L(s) = 1 | + (−19.5 − 11.3i)2-s + (−196. − 142. i)3-s + (255. + 443. i)4-s + (3.09e3 − 1.78e3i)5-s + (2.25e3 + 5.01e3i)6-s + (1.26e4 − 2.18e4i)7-s − 1.15e4i·8-s + (1.85e4 + 5.60e4i)9-s − 8.07e4·10-s + (−1.71e5 − 9.91e4i)11-s + (1.26e4 − 1.23e5i)12-s + (1.41e5 + 2.45e5i)13-s + (−4.93e5 + 2.85e5i)14-s + (−8.63e5 − 8.82e4i)15-s + (−1.31e5 + 2.27e5i)16-s − 1.47e6i·17-s + ⋯ |
L(s) = 1 | + (−0.612 − 0.353i)2-s + (−0.810 − 0.585i)3-s + (0.249 + 0.433i)4-s + (0.989 − 0.571i)5-s + (0.289 + 0.645i)6-s + (0.749 − 1.29i)7-s − 0.353i·8-s + (0.314 + 0.949i)9-s − 0.807·10-s + (−1.06 − 0.615i)11-s + (0.0508 − 0.497i)12-s + (0.382 + 0.662i)13-s + (−0.918 + 0.530i)14-s + (−1.13 − 0.116i)15-s + (−0.125 + 0.216i)16-s − 1.03i·17-s + ⋯ |
Λ(s)=(=(18s/2ΓC(s)L(s)(−0.989+0.144i)Λ(11−s)
Λ(s)=(=(18s/2ΓC(s+5)L(s)(−0.989+0.144i)Λ(1−s)
Degree: |
2 |
Conductor: |
18
= 2⋅32
|
Sign: |
−0.989+0.144i
|
Analytic conductor: |
11.4364 |
Root analytic conductor: |
3.38177 |
Motivic weight: |
10 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ18(11,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 18, ( :5), −0.989+0.144i)
|
Particular Values
L(211) |
≈ |
0.0622268−0.855729i |
L(21) |
≈ |
0.0622268−0.855729i |
L(6) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(19.5+11.3i)T |
| 3 | 1+(196.+142.i)T |
good | 5 | 1+(−3.09e3+1.78e3i)T+(4.88e6−8.45e6i)T2 |
| 7 | 1+(−1.26e4+2.18e4i)T+(−1.41e8−2.44e8i)T2 |
| 11 | 1+(1.71e5+9.91e4i)T+(1.29e10+2.24e10i)T2 |
| 13 | 1+(−1.41e5−2.45e5i)T+(−6.89e10+1.19e11i)T2 |
| 17 | 1+1.47e6iT−2.01e12T2 |
| 19 | 1+4.67e6T+6.13e12T2 |
| 23 | 1+(−4.51e6+2.60e6i)T+(2.07e13−3.58e13i)T2 |
| 29 | 1+(−1.64e6−9.47e5i)T+(2.10e14+3.64e14i)T2 |
| 31 | 1+(−9.25e6−1.60e7i)T+(−4.09e14+7.09e14i)T2 |
| 37 | 1+9.06e7T+4.80e15T2 |
| 41 | 1+(4.27e6−2.46e6i)T+(6.71e15−1.16e16i)T2 |
| 43 | 1+(3.66e7−6.34e7i)T+(−1.08e16−1.87e16i)T2 |
| 47 | 1+(2.91e8+1.68e8i)T+(2.62e16+4.55e16i)T2 |
| 53 | 1+8.02e7iT−1.74e17T2 |
| 59 | 1+(−7.95e8+4.59e8i)T+(2.55e17−4.42e17i)T2 |
| 61 | 1+(−3.70e6+6.40e6i)T+(−3.56e17−6.17e17i)T2 |
| 67 | 1+(−9.55e8−1.65e9i)T+(−9.11e17+1.57e18i)T2 |
| 71 | 1+2.72e9iT−3.25e18T2 |
| 73 | 1−2.42e9T+4.29e18T2 |
| 79 | 1+(−7.42e8+1.28e9i)T+(−4.73e18−8.19e18i)T2 |
| 83 | 1+(5.66e8+3.27e8i)T+(7.75e18+1.34e19i)T2 |
| 89 | 1−1.33e9iT−3.11e19T2 |
| 97 | 1+(−2.78e9+4.81e9i)T+(−3.68e19−6.38e19i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−16.38435884787543085059627031623, −13.80326348672491228654742529742, −12.96150198020109200605410607191, −11.20585370238956063668057998433, −10.32732223722827823179007941001, −8.385844726350783403331963201947, −6.79349976835674107933899889980, −4.92803652081556773541283554004, −1.81821332367307356582676679757, −0.50560951626531010943824420861,
2.09996638065391272464285291617, 5.24879052237759808424602116615, 6.28226063445411451552158013387, 8.497882665233609484487357319819, 10.08156948335707824794903659955, 10.95942346561221919009470910710, 12.71169475263731220418146275648, 14.92161352680884564319368457042, 15.45226074568206552695716650081, 17.27273312174851836828526504659