i \(0.287481\pi\)
\(744\) 0 0
\(745\) −489.064 + 282.361i −0.656462 + 0.379009i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −654.648 317.936i −0.874029 0.424480i
\(750\) 0 0
\(751\) −160.181 + 277.442i −0.213290 + 0.369430i −0.952742 0.303780i \(-0.901751\pi\)
0.739452 + 0.673209i \(0.235085\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 271.956i 0.360206i
\(756\) 0 0
\(757\) 330.813 0.437006 0.218503 0.975836i \(-0.429883\pi\)
0.218503 + 0.975836i \(0.429883\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −230.615 133.146i −0.303042 0.174961i 0.340767 0.940148i \(-0.389313\pi\)
−0.643809 + 0.765187i \(0.722647\pi\)
\(762\) 0 0
\(763\) 91.4727 61.9225i 0.119886 0.0811566i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −235.868 408.535i −0.307520 0.532640i
\(768\) 0 0
\(769\) 241.301i 0.313785i −0.987616 0.156893i \(-0.949852\pi\)
0.987616 0.156893i \(-0.0501477\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 805.208 464.887i 1.04167 0.601406i 0.121362 0.992608i \(-0.461274\pi\)
0.920305 + 0.391202i \(0.127941\pi\)
\(774\) 0 0
\(775\) −140.343 81.0272i −0.181088 0.104551i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 108.461 187.860i 0.139231 0.241156i
\(780\) 0 0
\(781\) −1210.48 2096.62i −1.54991 2.68453i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 1099.12 1.40015
\(786\) 0 0
\(787\) −961.097 + 554.890i −1.22122 + 0.705070i −0.965177 0.261597i \(-0.915751\pi\)
−0.256039 + 0.966666i \(0.582418\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −29.8132 416.319i −0.0376906 0.526320i
\(792\) 0 0
\(793\) 1.31904 2.28465i 0.00166336 0.00288102i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 231.047i 0.289896i −0.989439 0.144948i \(-0.953699\pi\)
0.989439 0.144948i \(-0.0463014\pi\)
\(798\) 0 0
\(799\) 350.241 0.438350
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 608.901 + 351.549i 0.758282 + 0.437795i
\(804\) 0 0
\(805\) 412.879 + 609.911i 0.512894 + 0.757653i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −159.473 276.215i −0.197123 0.341428i 0.750471 0.660903i \(-0.229827\pi\)
−0.947595 + 0.319476i \(0.896493\pi\)
\(810\) 0 0
\(811\) 196.807i 0.242672i −0.992612 0.121336i \(-0.961282\pi\)
0.992612 0.121336i \(-0.0387178\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 371.825 214.673i 0.456227 0.263403i
\(816\) 0 0
\(817\) −1414.24 816.512i −1.73102 0.999403i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −692.005 + 1198.59i −0.842881 + 1.45991i 0.0445687 + 0.999006i \(0.485809\pi\)
−0.887449 + 0.460906i \(0.847525\pi\)
\(822\) 0 0
\(823\) 138.253 + 239.461i 0.167987 + 0.290961i 0.937712 0.347414i \(-0.112940\pi\)
−0.769725 + 0.638375i \(0.779607\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 1467.81 1.77486 0.887431 0.460940i \(-0.152488\pi\)
0.887431 + 0.460940i \(0.152488\pi\)
\(828\) 0 0
\(829\) 68.1859 39.3671i 0.0822507 0.0474875i −0.458311 0.888792i \(-0.651545\pi\)
0.540561 + 0.841305i \(0.318212\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 337.669 265.644i 0.405365 0.318900i
\(834\) 0 0
\(835\) 157.319 272.485i 0.188406 0.326329i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 591.398i 0.704884i −0.935834 0.352442i \(-0.885351\pi\)
0.935834 0.352442i \(-0.114649\pi\)
\(840\) 0 0
\(841\) −656.220 −0.780285
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −499.620 288.456i −0.591266 0.341368i
\(846\) 0 0
\(847\) 1655.41 + 803.963i 1.95443 + 0.949189i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −583.121 1009.99i −0.685218 1.18683i
\(852\) 0 0
\(853\) 1048.80i 1.22954i 0.788707 + 0.614770i \(0.210751\pi\)
−0.788707 + 0.614770i \(0.789249\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −92.8132 + 53.5857i −0.108300 + 0.0625271i −0.553172 0.833067i \(-0.686583\pi\)
0.444872 + 0.895594i \(0.353249\pi\)
\(858\) 0 0
\(859\) 1304.52 + 753.162i 1.51864 + 0.876790i 0.999759 + 0.0219460i \(0.00698618\pi\)
0.518885 + 0.854844i \(0.326347\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −187.681 + 325.073i −0.217475 + 0.376678i −0.954035 0.299694i \(-0.903115\pi\)
0.736560 + 0.676372i \(0.236449\pi\)
\(864\) 0 0
\(865\) 662.043 + 1146.69i 0.765367 + 1.32566i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −1022.52 −1.17666
\(870\) 0 0
\(871\) −301.736 + 174.208i −0.346425 + 0.200009i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 942.178 67.4708i 1.07678 0.0771095i
\(876\) 0 0
\(877\) −704.395 + 1220.05i −0.803187 + 1.39116i 0.114321 + 0.993444i \(0.463531\pi\)
−0.917508 + 0.397717i \(0.869803\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 1236.04i 1.40299i −0.712673 0.701497i \(-0.752515\pi\)
0.712673 0.701497i \(-0.247485\pi\)
\(882\) 0 0
\(883\) 72.9437 0.0826089 0.0413045 0.999147i \(-0.486849\pi\)
0.0413045 + 0.999147i \(0.486849\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 1249.01 + 721.116i 1.40813 + 0.812983i 0.995208 0.0977838i \(-0.0311754\pi\)
0.412921 + 0.910767i \(0.364509\pi\)
\(888\) 0 0
\(889\) −12.5000 174.553i −0.0140607 0.196348i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −606.461 1050.42i −0.679128 1.17628i
\(894\) 0 0
\(895\) 604.998i 0.675975i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −330.050 + 190.554i −0.367130 + 0.211962i
\(900\) 0 0
\(901\) 467.702 + 270.028i 0.519093 + 0.299698i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −181.879 + 315.024i −0.200972 + 0.348093i
\(906\) 0 0
\(907\) −604.878 1047.68i −0.666900 1.15510i −0.978766 0.204979i \(-0.934287\pi\)
0.311866 0.950126i \(-0.399046\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −1328.22 −1.45798 −0.728989 0.684525i \(-0.760009\pi\)
−0.728989 + 0.684525i \(0.760009\pi\)
\(912\) 0 0
\(913\) 2322.67 1341.00i 2.54400 1.46878i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 692.702 1426.31i 0.755401 1.55541i
\(918\) 0 0
\(919\) −244.429 + 423.363i −0.265973 + 0.460678i −0.967818 0.251651i \(-0.919026\pi\)
0.701845 + 0.712329i \(0.252360\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 755.707i 0.818750i
\(924\) 0 0
\(925\) −280.878 −0.303651
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 824.055 + 475.768i 0.887034 + 0.512129i 0.872971 0.487772i \(-0.162190\pi\)
0.0140628 + 0.999901i \(0.495524\pi\)
\(930\) 0 0
\(931\) −1381.39 552.740i −1.48378 0.593706i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 376.582 + 652.259i 0.402761 + 0.697603i
\(936\) 0 0
\(937\) 309.707i 0.330530i −0.986249 0.165265i \(-0.947152\pi\)
0.986249 0.165265i \(-0.0528480\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −1015.42 + 586.254i −1.07909 + 0.623011i −0.930650 0.365910i \(-0.880758\pi\)
−0.148437 + 0.988922i \(0.547424\pi\)
\(942\) 0 0
\(943\) −148.483 85.7264i −0.157458 0.0909082i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 362.428 627.744i 0.382712 0.662876i −0.608737 0.793372i \(-0.708324\pi\)
0.991449 + 0.130496i \(0.0416569\pi\)
\(948\) 0 0
\(949\) −109.736 190.069i −0.115634 0.200283i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −27.5371 −0.0288951 −0.0144476 0.999896i \(-0.504599\pi\)
−0.0144476 + 0.999896i \(0.504599\pi\)
\(954\) 0 0
\(955\) 654.198 377.702i 0.685025 0.395499i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −1432.48 + 969.719i −1.49373 + 1.01118i
\(960\) 0 0
\(961\) −87.4826 + 151.524i −0.0910328 + 0.157674i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 1206.96i 1.25074i
\(966\) 0 0
\(967\) −1279.81 −1.32349 −0.661744 0.749730i \(-0.730183\pi\)
−0.661744 + 0.749730i \(0.730183\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 963.686 + 556.384i 0.992467 + 0.573001i 0.906011 0.423254i \(-0.139112\pi\)
0.0864565 + 0.996256i \(0.472446\pi\)
\(972\) 0 0
\(973\) −1029.04 + 73.6914i −1.05760 + 0.0757362i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −217.879 377.378i −0.223009 0.386262i 0.732712 0.680539i \(-0.238254\pi\)
−0.955720 + 0.294277i \(0.904921\pi\)
\(978\) 0 0
\(979\) 299.092i 0.305508i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −243.835 + 140.778i −0.248052 + 0.143213i −0.618872 0.785492i \(-0.712410\pi\)
0.370820 + 0.928705i \(0.379077\pi\)
\(984\) 0 0
\(985\) −585.858 338.245i −0.594780 0.343396i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −645.362 + 1117.80i −0.652540 + 1.13023i
\(990\) 0 0
\(991\) −308.786 534.833i −0.311590 0.539690i 0.667117 0.744953i \(-0.267528\pi\)
−0.978707 + 0.205263i \(0.934195\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −823.868 −0.828008
\(996\) 0 0
\(997\) −1303.91 + 752.814i −1.30784 + 0.755079i −0.981734 0.190256i \(-0.939068\pi\)
−0.326101 + 0.945335i \(0.605735\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1008.3.cg.m.145.1 4
3.2 odd 2 336.3.bh.f.145.2 4
4.3 odd 2 252.3.z.e.145.1 4
7.3 odd 6 inner 1008.3.cg.m.577.1 4
12.11 even 2 84.3.m.b.61.2 4
21.2 odd 6 2352.3.f.f.97.3 4
21.5 even 6 2352.3.f.f.97.2 4
21.17 even 6 336.3.bh.f.241.2 4
28.3 even 6 252.3.z.e.73.1 4
28.11 odd 6 1764.3.z.h.325.2 4
28.19 even 6 1764.3.d.f.685.2 4
28.23 odd 6 1764.3.d.f.685.3 4
28.27 even 2 1764.3.z.h.901.2 4
60.23 odd 4 2100.3.be.d.649.2 8
60.47 odd 4 2100.3.be.d.649.3 8
60.59 even 2 2100.3.bd.f.901.1 4
84.11 even 6 588.3.m.d.325.1 4
84.23 even 6 588.3.d.b.97.1 4
84.47 odd 6 588.3.d.b.97.4 4
84.59 odd 6 84.3.m.b.73.2 yes 4
84.83 odd 2 588.3.m.d.313.1 4
420.59 odd 6 2100.3.bd.f.1501.2 4
420.143 even 12 2100.3.be.d.1249.3 8
420.227 even 12 2100.3.be.d.1249.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
84.3.m.b.61.2 4 12.11 even 2
84.3.m.b.73.2 yes 4 84.59 odd 6
252.3.z.e.73.1 4 28.3 even 6
252.3.z.e.145.1 4 4.3 odd 2
336.3.bh.f.145.2 4 3.2 odd 2
336.3.bh.f.241.2 4 21.17 even 6
588.3.d.b.97.1 4 84.23 even 6
588.3.d.b.97.4 4 84.47 odd 6
588.3.m.d.313.1 4 84.83 odd 2
588.3.m.d.325.1 4 84.11 even 6
1008.3.cg.m.145.1 4 1.1 even 1 trivial
1008.3.cg.m.577.1 4 7.3 odd 6 inner
1764.3.d.f.685.2 4 28.19 even 6
1764.3.d.f.685.3 4 28.23 odd 6
1764.3.z.h.325.2 4 28.11 odd 6
1764.3.z.h.901.2 4 28.27 even 2
2100.3.bd.f.901.1 4 60.59 even 2
2100.3.bd.f.1501.2 4 420.59 odd 6
2100.3.be.d.649.2 8 60.23 odd 4
2100.3.be.d.649.3 8 60.47 odd 4
2100.3.be.d.1249.2 8 420.227 even 12
2100.3.be.d.1249.3 8 420.143 even 12
2352.3.f.f.97.2 4 21.5 even 6
2352.3.f.f.97.3 4 21.2 odd 6