L(s) = 1 | + (−0.5 − 0.866i)3-s + (−0.866 − 0.5i)5-s + i·7-s + (−0.5 − 0.866i)11-s + 0.999i·15-s + (−0.5 − 0.866i)17-s + (−0.5 + 0.866i)19-s + (0.866 − 0.5i)21-s + (−0.866 − 0.5i)23-s − 27-s + (−0.866 + 0.5i)31-s + (−0.499 + 0.866i)33-s + (0.5 − 0.866i)35-s + (0.866 + 0.5i)37-s + (−0.866 − 0.5i)47-s + ⋯ |
L(s) = 1 | + (−0.5 − 0.866i)3-s + (−0.866 − 0.5i)5-s + i·7-s + (−0.5 − 0.866i)11-s + 0.999i·15-s + (−0.5 − 0.866i)17-s + (−0.5 + 0.866i)19-s + (0.866 − 0.5i)21-s + (−0.866 − 0.5i)23-s − 27-s + (−0.866 + 0.5i)31-s + (−0.499 + 0.866i)33-s + (0.5 − 0.866i)35-s + (0.866 + 0.5i)37-s + (−0.866 − 0.5i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1792 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.980 - 0.197i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1792 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.980 - 0.197i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.2805743832\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2805743832\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 - iT \) |
good | 3 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 5 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 - T^{2} \) |
| 17 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 19 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 59 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 79 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.849820468524537487070727735223, −8.161231243049619037377703541598, −7.63190447264036119939575093191, −6.51850298501953270022830576239, −5.97189343762250297436720480127, −5.09712246972117181513083375882, −4.09100826103085448346625305264, −2.95914926478444190105262568794, −1.75506005225363068231710062209, −0.21465879143512795629350936273,
2.00943977961081110898327009254, 3.47624011676942146643317409881, 4.23103050687062354108591294440, 4.67657075539469320318203498803, 5.81258249262142013388132142431, 6.84673841201784765932089243989, 7.54595475639170080642710349477, 8.089498539036542899285108457135, 9.374499619947417920513617672338, 10.01101147544704990243433308913