L(s) = 1 | + 1.61i·2-s − i·3-s − 0.608·4-s + (2.06 + 0.867i)5-s + 1.61·6-s − i·7-s + 2.24i·8-s − 9-s + (−1.40 + 3.32i)10-s + 3.70·11-s + 0.608i·12-s − 0.484i·13-s + 1.61·14-s + (0.867 − 2.06i)15-s − 4.84·16-s − i·17-s + ⋯ |
L(s) = 1 | + 1.14i·2-s − 0.577i·3-s − 0.304·4-s + (0.921 + 0.388i)5-s + 0.659·6-s − 0.377i·7-s + 0.794i·8-s − 0.333·9-s + (−0.443 + 1.05i)10-s + 1.11·11-s + 0.175i·12-s − 0.134i·13-s + 0.431·14-s + (0.224 − 0.532i)15-s − 1.21·16-s − 0.242i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1785 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.388 - 0.921i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1785 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.388 - 0.921i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.471027188\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.471027188\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + iT \) |
| 5 | \( 1 + (-2.06 - 0.867i)T \) |
| 7 | \( 1 + iT \) |
| 17 | \( 1 + iT \) |
good | 2 | \( 1 - 1.61iT - 2T^{2} \) |
| 11 | \( 1 - 3.70T + 11T^{2} \) |
| 13 | \( 1 + 0.484iT - 13T^{2} \) |
| 19 | \( 1 - 8.59T + 19T^{2} \) |
| 23 | \( 1 + 6.32iT - 23T^{2} \) |
| 29 | \( 1 - 5.03T + 29T^{2} \) |
| 31 | \( 1 + 10.3T + 31T^{2} \) |
| 37 | \( 1 - 5.74iT - 37T^{2} \) |
| 41 | \( 1 + 4.52T + 41T^{2} \) |
| 43 | \( 1 + 0.961iT - 43T^{2} \) |
| 47 | \( 1 + 3.97iT - 47T^{2} \) |
| 53 | \( 1 + 3.25iT - 53T^{2} \) |
| 59 | \( 1 + 0.477T + 59T^{2} \) |
| 61 | \( 1 - 1.83T + 61T^{2} \) |
| 67 | \( 1 - 3.45iT - 67T^{2} \) |
| 71 | \( 1 - 8.74T + 71T^{2} \) |
| 73 | \( 1 - 10.6iT - 73T^{2} \) |
| 79 | \( 1 - 16.1T + 79T^{2} \) |
| 83 | \( 1 - 5.53iT - 83T^{2} \) |
| 89 | \( 1 - 4.43T + 89T^{2} \) |
| 97 | \( 1 + 12.0iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.241567975147860344187497011455, −8.482355936759903620827611752975, −7.58834627300548962176397076121, −6.79283096110699031051814618019, −6.60136425738142760693986500659, −5.58665893637913569100012199845, −4.98183978302497058301683071610, −3.48655472222029071924114872499, −2.38420246397756472316126905504, −1.21866077949614307075561432787,
1.16254302163613460598348687825, 1.97812764802280684224778411588, 3.17360269074546208372165286336, 3.80664602886901444203971388914, 4.97843830843460672473728694035, 5.71370621763195204526570876843, 6.61486243166397282514942285066, 7.60030935868463470088570142019, 8.973510002434140901970739654106, 9.384787482571778517227223591692