L(s) = 1 | + 2.56·2-s + 3-s + 4.56·4-s − 5-s + 2.56·6-s − 7-s + 6.56·8-s + 9-s − 2.56·10-s + 3.12·11-s + 4.56·12-s + 3.56·13-s − 2.56·14-s − 15-s + 7.68·16-s − 17-s + 2.56·18-s − 7.12·19-s − 4.56·20-s − 21-s + 8·22-s + 8.68·23-s + 6.56·24-s + 25-s + 9.12·26-s + 27-s − 4.56·28-s + ⋯ |
L(s) = 1 | + 1.81·2-s + 0.577·3-s + 2.28·4-s − 0.447·5-s + 1.04·6-s − 0.377·7-s + 2.31·8-s + 0.333·9-s − 0.810·10-s + 0.941·11-s + 1.31·12-s + 0.987·13-s − 0.684·14-s − 0.258·15-s + 1.92·16-s − 0.242·17-s + 0.603·18-s − 1.63·19-s − 1.01·20-s − 0.218·21-s + 1.70·22-s + 1.81·23-s + 1.33·24-s + 0.200·25-s + 1.78·26-s + 0.192·27-s − 0.862·28-s + ⋯ |
Λ(s)=(=(1785s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(1785s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
6.178406453 |
L(21) |
≈ |
6.178406453 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1−T |
| 5 | 1+T |
| 7 | 1+T |
| 17 | 1+T |
good | 2 | 1−2.56T+2T2 |
| 11 | 1−3.12T+11T2 |
| 13 | 1−3.56T+13T2 |
| 19 | 1+7.12T+19T2 |
| 23 | 1−8.68T+23T2 |
| 29 | 1+1.12T+29T2 |
| 31 | 1−2.43T+31T2 |
| 37 | 1+3.56T+37T2 |
| 41 | 1−3.56T+41T2 |
| 43 | 1+43T2 |
| 47 | 1+11.8T+47T2 |
| 53 | 1+2.87T+53T2 |
| 59 | 1−10.2T+59T2 |
| 61 | 1+10.6T+61T2 |
| 67 | 1+6.24T+67T2 |
| 71 | 1+7.12T+71T2 |
| 73 | 1−2.87T+73T2 |
| 79 | 1−3.12T+79T2 |
| 83 | 1+15.8T+83T2 |
| 89 | 1−2T+89T2 |
| 97 | 1−6T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.080658977392302749807939672320, −8.499489019713316489828287440884, −7.33749952364122450869751170006, −6.59294025916800309965365867661, −6.16043648869638976910396516887, −4.92432828712169903519685640178, −4.19363900142589069621769757381, −3.54488608103195909899912214561, −2.79062541351769277558221454342, −1.55971063092187508187260055572,
1.55971063092187508187260055572, 2.79062541351769277558221454342, 3.54488608103195909899912214561, 4.19363900142589069621769757381, 4.92432828712169903519685640178, 6.16043648869638976910396516887, 6.59294025916800309965365867661, 7.33749952364122450869751170006, 8.499489019713316489828287440884, 9.080658977392302749807939672320