L(s) = 1 | + (−0.5 − 0.866i)3-s + (−0.866 − 0.5i)5-s + i·7-s + (−0.5 − 0.866i)11-s + 0.999i·15-s + (−0.5 − 0.866i)17-s + (−0.5 + 0.866i)19-s + (0.866 − 0.5i)21-s + (−0.866 − 0.5i)23-s − 27-s + (−0.866 + 0.5i)31-s + (−0.499 + 0.866i)33-s + (0.5 − 0.866i)35-s + (0.866 + 0.5i)37-s + (−0.866 − 0.5i)47-s + ⋯ |
L(s) = 1 | + (−0.5 − 0.866i)3-s + (−0.866 − 0.5i)5-s + i·7-s + (−0.5 − 0.866i)11-s + 0.999i·15-s + (−0.5 − 0.866i)17-s + (−0.5 + 0.866i)19-s + (0.866 − 0.5i)21-s + (−0.866 − 0.5i)23-s − 27-s + (−0.866 + 0.5i)31-s + (−0.499 + 0.866i)33-s + (0.5 − 0.866i)35-s + (0.866 + 0.5i)37-s + (−0.866 − 0.5i)47-s + ⋯ |
Λ(s)=(=(1792s/2ΓC(s)L(s)(−0.980−0.197i)Λ(1−s)
Λ(s)=(=(1792s/2ΓC(s)L(s)(−0.980−0.197i)Λ(1−s)
Degree: |
2 |
Conductor: |
1792
= 28⋅7
|
Sign: |
−0.980−0.197i
|
Analytic conductor: |
0.894324 |
Root analytic conductor: |
0.945687 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1792(639,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1792, ( :0), −0.980−0.197i)
|
Particular Values
L(21) |
≈ |
0.2805743832 |
L(21) |
≈ |
0.2805743832 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1−iT |
good | 3 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
| 5 | 1+(0.866+0.5i)T+(0.5+0.866i)T2 |
| 11 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
| 13 | 1−T2 |
| 17 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
| 19 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
| 23 | 1+(0.866+0.5i)T+(0.5+0.866i)T2 |
| 29 | 1−T2 |
| 31 | 1+(0.866−0.5i)T+(0.5−0.866i)T2 |
| 37 | 1+(−0.866−0.5i)T+(0.5+0.866i)T2 |
| 41 | 1+T2 |
| 43 | 1+T2 |
| 47 | 1+(0.866+0.5i)T+(0.5+0.866i)T2 |
| 53 | 1+(0.866−0.5i)T+(0.5−0.866i)T2 |
| 59 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 61 | 1+(0.866+0.5i)T+(0.5+0.866i)T2 |
| 67 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
| 71 | 1−T2 |
| 73 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
| 79 | 1+(−0.866−0.5i)T+(0.5+0.866i)T2 |
| 83 | 1+T2 |
| 89 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
| 97 | 1+T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.849820468524537487070727735223, −8.161231243049619037377703541598, −7.63190447264036119939575093191, −6.51850298501953270022830576239, −5.97189343762250297436720480127, −5.09712246972117181513083375882, −4.09100826103085448346625305264, −2.95914926478444190105262568794, −1.75506005225363068231710062209, −0.21465879143512795629350936273,
2.00943977961081110898327009254, 3.47624011676942146643317409881, 4.23103050687062354108591294440, 4.67657075539469320318203498803, 5.81258249262142013388132142431, 6.84673841201784765932089243989, 7.54595475639170080642710349477, 8.089498539036542899285108457135, 9.374499619947417920513617672338, 10.01101147544704990243433308913