Properties

Label 1792.1.o.a
Level $1792$
Weight $1$
Character orbit 1792.o
Analytic conductor $0.894$
Analytic rank $0$
Dimension $4$
Projective image $A_{4}$
CM/RM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1792,1,Mod(639,1792)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1792, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 2]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1792.639");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1792 = 2^{8} \cdot 7 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1792.o (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.894324502638\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 224)
Projective image: \(A_{4}\)
Projective field: Galois closure of 4.0.3136.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + \zeta_{12}^{4} q^{3} + \zeta_{12}^{5} q^{5} - \zeta_{12}^{3} q^{7} + \zeta_{12}^{4} q^{11} - \zeta_{12}^{3} q^{15} + \zeta_{12}^{4} q^{17} - \zeta_{12}^{2} q^{19} + \zeta_{12} q^{21} + \zeta_{12}^{5} q^{23} + \cdots + \zeta_{12} q^{95} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{3} - 2 q^{11} - 2 q^{17} - 2 q^{19} - 4 q^{27} - 2 q^{33} + 2 q^{35} - 4 q^{49} - 2 q^{51} + 4 q^{57} + 2 q^{59} - 2 q^{67} - 2 q^{73} + 2 q^{81} - 2 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1792\mathbb{Z}\right)^\times\).

\(n\) \(1023\) \(1025\) \(1541\)
\(\chi(n)\) \(-1\) \(-\zeta_{12}^{2}\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
639.1
0.866025 0.500000i
−0.866025 + 0.500000i
0.866025 + 0.500000i
−0.866025 0.500000i
0 −0.500000 0.866025i 0 −0.866025 0.500000i 0 1.00000i 0 0 0
639.2 0 −0.500000 0.866025i 0 0.866025 + 0.500000i 0 1.00000i 0 0 0
1663.1 0 −0.500000 + 0.866025i 0 −0.866025 + 0.500000i 0 1.00000i 0 0 0
1663.2 0 −0.500000 + 0.866025i 0 0.866025 0.500000i 0 1.00000i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner
8.d odd 2 1 inner
56.k odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1792.1.o.a 4
4.b odd 2 1 1792.1.o.b 4
7.c even 3 1 inner 1792.1.o.a 4
8.b even 2 1 1792.1.o.b 4
8.d odd 2 1 inner 1792.1.o.a 4
16.e even 4 1 224.1.r.a 4
16.e even 4 1 448.1.r.a 4
16.f odd 4 1 224.1.r.a 4
16.f odd 4 1 448.1.r.a 4
28.g odd 6 1 1792.1.o.b 4
48.i odd 4 1 2016.1.cd.a 4
48.k even 4 1 2016.1.cd.a 4
56.k odd 6 1 inner 1792.1.o.a 4
56.p even 6 1 1792.1.o.b 4
112.j even 4 1 1568.1.r.a 4
112.j even 4 1 3136.1.r.b 4
112.l odd 4 1 1568.1.r.a 4
112.l odd 4 1 3136.1.r.b 4
112.u odd 12 1 224.1.r.a 4
112.u odd 12 1 448.1.r.a 4
112.u odd 12 1 1568.1.d.b 2
112.u odd 12 1 3136.1.d.b 2
112.v even 12 1 1568.1.d.a 2
112.v even 12 1 1568.1.r.a 4
112.v even 12 1 3136.1.d.d 2
112.v even 12 1 3136.1.r.b 4
112.w even 12 1 224.1.r.a 4
112.w even 12 1 448.1.r.a 4
112.w even 12 1 1568.1.d.b 2
112.w even 12 1 3136.1.d.b 2
112.x odd 12 1 1568.1.d.a 2
112.x odd 12 1 1568.1.r.a 4
112.x odd 12 1 3136.1.d.d 2
112.x odd 12 1 3136.1.r.b 4
336.bt odd 12 1 2016.1.cd.a 4
336.bu even 12 1 2016.1.cd.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
224.1.r.a 4 16.e even 4 1
224.1.r.a 4 16.f odd 4 1
224.1.r.a 4 112.u odd 12 1
224.1.r.a 4 112.w even 12 1
448.1.r.a 4 16.e even 4 1
448.1.r.a 4 16.f odd 4 1
448.1.r.a 4 112.u odd 12 1
448.1.r.a 4 112.w even 12 1
1568.1.d.a 2 112.v even 12 1
1568.1.d.a 2 112.x odd 12 1
1568.1.d.b 2 112.u odd 12 1
1568.1.d.b 2 112.w even 12 1
1568.1.r.a 4 112.j even 4 1
1568.1.r.a 4 112.l odd 4 1
1568.1.r.a 4 112.v even 12 1
1568.1.r.a 4 112.x odd 12 1
1792.1.o.a 4 1.a even 1 1 trivial
1792.1.o.a 4 7.c even 3 1 inner
1792.1.o.a 4 8.d odd 2 1 inner
1792.1.o.a 4 56.k odd 6 1 inner
1792.1.o.b 4 4.b odd 2 1
1792.1.o.b 4 8.b even 2 1
1792.1.o.b 4 28.g odd 6 1
1792.1.o.b 4 56.p even 6 1
2016.1.cd.a 4 48.i odd 4 1
2016.1.cd.a 4 48.k even 4 1
2016.1.cd.a 4 336.bt odd 12 1
2016.1.cd.a 4 336.bu even 12 1
3136.1.d.b 2 112.u odd 12 1
3136.1.d.b 2 112.w even 12 1
3136.1.d.d 2 112.v even 12 1
3136.1.d.d 2 112.x odd 12 1
3136.1.r.b 4 112.j even 4 1
3136.1.r.b 4 112.l odd 4 1
3136.1.r.b 4 112.v even 12 1
3136.1.r.b 4 112.x odd 12 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} + T_{3} + 1 \) acting on \(S_{1}^{\mathrm{new}}(1792, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( (T^{2} + T + 1)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$7$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} + T + 1)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( (T^{2} + T + 1)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} + T + 1)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$29$ \( T^{4} \) Copy content Toggle raw display
$31$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$37$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$41$ \( T^{4} \) Copy content Toggle raw display
$43$ \( T^{4} \) Copy content Toggle raw display
$47$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$53$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$59$ \( (T^{2} - T + 1)^{2} \) Copy content Toggle raw display
$61$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$67$ \( (T^{2} + T + 1)^{2} \) Copy content Toggle raw display
$71$ \( T^{4} \) Copy content Toggle raw display
$73$ \( (T^{2} + T + 1)^{2} \) Copy content Toggle raw display
$79$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$83$ \( T^{4} \) Copy content Toggle raw display
$89$ \( (T^{2} + T + 1)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} \) Copy content Toggle raw display
show more
show less