Properties

Label 1785.2.a.s.1.2
Level $1785$
Weight $2$
Character 1785.1
Self dual yes
Analytic conductor $14.253$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1785,2,Mod(1,1785)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1785, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1785.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1785 = 3 \cdot 5 \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1785.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(14.2532967608\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(2.56155\) of defining polynomial
Character \(\chi\) \(=\) 1785.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.56155 q^{2} +1.00000 q^{3} +4.56155 q^{4} -1.00000 q^{5} +2.56155 q^{6} -1.00000 q^{7} +6.56155 q^{8} +1.00000 q^{9} -2.56155 q^{10} +3.12311 q^{11} +4.56155 q^{12} +3.56155 q^{13} -2.56155 q^{14} -1.00000 q^{15} +7.68466 q^{16} -1.00000 q^{17} +2.56155 q^{18} -7.12311 q^{19} -4.56155 q^{20} -1.00000 q^{21} +8.00000 q^{22} +8.68466 q^{23} +6.56155 q^{24} +1.00000 q^{25} +9.12311 q^{26} +1.00000 q^{27} -4.56155 q^{28} -1.12311 q^{29} -2.56155 q^{30} +2.43845 q^{31} +6.56155 q^{32} +3.12311 q^{33} -2.56155 q^{34} +1.00000 q^{35} +4.56155 q^{36} -3.56155 q^{37} -18.2462 q^{38} +3.56155 q^{39} -6.56155 q^{40} +3.56155 q^{41} -2.56155 q^{42} +14.2462 q^{44} -1.00000 q^{45} +22.2462 q^{46} -11.8078 q^{47} +7.68466 q^{48} +1.00000 q^{49} +2.56155 q^{50} -1.00000 q^{51} +16.2462 q^{52} -2.87689 q^{53} +2.56155 q^{54} -3.12311 q^{55} -6.56155 q^{56} -7.12311 q^{57} -2.87689 q^{58} +10.2462 q^{59} -4.56155 q^{60} -10.6847 q^{61} +6.24621 q^{62} -1.00000 q^{63} +1.43845 q^{64} -3.56155 q^{65} +8.00000 q^{66} -6.24621 q^{67} -4.56155 q^{68} +8.68466 q^{69} +2.56155 q^{70} -7.12311 q^{71} +6.56155 q^{72} +2.87689 q^{73} -9.12311 q^{74} +1.00000 q^{75} -32.4924 q^{76} -3.12311 q^{77} +9.12311 q^{78} +3.12311 q^{79} -7.68466 q^{80} +1.00000 q^{81} +9.12311 q^{82} -15.8078 q^{83} -4.56155 q^{84} +1.00000 q^{85} -1.12311 q^{87} +20.4924 q^{88} +2.00000 q^{89} -2.56155 q^{90} -3.56155 q^{91} +39.6155 q^{92} +2.43845 q^{93} -30.2462 q^{94} +7.12311 q^{95} +6.56155 q^{96} +6.00000 q^{97} +2.56155 q^{98} +3.12311 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} + 2 q^{3} + 5 q^{4} - 2 q^{5} + q^{6} - 2 q^{7} + 9 q^{8} + 2 q^{9} - q^{10} - 2 q^{11} + 5 q^{12} + 3 q^{13} - q^{14} - 2 q^{15} + 3 q^{16} - 2 q^{17} + q^{18} - 6 q^{19} - 5 q^{20} - 2 q^{21}+ \cdots - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.56155 1.81129 0.905646 0.424035i \(-0.139387\pi\)
0.905646 + 0.424035i \(0.139387\pi\)
\(3\) 1.00000 0.577350
\(4\) 4.56155 2.28078
\(5\) −1.00000 −0.447214
\(6\) 2.56155 1.04575
\(7\) −1.00000 −0.377964
\(8\) 6.56155 2.31986
\(9\) 1.00000 0.333333
\(10\) −2.56155 −0.810034
\(11\) 3.12311 0.941652 0.470826 0.882226i \(-0.343956\pi\)
0.470826 + 0.882226i \(0.343956\pi\)
\(12\) 4.56155 1.31681
\(13\) 3.56155 0.987797 0.493899 0.869520i \(-0.335571\pi\)
0.493899 + 0.869520i \(0.335571\pi\)
\(14\) −2.56155 −0.684604
\(15\) −1.00000 −0.258199
\(16\) 7.68466 1.92116
\(17\) −1.00000 −0.242536
\(18\) 2.56155 0.603764
\(19\) −7.12311 −1.63415 −0.817076 0.576530i \(-0.804407\pi\)
−0.817076 + 0.576530i \(0.804407\pi\)
\(20\) −4.56155 −1.01999
\(21\) −1.00000 −0.218218
\(22\) 8.00000 1.70561
\(23\) 8.68466 1.81088 0.905438 0.424478i \(-0.139542\pi\)
0.905438 + 0.424478i \(0.139542\pi\)
\(24\) 6.56155 1.33937
\(25\) 1.00000 0.200000
\(26\) 9.12311 1.78919
\(27\) 1.00000 0.192450
\(28\) −4.56155 −0.862052
\(29\) −1.12311 −0.208555 −0.104278 0.994548i \(-0.533253\pi\)
−0.104278 + 0.994548i \(0.533253\pi\)
\(30\) −2.56155 −0.467673
\(31\) 2.43845 0.437958 0.218979 0.975730i \(-0.429727\pi\)
0.218979 + 0.975730i \(0.429727\pi\)
\(32\) 6.56155 1.15993
\(33\) 3.12311 0.543663
\(34\) −2.56155 −0.439303
\(35\) 1.00000 0.169031
\(36\) 4.56155 0.760259
\(37\) −3.56155 −0.585516 −0.292758 0.956187i \(-0.594573\pi\)
−0.292758 + 0.956187i \(0.594573\pi\)
\(38\) −18.2462 −2.95993
\(39\) 3.56155 0.570305
\(40\) −6.56155 −1.03747
\(41\) 3.56155 0.556221 0.278111 0.960549i \(-0.410292\pi\)
0.278111 + 0.960549i \(0.410292\pi\)
\(42\) −2.56155 −0.395256
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) 14.2462 2.14770
\(45\) −1.00000 −0.149071
\(46\) 22.2462 3.28002
\(47\) −11.8078 −1.72234 −0.861170 0.508318i \(-0.830268\pi\)
−0.861170 + 0.508318i \(0.830268\pi\)
\(48\) 7.68466 1.10918
\(49\) 1.00000 0.142857
\(50\) 2.56155 0.362258
\(51\) −1.00000 −0.140028
\(52\) 16.2462 2.25294
\(53\) −2.87689 −0.395172 −0.197586 0.980286i \(-0.563310\pi\)
−0.197586 + 0.980286i \(0.563310\pi\)
\(54\) 2.56155 0.348583
\(55\) −3.12311 −0.421119
\(56\) −6.56155 −0.876824
\(57\) −7.12311 −0.943478
\(58\) −2.87689 −0.377755
\(59\) 10.2462 1.33394 0.666972 0.745083i \(-0.267590\pi\)
0.666972 + 0.745083i \(0.267590\pi\)
\(60\) −4.56155 −0.588894
\(61\) −10.6847 −1.36803 −0.684015 0.729468i \(-0.739768\pi\)
−0.684015 + 0.729468i \(0.739768\pi\)
\(62\) 6.24621 0.793270
\(63\) −1.00000 −0.125988
\(64\) 1.43845 0.179806
\(65\) −3.56155 −0.441756
\(66\) 8.00000 0.984732
\(67\) −6.24621 −0.763096 −0.381548 0.924349i \(-0.624609\pi\)
−0.381548 + 0.924349i \(0.624609\pi\)
\(68\) −4.56155 −0.553170
\(69\) 8.68466 1.04551
\(70\) 2.56155 0.306164
\(71\) −7.12311 −0.845357 −0.422679 0.906280i \(-0.638910\pi\)
−0.422679 + 0.906280i \(0.638910\pi\)
\(72\) 6.56155 0.773286
\(73\) 2.87689 0.336715 0.168358 0.985726i \(-0.446154\pi\)
0.168358 + 0.985726i \(0.446154\pi\)
\(74\) −9.12311 −1.06054
\(75\) 1.00000 0.115470
\(76\) −32.4924 −3.72714
\(77\) −3.12311 −0.355911
\(78\) 9.12311 1.03299
\(79\) 3.12311 0.351377 0.175688 0.984446i \(-0.443785\pi\)
0.175688 + 0.984446i \(0.443785\pi\)
\(80\) −7.68466 −0.859171
\(81\) 1.00000 0.111111
\(82\) 9.12311 1.00748
\(83\) −15.8078 −1.73513 −0.867564 0.497326i \(-0.834315\pi\)
−0.867564 + 0.497326i \(0.834315\pi\)
\(84\) −4.56155 −0.497706
\(85\) 1.00000 0.108465
\(86\) 0 0
\(87\) −1.12311 −0.120410
\(88\) 20.4924 2.18450
\(89\) 2.00000 0.212000 0.106000 0.994366i \(-0.466196\pi\)
0.106000 + 0.994366i \(0.466196\pi\)
\(90\) −2.56155 −0.270011
\(91\) −3.56155 −0.373352
\(92\) 39.6155 4.13020
\(93\) 2.43845 0.252855
\(94\) −30.2462 −3.11966
\(95\) 7.12311 0.730815
\(96\) 6.56155 0.669686
\(97\) 6.00000 0.609208 0.304604 0.952479i \(-0.401476\pi\)
0.304604 + 0.952479i \(0.401476\pi\)
\(98\) 2.56155 0.258756
\(99\) 3.12311 0.313884
\(100\) 4.56155 0.456155
\(101\) 1.12311 0.111753 0.0558766 0.998438i \(-0.482205\pi\)
0.0558766 + 0.998438i \(0.482205\pi\)
\(102\) −2.56155 −0.253632
\(103\) −2.24621 −0.221326 −0.110663 0.993858i \(-0.535297\pi\)
−0.110663 + 0.993858i \(0.535297\pi\)
\(104\) 23.3693 2.29155
\(105\) 1.00000 0.0975900
\(106\) −7.36932 −0.715771
\(107\) 6.43845 0.622428 0.311214 0.950340i \(-0.399264\pi\)
0.311214 + 0.950340i \(0.399264\pi\)
\(108\) 4.56155 0.438936
\(109\) 12.2462 1.17297 0.586487 0.809959i \(-0.300510\pi\)
0.586487 + 0.809959i \(0.300510\pi\)
\(110\) −8.00000 −0.762770
\(111\) −3.56155 −0.338048
\(112\) −7.68466 −0.726132
\(113\) −8.24621 −0.775738 −0.387869 0.921714i \(-0.626789\pi\)
−0.387869 + 0.921714i \(0.626789\pi\)
\(114\) −18.2462 −1.70891
\(115\) −8.68466 −0.809849
\(116\) −5.12311 −0.475668
\(117\) 3.56155 0.329266
\(118\) 26.2462 2.41616
\(119\) 1.00000 0.0916698
\(120\) −6.56155 −0.598985
\(121\) −1.24621 −0.113292
\(122\) −27.3693 −2.47790
\(123\) 3.56155 0.321134
\(124\) 11.1231 0.998884
\(125\) −1.00000 −0.0894427
\(126\) −2.56155 −0.228201
\(127\) 20.0000 1.77471 0.887357 0.461084i \(-0.152539\pi\)
0.887357 + 0.461084i \(0.152539\pi\)
\(128\) −9.43845 −0.834249
\(129\) 0 0
\(130\) −9.12311 −0.800149
\(131\) −16.6847 −1.45775 −0.728873 0.684649i \(-0.759955\pi\)
−0.728873 + 0.684649i \(0.759955\pi\)
\(132\) 14.2462 1.23997
\(133\) 7.12311 0.617652
\(134\) −16.0000 −1.38219
\(135\) −1.00000 −0.0860663
\(136\) −6.56155 −0.562649
\(137\) −21.1231 −1.80467 −0.902334 0.431037i \(-0.858148\pi\)
−0.902334 + 0.431037i \(0.858148\pi\)
\(138\) 22.2462 1.89372
\(139\) 4.00000 0.339276 0.169638 0.985506i \(-0.445740\pi\)
0.169638 + 0.985506i \(0.445740\pi\)
\(140\) 4.56155 0.385522
\(141\) −11.8078 −0.994393
\(142\) −18.2462 −1.53119
\(143\) 11.1231 0.930161
\(144\) 7.68466 0.640388
\(145\) 1.12311 0.0932688
\(146\) 7.36932 0.609889
\(147\) 1.00000 0.0824786
\(148\) −16.2462 −1.33543
\(149\) −18.6847 −1.53071 −0.765353 0.643610i \(-0.777436\pi\)
−0.765353 + 0.643610i \(0.777436\pi\)
\(150\) 2.56155 0.209150
\(151\) −8.68466 −0.706747 −0.353374 0.935482i \(-0.614966\pi\)
−0.353374 + 0.935482i \(0.614966\pi\)
\(152\) −46.7386 −3.79100
\(153\) −1.00000 −0.0808452
\(154\) −8.00000 −0.644658
\(155\) −2.43845 −0.195861
\(156\) 16.2462 1.30074
\(157\) −16.2462 −1.29659 −0.648294 0.761390i \(-0.724517\pi\)
−0.648294 + 0.761390i \(0.724517\pi\)
\(158\) 8.00000 0.636446
\(159\) −2.87689 −0.228153
\(160\) −6.56155 −0.518736
\(161\) −8.68466 −0.684447
\(162\) 2.56155 0.201255
\(163\) 11.3153 0.886286 0.443143 0.896451i \(-0.353863\pi\)
0.443143 + 0.896451i \(0.353863\pi\)
\(164\) 16.2462 1.26862
\(165\) −3.12311 −0.243133
\(166\) −40.4924 −3.14282
\(167\) 4.87689 0.377385 0.188693 0.982036i \(-0.439575\pi\)
0.188693 + 0.982036i \(0.439575\pi\)
\(168\) −6.56155 −0.506235
\(169\) −0.315342 −0.0242570
\(170\) 2.56155 0.196462
\(171\) −7.12311 −0.544718
\(172\) 0 0
\(173\) −14.0000 −1.06440 −0.532200 0.846619i \(-0.678635\pi\)
−0.532200 + 0.846619i \(0.678635\pi\)
\(174\) −2.87689 −0.218097
\(175\) −1.00000 −0.0755929
\(176\) 24.0000 1.80907
\(177\) 10.2462 0.770152
\(178\) 5.12311 0.383993
\(179\) 0.192236 0.0143684 0.00718419 0.999974i \(-0.497713\pi\)
0.00718419 + 0.999974i \(0.497713\pi\)
\(180\) −4.56155 −0.339998
\(181\) 19.5616 1.45400 0.726999 0.686638i \(-0.240914\pi\)
0.726999 + 0.686638i \(0.240914\pi\)
\(182\) −9.12311 −0.676250
\(183\) −10.6847 −0.789833
\(184\) 56.9848 4.20098
\(185\) 3.56155 0.261851
\(186\) 6.24621 0.457994
\(187\) −3.12311 −0.228384
\(188\) −53.8617 −3.92827
\(189\) −1.00000 −0.0727393
\(190\) 18.2462 1.32372
\(191\) 14.9309 1.08036 0.540180 0.841550i \(-0.318356\pi\)
0.540180 + 0.841550i \(0.318356\pi\)
\(192\) 1.43845 0.103811
\(193\) 14.6847 1.05702 0.528512 0.848926i \(-0.322750\pi\)
0.528512 + 0.848926i \(0.322750\pi\)
\(194\) 15.3693 1.10345
\(195\) −3.56155 −0.255048
\(196\) 4.56155 0.325825
\(197\) 3.75379 0.267446 0.133723 0.991019i \(-0.457307\pi\)
0.133723 + 0.991019i \(0.457307\pi\)
\(198\) 8.00000 0.568535
\(199\) −6.24621 −0.442782 −0.221391 0.975185i \(-0.571060\pi\)
−0.221391 + 0.975185i \(0.571060\pi\)
\(200\) 6.56155 0.463972
\(201\) −6.24621 −0.440574
\(202\) 2.87689 0.202418
\(203\) 1.12311 0.0788266
\(204\) −4.56155 −0.319373
\(205\) −3.56155 −0.248750
\(206\) −5.75379 −0.400885
\(207\) 8.68466 0.603625
\(208\) 27.3693 1.89772
\(209\) −22.2462 −1.53880
\(210\) 2.56155 0.176764
\(211\) −7.12311 −0.490375 −0.245187 0.969476i \(-0.578849\pi\)
−0.245187 + 0.969476i \(0.578849\pi\)
\(212\) −13.1231 −0.901299
\(213\) −7.12311 −0.488067
\(214\) 16.4924 1.12740
\(215\) 0 0
\(216\) 6.56155 0.446457
\(217\) −2.43845 −0.165533
\(218\) 31.3693 2.12460
\(219\) 2.87689 0.194403
\(220\) −14.2462 −0.960479
\(221\) −3.56155 −0.239576
\(222\) −9.12311 −0.612303
\(223\) 3.31534 0.222012 0.111006 0.993820i \(-0.464593\pi\)
0.111006 + 0.993820i \(0.464593\pi\)
\(224\) −6.56155 −0.438412
\(225\) 1.00000 0.0666667
\(226\) −21.1231 −1.40509
\(227\) −8.87689 −0.589180 −0.294590 0.955624i \(-0.595183\pi\)
−0.294590 + 0.955624i \(0.595183\pi\)
\(228\) −32.4924 −2.15186
\(229\) −3.75379 −0.248057 −0.124029 0.992279i \(-0.539581\pi\)
−0.124029 + 0.992279i \(0.539581\pi\)
\(230\) −22.2462 −1.46687
\(231\) −3.12311 −0.205485
\(232\) −7.36932 −0.483819
\(233\) 2.19224 0.143618 0.0718091 0.997418i \(-0.477123\pi\)
0.0718091 + 0.997418i \(0.477123\pi\)
\(234\) 9.12311 0.596396
\(235\) 11.8078 0.770254
\(236\) 46.7386 3.04243
\(237\) 3.12311 0.202868
\(238\) 2.56155 0.166041
\(239\) 16.6847 1.07924 0.539620 0.841908i \(-0.318568\pi\)
0.539620 + 0.841908i \(0.318568\pi\)
\(240\) −7.68466 −0.496043
\(241\) −19.5616 −1.26007 −0.630035 0.776567i \(-0.716960\pi\)
−0.630035 + 0.776567i \(0.716960\pi\)
\(242\) −3.19224 −0.205205
\(243\) 1.00000 0.0641500
\(244\) −48.7386 −3.12017
\(245\) −1.00000 −0.0638877
\(246\) 9.12311 0.581668
\(247\) −25.3693 −1.61421
\(248\) 16.0000 1.01600
\(249\) −15.8078 −1.00178
\(250\) −2.56155 −0.162007
\(251\) −16.4924 −1.04099 −0.520496 0.853864i \(-0.674253\pi\)
−0.520496 + 0.853864i \(0.674253\pi\)
\(252\) −4.56155 −0.287351
\(253\) 27.1231 1.70522
\(254\) 51.2311 3.21452
\(255\) 1.00000 0.0626224
\(256\) −27.0540 −1.69087
\(257\) 30.6847 1.91406 0.957028 0.289995i \(-0.0936536\pi\)
0.957028 + 0.289995i \(0.0936536\pi\)
\(258\) 0 0
\(259\) 3.56155 0.221304
\(260\) −16.2462 −1.00755
\(261\) −1.12311 −0.0695185
\(262\) −42.7386 −2.64040
\(263\) 18.7386 1.15547 0.577737 0.816223i \(-0.303936\pi\)
0.577737 + 0.816223i \(0.303936\pi\)
\(264\) 20.4924 1.26122
\(265\) 2.87689 0.176726
\(266\) 18.2462 1.11875
\(267\) 2.00000 0.122398
\(268\) −28.4924 −1.74045
\(269\) 1.31534 0.0801978 0.0400989 0.999196i \(-0.487233\pi\)
0.0400989 + 0.999196i \(0.487233\pi\)
\(270\) −2.56155 −0.155891
\(271\) −11.1231 −0.675681 −0.337840 0.941203i \(-0.609696\pi\)
−0.337840 + 0.941203i \(0.609696\pi\)
\(272\) −7.68466 −0.465951
\(273\) −3.56155 −0.215555
\(274\) −54.1080 −3.26878
\(275\) 3.12311 0.188330
\(276\) 39.6155 2.38457
\(277\) 32.9309 1.97862 0.989312 0.145813i \(-0.0465799\pi\)
0.989312 + 0.145813i \(0.0465799\pi\)
\(278\) 10.2462 0.614527
\(279\) 2.43845 0.145986
\(280\) 6.56155 0.392128
\(281\) 12.4384 0.742016 0.371008 0.928630i \(-0.379012\pi\)
0.371008 + 0.928630i \(0.379012\pi\)
\(282\) −30.2462 −1.80114
\(283\) 26.2462 1.56018 0.780088 0.625670i \(-0.215174\pi\)
0.780088 + 0.625670i \(0.215174\pi\)
\(284\) −32.4924 −1.92807
\(285\) 7.12311 0.421936
\(286\) 28.4924 1.68479
\(287\) −3.56155 −0.210232
\(288\) 6.56155 0.386643
\(289\) 1.00000 0.0588235
\(290\) 2.87689 0.168937
\(291\) 6.00000 0.351726
\(292\) 13.1231 0.767972
\(293\) 14.4924 0.846656 0.423328 0.905976i \(-0.360862\pi\)
0.423328 + 0.905976i \(0.360862\pi\)
\(294\) 2.56155 0.149393
\(295\) −10.2462 −0.596557
\(296\) −23.3693 −1.35831
\(297\) 3.12311 0.181221
\(298\) −47.8617 −2.77256
\(299\) 30.9309 1.78878
\(300\) 4.56155 0.263361
\(301\) 0 0
\(302\) −22.2462 −1.28013
\(303\) 1.12311 0.0645207
\(304\) −54.7386 −3.13948
\(305\) 10.6847 0.611802
\(306\) −2.56155 −0.146434
\(307\) −22.2462 −1.26966 −0.634829 0.772653i \(-0.718930\pi\)
−0.634829 + 0.772653i \(0.718930\pi\)
\(308\) −14.2462 −0.811753
\(309\) −2.24621 −0.127782
\(310\) −6.24621 −0.354761
\(311\) 22.4384 1.27237 0.636184 0.771538i \(-0.280512\pi\)
0.636184 + 0.771538i \(0.280512\pi\)
\(312\) 23.3693 1.32303
\(313\) 24.7386 1.39831 0.699155 0.714970i \(-0.253560\pi\)
0.699155 + 0.714970i \(0.253560\pi\)
\(314\) −41.6155 −2.34850
\(315\) 1.00000 0.0563436
\(316\) 14.2462 0.801412
\(317\) −24.0540 −1.35101 −0.675503 0.737357i \(-0.736073\pi\)
−0.675503 + 0.737357i \(0.736073\pi\)
\(318\) −7.36932 −0.413251
\(319\) −3.50758 −0.196387
\(320\) −1.43845 −0.0804116
\(321\) 6.43845 0.359359
\(322\) −22.2462 −1.23973
\(323\) 7.12311 0.396340
\(324\) 4.56155 0.253420
\(325\) 3.56155 0.197559
\(326\) 28.9848 1.60532
\(327\) 12.2462 0.677217
\(328\) 23.3693 1.29035
\(329\) 11.8078 0.650983
\(330\) −8.00000 −0.440386
\(331\) −0.192236 −0.0105662 −0.00528312 0.999986i \(-0.501682\pi\)
−0.00528312 + 0.999986i \(0.501682\pi\)
\(332\) −72.1080 −3.95744
\(333\) −3.56155 −0.195172
\(334\) 12.4924 0.683555
\(335\) 6.24621 0.341267
\(336\) −7.68466 −0.419232
\(337\) 7.75379 0.422376 0.211188 0.977445i \(-0.432267\pi\)
0.211188 + 0.977445i \(0.432267\pi\)
\(338\) −0.807764 −0.0439366
\(339\) −8.24621 −0.447873
\(340\) 4.56155 0.247385
\(341\) 7.61553 0.412404
\(342\) −18.2462 −0.986642
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) −8.68466 −0.467566
\(346\) −35.8617 −1.92794
\(347\) −4.00000 −0.214731 −0.107366 0.994220i \(-0.534242\pi\)
−0.107366 + 0.994220i \(0.534242\pi\)
\(348\) −5.12311 −0.274627
\(349\) 25.1231 1.34481 0.672405 0.740184i \(-0.265262\pi\)
0.672405 + 0.740184i \(0.265262\pi\)
\(350\) −2.56155 −0.136921
\(351\) 3.56155 0.190102
\(352\) 20.4924 1.09225
\(353\) −15.5616 −0.828258 −0.414129 0.910218i \(-0.635914\pi\)
−0.414129 + 0.910218i \(0.635914\pi\)
\(354\) 26.2462 1.39497
\(355\) 7.12311 0.378055
\(356\) 9.12311 0.483524
\(357\) 1.00000 0.0529256
\(358\) 0.492423 0.0260253
\(359\) −2.43845 −0.128696 −0.0643482 0.997928i \(-0.520497\pi\)
−0.0643482 + 0.997928i \(0.520497\pi\)
\(360\) −6.56155 −0.345824
\(361\) 31.7386 1.67045
\(362\) 50.1080 2.63362
\(363\) −1.24621 −0.0654091
\(364\) −16.2462 −0.851533
\(365\) −2.87689 −0.150584
\(366\) −27.3693 −1.43062
\(367\) −9.36932 −0.489074 −0.244537 0.969640i \(-0.578636\pi\)
−0.244537 + 0.969640i \(0.578636\pi\)
\(368\) 66.7386 3.47899
\(369\) 3.56155 0.185407
\(370\) 9.12311 0.474288
\(371\) 2.87689 0.149361
\(372\) 11.1231 0.576706
\(373\) 23.3693 1.21002 0.605009 0.796219i \(-0.293170\pi\)
0.605009 + 0.796219i \(0.293170\pi\)
\(374\) −8.00000 −0.413670
\(375\) −1.00000 −0.0516398
\(376\) −77.4773 −3.99558
\(377\) −4.00000 −0.206010
\(378\) −2.56155 −0.131752
\(379\) 0.492423 0.0252940 0.0126470 0.999920i \(-0.495974\pi\)
0.0126470 + 0.999920i \(0.495974\pi\)
\(380\) 32.4924 1.66683
\(381\) 20.0000 1.02463
\(382\) 38.2462 1.95685
\(383\) 34.7386 1.77506 0.887531 0.460749i \(-0.152419\pi\)
0.887531 + 0.460749i \(0.152419\pi\)
\(384\) −9.43845 −0.481654
\(385\) 3.12311 0.159168
\(386\) 37.6155 1.91458
\(387\) 0 0
\(388\) 27.3693 1.38947
\(389\) −36.0540 −1.82801 −0.914005 0.405704i \(-0.867026\pi\)
−0.914005 + 0.405704i \(0.867026\pi\)
\(390\) −9.12311 −0.461966
\(391\) −8.68466 −0.439202
\(392\) 6.56155 0.331408
\(393\) −16.6847 −0.841630
\(394\) 9.61553 0.484423
\(395\) −3.12311 −0.157140
\(396\) 14.2462 0.715899
\(397\) −24.7386 −1.24160 −0.620798 0.783970i \(-0.713191\pi\)
−0.620798 + 0.783970i \(0.713191\pi\)
\(398\) −16.0000 −0.802008
\(399\) 7.12311 0.356601
\(400\) 7.68466 0.384233
\(401\) 14.0000 0.699127 0.349563 0.936913i \(-0.386330\pi\)
0.349563 + 0.936913i \(0.386330\pi\)
\(402\) −16.0000 −0.798007
\(403\) 8.68466 0.432614
\(404\) 5.12311 0.254884
\(405\) −1.00000 −0.0496904
\(406\) 2.87689 0.142778
\(407\) −11.1231 −0.551352
\(408\) −6.56155 −0.324845
\(409\) 27.3693 1.35333 0.676663 0.736293i \(-0.263425\pi\)
0.676663 + 0.736293i \(0.263425\pi\)
\(410\) −9.12311 −0.450558
\(411\) −21.1231 −1.04193
\(412\) −10.2462 −0.504795
\(413\) −10.2462 −0.504183
\(414\) 22.2462 1.09334
\(415\) 15.8078 0.775973
\(416\) 23.3693 1.14578
\(417\) 4.00000 0.195881
\(418\) −56.9848 −2.78722
\(419\) −21.5616 −1.05335 −0.526675 0.850066i \(-0.676562\pi\)
−0.526675 + 0.850066i \(0.676562\pi\)
\(420\) 4.56155 0.222581
\(421\) −17.3153 −0.843898 −0.421949 0.906620i \(-0.638654\pi\)
−0.421949 + 0.906620i \(0.638654\pi\)
\(422\) −18.2462 −0.888212
\(423\) −11.8078 −0.574113
\(424\) −18.8769 −0.916743
\(425\) −1.00000 −0.0485071
\(426\) −18.2462 −0.884032
\(427\) 10.6847 0.517067
\(428\) 29.3693 1.41962
\(429\) 11.1231 0.537029
\(430\) 0 0
\(431\) 24.4924 1.17976 0.589879 0.807491i \(-0.299175\pi\)
0.589879 + 0.807491i \(0.299175\pi\)
\(432\) 7.68466 0.369728
\(433\) 7.17708 0.344908 0.172454 0.985018i \(-0.444830\pi\)
0.172454 + 0.985018i \(0.444830\pi\)
\(434\) −6.24621 −0.299828
\(435\) 1.12311 0.0538488
\(436\) 55.8617 2.67529
\(437\) −61.8617 −2.95925
\(438\) 7.36932 0.352120
\(439\) 20.4924 0.978050 0.489025 0.872270i \(-0.337353\pi\)
0.489025 + 0.872270i \(0.337353\pi\)
\(440\) −20.4924 −0.976938
\(441\) 1.00000 0.0476190
\(442\) −9.12311 −0.433942
\(443\) −24.4924 −1.16367 −0.581835 0.813307i \(-0.697665\pi\)
−0.581835 + 0.813307i \(0.697665\pi\)
\(444\) −16.2462 −0.771011
\(445\) −2.00000 −0.0948091
\(446\) 8.49242 0.402128
\(447\) −18.6847 −0.883754
\(448\) −1.43845 −0.0679602
\(449\) −40.2462 −1.89934 −0.949668 0.313258i \(-0.898580\pi\)
−0.949668 + 0.313258i \(0.898580\pi\)
\(450\) 2.56155 0.120753
\(451\) 11.1231 0.523767
\(452\) −37.6155 −1.76929
\(453\) −8.68466 −0.408041
\(454\) −22.7386 −1.06718
\(455\) 3.56155 0.166968
\(456\) −46.7386 −2.18874
\(457\) −25.1231 −1.17521 −0.587605 0.809148i \(-0.699929\pi\)
−0.587605 + 0.809148i \(0.699929\pi\)
\(458\) −9.61553 −0.449304
\(459\) −1.00000 −0.0466760
\(460\) −39.6155 −1.84708
\(461\) 4.24621 0.197766 0.0988829 0.995099i \(-0.468473\pi\)
0.0988829 + 0.995099i \(0.468473\pi\)
\(462\) −8.00000 −0.372194
\(463\) −8.87689 −0.412544 −0.206272 0.978495i \(-0.566133\pi\)
−0.206272 + 0.978495i \(0.566133\pi\)
\(464\) −8.63068 −0.400669
\(465\) −2.43845 −0.113080
\(466\) 5.61553 0.260134
\(467\) 38.0540 1.76093 0.880464 0.474113i \(-0.157231\pi\)
0.880464 + 0.474113i \(0.157231\pi\)
\(468\) 16.2462 0.750981
\(469\) 6.24621 0.288423
\(470\) 30.2462 1.39515
\(471\) −16.2462 −0.748586
\(472\) 67.2311 3.09456
\(473\) 0 0
\(474\) 8.00000 0.367452
\(475\) −7.12311 −0.326831
\(476\) 4.56155 0.209078
\(477\) −2.87689 −0.131724
\(478\) 42.7386 1.95482
\(479\) 1.56155 0.0713492 0.0356746 0.999363i \(-0.488642\pi\)
0.0356746 + 0.999363i \(0.488642\pi\)
\(480\) −6.56155 −0.299493
\(481\) −12.6847 −0.578371
\(482\) −50.1080 −2.28235
\(483\) −8.68466 −0.395166
\(484\) −5.68466 −0.258394
\(485\) −6.00000 −0.272446
\(486\) 2.56155 0.116194
\(487\) 21.1771 0.959625 0.479813 0.877371i \(-0.340705\pi\)
0.479813 + 0.877371i \(0.340705\pi\)
\(488\) −70.1080 −3.17364
\(489\) 11.3153 0.511697
\(490\) −2.56155 −0.115719
\(491\) −38.0540 −1.71735 −0.858676 0.512519i \(-0.828712\pi\)
−0.858676 + 0.512519i \(0.828712\pi\)
\(492\) 16.2462 0.732436
\(493\) 1.12311 0.0505821
\(494\) −64.9848 −2.92381
\(495\) −3.12311 −0.140373
\(496\) 18.7386 0.841389
\(497\) 7.12311 0.319515
\(498\) −40.4924 −1.81451
\(499\) −13.7538 −0.615704 −0.307852 0.951434i \(-0.599610\pi\)
−0.307852 + 0.951434i \(0.599610\pi\)
\(500\) −4.56155 −0.203999
\(501\) 4.87689 0.217884
\(502\) −42.2462 −1.88554
\(503\) −40.9848 −1.82742 −0.913712 0.406362i \(-0.866797\pi\)
−0.913712 + 0.406362i \(0.866797\pi\)
\(504\) −6.56155 −0.292275
\(505\) −1.12311 −0.0499775
\(506\) 69.4773 3.08864
\(507\) −0.315342 −0.0140048
\(508\) 91.2311 4.04772
\(509\) 37.6155 1.66728 0.833639 0.552309i \(-0.186253\pi\)
0.833639 + 0.552309i \(0.186253\pi\)
\(510\) 2.56155 0.113427
\(511\) −2.87689 −0.127266
\(512\) −50.4233 −2.22842
\(513\) −7.12311 −0.314493
\(514\) 78.6004 3.46691
\(515\) 2.24621 0.0989799
\(516\) 0 0
\(517\) −36.8769 −1.62184
\(518\) 9.12311 0.400846
\(519\) −14.0000 −0.614532
\(520\) −23.3693 −1.02481
\(521\) 8.73863 0.382846 0.191423 0.981508i \(-0.438690\pi\)
0.191423 + 0.981508i \(0.438690\pi\)
\(522\) −2.87689 −0.125918
\(523\) 11.8078 0.516317 0.258159 0.966103i \(-0.416884\pi\)
0.258159 + 0.966103i \(0.416884\pi\)
\(524\) −76.1080 −3.32479
\(525\) −1.00000 −0.0436436
\(526\) 48.0000 2.09290
\(527\) −2.43845 −0.106220
\(528\) 24.0000 1.04447
\(529\) 52.4233 2.27927
\(530\) 7.36932 0.320103
\(531\) 10.2462 0.444648
\(532\) 32.4924 1.40873
\(533\) 12.6847 0.549434
\(534\) 5.12311 0.221698
\(535\) −6.43845 −0.278358
\(536\) −40.9848 −1.77028
\(537\) 0.192236 0.00829559
\(538\) 3.36932 0.145262
\(539\) 3.12311 0.134522
\(540\) −4.56155 −0.196298
\(541\) 1.12311 0.0482861 0.0241430 0.999709i \(-0.492314\pi\)
0.0241430 + 0.999709i \(0.492314\pi\)
\(542\) −28.4924 −1.22385
\(543\) 19.5616 0.839467
\(544\) −6.56155 −0.281324
\(545\) −12.2462 −0.524570
\(546\) −9.12311 −0.390433
\(547\) 28.6847 1.22647 0.613234 0.789902i \(-0.289868\pi\)
0.613234 + 0.789902i \(0.289868\pi\)
\(548\) −96.3542 −4.11605
\(549\) −10.6847 −0.456010
\(550\) 8.00000 0.341121
\(551\) 8.00000 0.340811
\(552\) 56.9848 2.42544
\(553\) −3.12311 −0.132808
\(554\) 84.3542 3.58386
\(555\) 3.56155 0.151179
\(556\) 18.2462 0.773812
\(557\) 42.0000 1.77960 0.889799 0.456354i \(-0.150845\pi\)
0.889799 + 0.456354i \(0.150845\pi\)
\(558\) 6.24621 0.264423
\(559\) 0 0
\(560\) 7.68466 0.324736
\(561\) −3.12311 −0.131858
\(562\) 31.8617 1.34401
\(563\) 26.9309 1.13500 0.567500 0.823373i \(-0.307911\pi\)
0.567500 + 0.823373i \(0.307911\pi\)
\(564\) −53.8617 −2.26799
\(565\) 8.24621 0.346921
\(566\) 67.2311 2.82593
\(567\) −1.00000 −0.0419961
\(568\) −46.7386 −1.96111
\(569\) −19.1771 −0.803945 −0.401973 0.915652i \(-0.631675\pi\)
−0.401973 + 0.915652i \(0.631675\pi\)
\(570\) 18.2462 0.764250
\(571\) 13.3693 0.559488 0.279744 0.960075i \(-0.409750\pi\)
0.279744 + 0.960075i \(0.409750\pi\)
\(572\) 50.7386 2.12149
\(573\) 14.9309 0.623746
\(574\) −9.12311 −0.380791
\(575\) 8.68466 0.362175
\(576\) 1.43845 0.0599353
\(577\) 12.7386 0.530316 0.265158 0.964205i \(-0.414576\pi\)
0.265158 + 0.964205i \(0.414576\pi\)
\(578\) 2.56155 0.106547
\(579\) 14.6847 0.610274
\(580\) 5.12311 0.212725
\(581\) 15.8078 0.655817
\(582\) 15.3693 0.637079
\(583\) −8.98485 −0.372114
\(584\) 18.8769 0.781131
\(585\) −3.56155 −0.147252
\(586\) 37.1231 1.53354
\(587\) 40.4924 1.67130 0.835651 0.549261i \(-0.185091\pi\)
0.835651 + 0.549261i \(0.185091\pi\)
\(588\) 4.56155 0.188115
\(589\) −17.3693 −0.715690
\(590\) −26.2462 −1.08054
\(591\) 3.75379 0.154410
\(592\) −27.3693 −1.12487
\(593\) −39.5616 −1.62460 −0.812299 0.583241i \(-0.801784\pi\)
−0.812299 + 0.583241i \(0.801784\pi\)
\(594\) 8.00000 0.328244
\(595\) −1.00000 −0.0409960
\(596\) −85.2311 −3.49120
\(597\) −6.24621 −0.255640
\(598\) 79.2311 3.24000
\(599\) −24.9848 −1.02085 −0.510427 0.859921i \(-0.670512\pi\)
−0.510427 + 0.859921i \(0.670512\pi\)
\(600\) 6.56155 0.267874
\(601\) 13.5076 0.550986 0.275493 0.961303i \(-0.411159\pi\)
0.275493 + 0.961303i \(0.411159\pi\)
\(602\) 0 0
\(603\) −6.24621 −0.254365
\(604\) −39.6155 −1.61193
\(605\) 1.24621 0.0506657
\(606\) 2.87689 0.116866
\(607\) 17.7538 0.720604 0.360302 0.932836i \(-0.382674\pi\)
0.360302 + 0.932836i \(0.382674\pi\)
\(608\) −46.7386 −1.89550
\(609\) 1.12311 0.0455105
\(610\) 27.3693 1.10815
\(611\) −42.0540 −1.70132
\(612\) −4.56155 −0.184390
\(613\) 20.2462 0.817737 0.408868 0.912593i \(-0.365924\pi\)
0.408868 + 0.912593i \(0.365924\pi\)
\(614\) −56.9848 −2.29972
\(615\) −3.56155 −0.143616
\(616\) −20.4924 −0.825663
\(617\) 4.93087 0.198509 0.0992547 0.995062i \(-0.468354\pi\)
0.0992547 + 0.995062i \(0.468354\pi\)
\(618\) −5.75379 −0.231451
\(619\) −4.00000 −0.160774 −0.0803868 0.996764i \(-0.525616\pi\)
−0.0803868 + 0.996764i \(0.525616\pi\)
\(620\) −11.1231 −0.446715
\(621\) 8.68466 0.348503
\(622\) 57.4773 2.30463
\(623\) −2.00000 −0.0801283
\(624\) 27.3693 1.09565
\(625\) 1.00000 0.0400000
\(626\) 63.3693 2.53275
\(627\) −22.2462 −0.888428
\(628\) −74.1080 −2.95723
\(629\) 3.56155 0.142008
\(630\) 2.56155 0.102055
\(631\) −40.9848 −1.63158 −0.815790 0.578348i \(-0.803698\pi\)
−0.815790 + 0.578348i \(0.803698\pi\)
\(632\) 20.4924 0.815145
\(633\) −7.12311 −0.283118
\(634\) −61.6155 −2.44707
\(635\) −20.0000 −0.793676
\(636\) −13.1231 −0.520365
\(637\) 3.56155 0.141114
\(638\) −8.98485 −0.355713
\(639\) −7.12311 −0.281786
\(640\) 9.43845 0.373087
\(641\) −34.9848 −1.38182 −0.690909 0.722942i \(-0.742790\pi\)
−0.690909 + 0.722942i \(0.742790\pi\)
\(642\) 16.4924 0.650904
\(643\) 17.8617 0.704398 0.352199 0.935925i \(-0.385434\pi\)
0.352199 + 0.935925i \(0.385434\pi\)
\(644\) −39.6155 −1.56107
\(645\) 0 0
\(646\) 18.2462 0.717888
\(647\) −39.2311 −1.54233 −0.771166 0.636634i \(-0.780326\pi\)
−0.771166 + 0.636634i \(0.780326\pi\)
\(648\) 6.56155 0.257762
\(649\) 32.0000 1.25611
\(650\) 9.12311 0.357838
\(651\) −2.43845 −0.0955703
\(652\) 51.6155 2.02142
\(653\) 9.31534 0.364537 0.182269 0.983249i \(-0.441656\pi\)
0.182269 + 0.983249i \(0.441656\pi\)
\(654\) 31.3693 1.22664
\(655\) 16.6847 0.651924
\(656\) 27.3693 1.06859
\(657\) 2.87689 0.112238
\(658\) 30.2462 1.17912
\(659\) 24.4924 0.954089 0.477045 0.878879i \(-0.341708\pi\)
0.477045 + 0.878879i \(0.341708\pi\)
\(660\) −14.2462 −0.554533
\(661\) 44.2462 1.72098 0.860489 0.509469i \(-0.170158\pi\)
0.860489 + 0.509469i \(0.170158\pi\)
\(662\) −0.492423 −0.0191385
\(663\) −3.56155 −0.138319
\(664\) −103.723 −4.02525
\(665\) −7.12311 −0.276222
\(666\) −9.12311 −0.353513
\(667\) −9.75379 −0.377668
\(668\) 22.2462 0.860732
\(669\) 3.31534 0.128179
\(670\) 16.0000 0.618134
\(671\) −33.3693 −1.28821
\(672\) −6.56155 −0.253117
\(673\) −15.1771 −0.585033 −0.292517 0.956260i \(-0.594493\pi\)
−0.292517 + 0.956260i \(0.594493\pi\)
\(674\) 19.8617 0.765046
\(675\) 1.00000 0.0384900
\(676\) −1.43845 −0.0553249
\(677\) −18.4924 −0.710722 −0.355361 0.934729i \(-0.615642\pi\)
−0.355361 + 0.934729i \(0.615642\pi\)
\(678\) −21.1231 −0.811228
\(679\) −6.00000 −0.230259
\(680\) 6.56155 0.251624
\(681\) −8.87689 −0.340163
\(682\) 19.5076 0.746984
\(683\) 28.0000 1.07139 0.535695 0.844411i \(-0.320050\pi\)
0.535695 + 0.844411i \(0.320050\pi\)
\(684\) −32.4924 −1.24238
\(685\) 21.1231 0.807072
\(686\) −2.56155 −0.0978005
\(687\) −3.75379 −0.143216
\(688\) 0 0
\(689\) −10.2462 −0.390350
\(690\) −22.2462 −0.846899
\(691\) −1.56155 −0.0594043 −0.0297021 0.999559i \(-0.509456\pi\)
−0.0297021 + 0.999559i \(0.509456\pi\)
\(692\) −63.8617 −2.42766
\(693\) −3.12311 −0.118637
\(694\) −10.2462 −0.388941
\(695\) −4.00000 −0.151729
\(696\) −7.36932 −0.279333
\(697\) −3.56155 −0.134903
\(698\) 64.3542 2.43584
\(699\) 2.19224 0.0829180
\(700\) −4.56155 −0.172410
\(701\) 3.17708 0.119997 0.0599983 0.998198i \(-0.480890\pi\)
0.0599983 + 0.998198i \(0.480890\pi\)
\(702\) 9.12311 0.344329
\(703\) 25.3693 0.956822
\(704\) 4.49242 0.169315
\(705\) 11.8078 0.444706
\(706\) −39.8617 −1.50022
\(707\) −1.12311 −0.0422387
\(708\) 46.7386 1.75655
\(709\) −27.3693 −1.02788 −0.513938 0.857827i \(-0.671814\pi\)
−0.513938 + 0.857827i \(0.671814\pi\)
\(710\) 18.2462 0.684768
\(711\) 3.12311 0.117126
\(712\) 13.1231 0.491809
\(713\) 21.1771 0.793088
\(714\) 2.56155 0.0958637
\(715\) −11.1231 −0.415981
\(716\) 0.876894 0.0327711
\(717\) 16.6847 0.623100
\(718\) −6.24621 −0.233107
\(719\) −1.56155 −0.0582361 −0.0291180 0.999576i \(-0.509270\pi\)
−0.0291180 + 0.999576i \(0.509270\pi\)
\(720\) −7.68466 −0.286390
\(721\) 2.24621 0.0836533
\(722\) 81.3002 3.02568
\(723\) −19.5616 −0.727502
\(724\) 89.2311 3.31625
\(725\) −1.12311 −0.0417111
\(726\) −3.19224 −0.118475
\(727\) −1.56155 −0.0579148 −0.0289574 0.999581i \(-0.509219\pi\)
−0.0289574 + 0.999581i \(0.509219\pi\)
\(728\) −23.3693 −0.866125
\(729\) 1.00000 0.0370370
\(730\) −7.36932 −0.272751
\(731\) 0 0
\(732\) −48.7386 −1.80143
\(733\) 7.06913 0.261104 0.130552 0.991441i \(-0.458325\pi\)
0.130552 + 0.991441i \(0.458325\pi\)
\(734\) −24.0000 −0.885856
\(735\) −1.00000 −0.0368856
\(736\) 56.9848 2.10049
\(737\) −19.5076 −0.718571
\(738\) 9.12311 0.335826
\(739\) 20.0000 0.735712 0.367856 0.929883i \(-0.380092\pi\)
0.367856 + 0.929883i \(0.380092\pi\)
\(740\) 16.2462 0.597223
\(741\) −25.3693 −0.931965
\(742\) 7.36932 0.270536
\(743\) 28.1922 1.03427 0.517136 0.855903i \(-0.326998\pi\)
0.517136 + 0.855903i \(0.326998\pi\)
\(744\) 16.0000 0.586588
\(745\) 18.6847 0.684553
\(746\) 59.8617 2.19169
\(747\) −15.8078 −0.578376
\(748\) −14.2462 −0.520893
\(749\) −6.43845 −0.235256
\(750\) −2.56155 −0.0935347
\(751\) 47.6155 1.73752 0.868758 0.495237i \(-0.164919\pi\)
0.868758 + 0.495237i \(0.164919\pi\)
\(752\) −90.7386 −3.30890
\(753\) −16.4924 −0.601017
\(754\) −10.2462 −0.373145
\(755\) 8.68466 0.316067
\(756\) −4.56155 −0.165902
\(757\) 15.7538 0.572581 0.286291 0.958143i \(-0.407578\pi\)
0.286291 + 0.958143i \(0.407578\pi\)
\(758\) 1.26137 0.0458149
\(759\) 27.1231 0.984506
\(760\) 46.7386 1.69539
\(761\) 0.246211 0.00892515 0.00446258 0.999990i \(-0.498580\pi\)
0.00446258 + 0.999990i \(0.498580\pi\)
\(762\) 51.2311 1.85591
\(763\) −12.2462 −0.443343
\(764\) 68.1080 2.46406
\(765\) 1.00000 0.0361551
\(766\) 88.9848 3.21515
\(767\) 36.4924 1.31767
\(768\) −27.0540 −0.976226
\(769\) −25.1231 −0.905962 −0.452981 0.891520i \(-0.649640\pi\)
−0.452981 + 0.891520i \(0.649640\pi\)
\(770\) 8.00000 0.288300
\(771\) 30.6847 1.10508
\(772\) 66.9848 2.41084
\(773\) 26.3002 0.945952 0.472976 0.881075i \(-0.343180\pi\)
0.472976 + 0.881075i \(0.343180\pi\)
\(774\) 0 0
\(775\) 2.43845 0.0875916
\(776\) 39.3693 1.41328
\(777\) 3.56155 0.127770
\(778\) −92.3542 −3.31106
\(779\) −25.3693 −0.908950
\(780\) −16.2462 −0.581708
\(781\) −22.2462 −0.796032
\(782\) −22.2462 −0.795523
\(783\) −1.12311 −0.0401365
\(784\) 7.68466 0.274452
\(785\) 16.2462 0.579852
\(786\) −42.7386 −1.52444
\(787\) 26.2462 0.935576 0.467788 0.883841i \(-0.345051\pi\)
0.467788 + 0.883841i \(0.345051\pi\)
\(788\) 17.1231 0.609985
\(789\) 18.7386 0.667113
\(790\) −8.00000 −0.284627
\(791\) 8.24621 0.293202
\(792\) 20.4924 0.728167
\(793\) −38.0540 −1.35134
\(794\) −63.3693 −2.24889
\(795\) 2.87689 0.102033
\(796\) −28.4924 −1.00989
\(797\) −33.4233 −1.18391 −0.591957 0.805970i \(-0.701644\pi\)
−0.591957 + 0.805970i \(0.701644\pi\)
\(798\) 18.2462 0.645909
\(799\) 11.8078 0.417729
\(800\) 6.56155 0.231986
\(801\) 2.00000 0.0706665
\(802\) 35.8617 1.26632
\(803\) 8.98485 0.317068
\(804\) −28.4924 −1.00485
\(805\) 8.68466 0.306094
\(806\) 22.2462 0.783589
\(807\) 1.31534 0.0463022
\(808\) 7.36932 0.259252
\(809\) −47.4773 −1.66921 −0.834606 0.550847i \(-0.814305\pi\)
−0.834606 + 0.550847i \(0.814305\pi\)
\(810\) −2.56155 −0.0900038
\(811\) 15.4233 0.541585 0.270793 0.962638i \(-0.412714\pi\)
0.270793 + 0.962638i \(0.412714\pi\)
\(812\) 5.12311 0.179786
\(813\) −11.1231 −0.390104
\(814\) −28.4924 −0.998659
\(815\) −11.3153 −0.396359
\(816\) −7.68466 −0.269017
\(817\) 0 0
\(818\) 70.1080 2.45127
\(819\) −3.56155 −0.124451
\(820\) −16.2462 −0.567342
\(821\) −54.0000 −1.88461 −0.942306 0.334751i \(-0.891348\pi\)
−0.942306 + 0.334751i \(0.891348\pi\)
\(822\) −54.1080 −1.88723
\(823\) −0.684658 −0.0238657 −0.0119328 0.999929i \(-0.503798\pi\)
−0.0119328 + 0.999929i \(0.503798\pi\)
\(824\) −14.7386 −0.513445
\(825\) 3.12311 0.108733
\(826\) −26.2462 −0.913222
\(827\) 6.43845 0.223887 0.111943 0.993715i \(-0.464292\pi\)
0.111943 + 0.993715i \(0.464292\pi\)
\(828\) 39.6155 1.37673
\(829\) −26.9848 −0.937222 −0.468611 0.883405i \(-0.655245\pi\)
−0.468611 + 0.883405i \(0.655245\pi\)
\(830\) 40.4924 1.40551
\(831\) 32.9309 1.14236
\(832\) 5.12311 0.177612
\(833\) −1.00000 −0.0346479
\(834\) 10.2462 0.354797
\(835\) −4.87689 −0.168772
\(836\) −101.477 −3.50966
\(837\) 2.43845 0.0842851
\(838\) −55.2311 −1.90793
\(839\) 5.75379 0.198643 0.0993214 0.995055i \(-0.468333\pi\)
0.0993214 + 0.995055i \(0.468333\pi\)
\(840\) 6.56155 0.226395
\(841\) −27.7386 −0.956505
\(842\) −44.3542 −1.52855
\(843\) 12.4384 0.428403
\(844\) −32.4924 −1.11844
\(845\) 0.315342 0.0108481
\(846\) −30.2462 −1.03989
\(847\) 1.24621 0.0428203
\(848\) −22.1080 −0.759190
\(849\) 26.2462 0.900768
\(850\) −2.56155 −0.0878605
\(851\) −30.9309 −1.06030
\(852\) −32.4924 −1.11317
\(853\) 34.9848 1.19786 0.598929 0.800802i \(-0.295593\pi\)
0.598929 + 0.800802i \(0.295593\pi\)
\(854\) 27.3693 0.936559
\(855\) 7.12311 0.243605
\(856\) 42.2462 1.44395
\(857\) 12.2462 0.418323 0.209161 0.977881i \(-0.432927\pi\)
0.209161 + 0.977881i \(0.432927\pi\)
\(858\) 28.4924 0.972715
\(859\) 14.7386 0.502876 0.251438 0.967873i \(-0.419097\pi\)
0.251438 + 0.967873i \(0.419097\pi\)
\(860\) 0 0
\(861\) −3.56155 −0.121377
\(862\) 62.7386 2.13689
\(863\) −23.6155 −0.803882 −0.401941 0.915666i \(-0.631664\pi\)
−0.401941 + 0.915666i \(0.631664\pi\)
\(864\) 6.56155 0.223229
\(865\) 14.0000 0.476014
\(866\) 18.3845 0.624730
\(867\) 1.00000 0.0339618
\(868\) −11.1231 −0.377543
\(869\) 9.75379 0.330875
\(870\) 2.87689 0.0975359
\(871\) −22.2462 −0.753784
\(872\) 80.3542 2.72114
\(873\) 6.00000 0.203069
\(874\) −158.462 −5.36006
\(875\) 1.00000 0.0338062
\(876\) 13.1231 0.443389
\(877\) −16.7386 −0.565224 −0.282612 0.959234i \(-0.591201\pi\)
−0.282612 + 0.959234i \(0.591201\pi\)
\(878\) 52.4924 1.77153
\(879\) 14.4924 0.488817
\(880\) −24.0000 −0.809040
\(881\) −2.00000 −0.0673817 −0.0336909 0.999432i \(-0.510726\pi\)
−0.0336909 + 0.999432i \(0.510726\pi\)
\(882\) 2.56155 0.0862520
\(883\) −17.7538 −0.597463 −0.298731 0.954337i \(-0.596563\pi\)
−0.298731 + 0.954337i \(0.596563\pi\)
\(884\) −16.2462 −0.546419
\(885\) −10.2462 −0.344423
\(886\) −62.7386 −2.10775
\(887\) −28.8769 −0.969591 −0.484796 0.874627i \(-0.661106\pi\)
−0.484796 + 0.874627i \(0.661106\pi\)
\(888\) −23.3693 −0.784223
\(889\) −20.0000 −0.670778
\(890\) −5.12311 −0.171727
\(891\) 3.12311 0.104628
\(892\) 15.1231 0.506359
\(893\) 84.1080 2.81457
\(894\) −47.8617 −1.60074
\(895\) −0.192236 −0.00642574
\(896\) 9.43845 0.315316
\(897\) 30.9309 1.03275
\(898\) −103.093 −3.44025
\(899\) −2.73863 −0.0913385
\(900\) 4.56155 0.152052
\(901\) 2.87689 0.0958432
\(902\) 28.4924 0.948694
\(903\) 0 0
\(904\) −54.1080 −1.79960
\(905\) −19.5616 −0.650248
\(906\) −22.2462 −0.739081
\(907\) 10.2462 0.340220 0.170110 0.985425i \(-0.445588\pi\)
0.170110 + 0.985425i \(0.445588\pi\)
\(908\) −40.4924 −1.34379
\(909\) 1.12311 0.0372511
\(910\) 9.12311 0.302428
\(911\) 7.50758 0.248737 0.124369 0.992236i \(-0.460309\pi\)
0.124369 + 0.992236i \(0.460309\pi\)
\(912\) −54.7386 −1.81258
\(913\) −49.3693 −1.63389
\(914\) −64.3542 −2.12865
\(915\) 10.6847 0.353224
\(916\) −17.1231 −0.565763
\(917\) 16.6847 0.550976
\(918\) −2.56155 −0.0845438
\(919\) 8.00000 0.263896 0.131948 0.991257i \(-0.457877\pi\)
0.131948 + 0.991257i \(0.457877\pi\)
\(920\) −56.9848 −1.87873
\(921\) −22.2462 −0.733038
\(922\) 10.8769 0.358211
\(923\) −25.3693 −0.835041
\(924\) −14.2462 −0.468666
\(925\) −3.56155 −0.117103
\(926\) −22.7386 −0.747238
\(927\) −2.24621 −0.0737753
\(928\) −7.36932 −0.241910
\(929\) −50.6847 −1.66291 −0.831455 0.555592i \(-0.812492\pi\)
−0.831455 + 0.555592i \(0.812492\pi\)
\(930\) −6.24621 −0.204821
\(931\) −7.12311 −0.233450
\(932\) 10.0000 0.327561
\(933\) 22.4384 0.734602
\(934\) 97.4773 3.18955
\(935\) 3.12311 0.102136
\(936\) 23.3693 0.763850
\(937\) −21.3153 −0.696342 −0.348171 0.937431i \(-0.613197\pi\)
−0.348171 + 0.937431i \(0.613197\pi\)
\(938\) 16.0000 0.522419
\(939\) 24.7386 0.807315
\(940\) 53.8617 1.75678
\(941\) 38.7926 1.26460 0.632301 0.774722i \(-0.282110\pi\)
0.632301 + 0.774722i \(0.282110\pi\)
\(942\) −41.6155 −1.35591
\(943\) 30.9309 1.00725
\(944\) 78.7386 2.56272
\(945\) 1.00000 0.0325300
\(946\) 0 0
\(947\) 12.6847 0.412196 0.206098 0.978531i \(-0.433923\pi\)
0.206098 + 0.978531i \(0.433923\pi\)
\(948\) 14.2462 0.462695
\(949\) 10.2462 0.332606
\(950\) −18.2462 −0.591985
\(951\) −24.0540 −0.780004
\(952\) 6.56155 0.212661
\(953\) −0.246211 −0.00797556 −0.00398778 0.999992i \(-0.501269\pi\)
−0.00398778 + 0.999992i \(0.501269\pi\)
\(954\) −7.36932 −0.238590
\(955\) −14.9309 −0.483152
\(956\) 76.1080 2.46151
\(957\) −3.50758 −0.113384
\(958\) 4.00000 0.129234
\(959\) 21.1231 0.682101
\(960\) −1.43845 −0.0464257
\(961\) −25.0540 −0.808193
\(962\) −32.4924 −1.04760
\(963\) 6.43845 0.207476
\(964\) −89.2311 −2.87394
\(965\) −14.6847 −0.472716
\(966\) −22.2462 −0.715760
\(967\) −10.6307 −0.341860 −0.170930 0.985283i \(-0.554677\pi\)
−0.170930 + 0.985283i \(0.554677\pi\)
\(968\) −8.17708 −0.262821
\(969\) 7.12311 0.228827
\(970\) −15.3693 −0.493479
\(971\) −52.9848 −1.70036 −0.850182 0.526488i \(-0.823508\pi\)
−0.850182 + 0.526488i \(0.823508\pi\)
\(972\) 4.56155 0.146312
\(973\) −4.00000 −0.128234
\(974\) 54.2462 1.73816
\(975\) 3.56155 0.114061
\(976\) −82.1080 −2.62821
\(977\) 9.50758 0.304174 0.152087 0.988367i \(-0.451401\pi\)
0.152087 + 0.988367i \(0.451401\pi\)
\(978\) 28.9848 0.926833
\(979\) 6.24621 0.199630
\(980\) −4.56155 −0.145713
\(981\) 12.2462 0.390991
\(982\) −97.4773 −3.11062
\(983\) 53.8617 1.71792 0.858961 0.512040i \(-0.171110\pi\)
0.858961 + 0.512040i \(0.171110\pi\)
\(984\) 23.3693 0.744987
\(985\) −3.75379 −0.119606
\(986\) 2.87689 0.0916190
\(987\) 11.8078 0.375845
\(988\) −115.723 −3.68165
\(989\) 0 0
\(990\) −8.00000 −0.254257
\(991\) 47.6155 1.51256 0.756279 0.654250i \(-0.227015\pi\)
0.756279 + 0.654250i \(0.227015\pi\)
\(992\) 16.0000 0.508001
\(993\) −0.192236 −0.00610042
\(994\) 18.2462 0.578735
\(995\) 6.24621 0.198018
\(996\) −72.1080 −2.28483
\(997\) 50.9848 1.61471 0.807353 0.590069i \(-0.200899\pi\)
0.807353 + 0.590069i \(0.200899\pi\)
\(998\) −35.2311 −1.11522
\(999\) −3.56155 −0.112683
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1785.2.a.s.1.2 2
3.2 odd 2 5355.2.a.v.1.1 2
5.4 even 2 8925.2.a.be.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1785.2.a.s.1.2 2 1.1 even 1 trivial
5355.2.a.v.1.1 2 3.2 odd 2
8925.2.a.be.1.1 2 5.4 even 2