Properties

Label 18.11.d.a
Level $18$
Weight $11$
Character orbit 18.d
Analytic conductor $11.436$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [18,11,Mod(5,18)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(18, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([5]))
 
N = Newforms(chi, 11, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("18.5");
 
S:= CuspForms(chi, 11);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 18 = 2 \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 11 \)
Character orbit: \([\chi]\) \(=\) 18.d (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.4364305481\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 10 x^{19} + 63819 x^{18} - 574086 x^{17} + 1685636151 x^{16} - 13472077884 x^{15} + \cdots + 42\!\cdots\!17 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{46}\cdot 3^{37} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{19}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{2} q^{2} + ( - \beta_{4} + \beta_{3} - 4 \beta_1 - 2) q^{3} + 512 \beta_1 q^{4} + (\beta_{9} + 4 \beta_{4} + \beta_{3} + \cdots - 662) q^{5} + ( - \beta_{14} - \beta_{11} + \cdots + 608) q^{6}+ \cdots + (6642 \beta_{19} + 59025 \beta_{18} + \cdots + 2182827372) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 84 q^{3} + 5120 q^{4} - 9918 q^{5} + 12864 q^{6} + 12238 q^{7} + 79248 q^{9} - 327582 q^{11} + 9216 q^{12} - 280550 q^{13} + 175680 q^{14} - 2685042 q^{15} - 2621440 q^{16} + 3925632 q^{18} - 2966240 q^{19}+ \cdots + 41160676842 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{20} - 10 x^{19} + 63819 x^{18} - 574086 x^{17} + 1685636151 x^{16} - 13472077884 x^{15} + \cdots + 42\!\cdots\!17 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 53\!\cdots\!04 \nu^{19} + \cdots + 96\!\cdots\!63 ) / 21\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( - 42\!\cdots\!57 \nu^{19} + \cdots - 33\!\cdots\!02 ) / 66\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 42\!\cdots\!57 \nu^{19} + \cdots - 35\!\cdots\!49 ) / 66\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 11\!\cdots\!72 \nu^{19} + \cdots - 64\!\cdots\!73 ) / 13\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 19\!\cdots\!03 \nu^{19} + \cdots + 78\!\cdots\!76 ) / 13\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 25\!\cdots\!50 \nu^{19} + \cdots + 89\!\cdots\!70 ) / 41\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 30\!\cdots\!53 \nu^{19} + \cdots - 36\!\cdots\!26 ) / 41\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( 30\!\cdots\!54 \nu^{19} + \cdots + 18\!\cdots\!29 ) / 41\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( 40\!\cdots\!62 \nu^{19} + \cdots - 20\!\cdots\!14 ) / 41\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( - 47\!\cdots\!51 \nu^{19} + \cdots + 98\!\cdots\!78 ) / 41\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( - 19\!\cdots\!99 \nu^{19} + \cdots - 13\!\cdots\!28 ) / 17\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( - 25\!\cdots\!54 \nu^{19} + \cdots - 30\!\cdots\!25 ) / 20\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( 95\!\cdots\!07 \nu^{19} + \cdots + 36\!\cdots\!31 ) / 41\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( - 55\!\cdots\!53 \nu^{19} + \cdots + 18\!\cdots\!64 ) / 17\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( - 14\!\cdots\!25 \nu^{19} + \cdots + 68\!\cdots\!34 ) / 41\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{16}\)\(=\) \( ( 20\!\cdots\!83 \nu^{19} + \cdots + 38\!\cdots\!87 ) / 41\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{17}\)\(=\) \( ( - 26\!\cdots\!05 \nu^{19} + \cdots + 46\!\cdots\!86 ) / 41\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{18}\)\(=\) \( ( 54\!\cdots\!34 \nu^{19} + \cdots - 50\!\cdots\!91 ) / 41\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{19}\)\(=\) \( ( 80\!\cdots\!05 \nu^{19} + \cdots + 40\!\cdots\!69 ) / 41\!\cdots\!00 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( 10 \beta_{17} - 30 \beta_{14} + 8 \beta_{13} - 10 \beta_{12} + 8 \beta_{11} + 2 \beta_{10} + \cdots + 1492 ) / 3888 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 316 \beta_{17} + 648 \beta_{15} - 516 \beta_{14} + 170 \beta_{13} - 46 \beta_{12} - 262 \beta_{11} + \cdots - 12396926 ) / 1944 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( - 14256 \beta_{19} - 14256 \beta_{18} - 104222 \beta_{17} + 6480 \beta_{16} - 1296 \beta_{15} + \cdots - 253049042 ) / 3888 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( - 115020 \beta_{19} + 100764 \beta_{18} - 2498350 \beta_{17} + 3240 \beta_{16} - 4524012 \beta_{15} + \cdots + 67970418806 ) / 972 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 270059184 \beta_{19} + 272217024 \beta_{18} + 1229184508 \beta_{17} - 456229584 \beta_{16} + \cdots + 5748673158226 ) / 3888 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( 5926077288 \beta_{19} - 5112591696 \beta_{18} + 71672748418 \beta_{17} - 684360576 \beta_{16} + \cdots - 16\!\cdots\!38 ) / 1944 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( - 4534948582416 \beta_{19} - 4612226817744 \beta_{18} - 15407050889594 \beta_{17} + \cdots - 10\!\cdots\!20 ) / 3888 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( ( - 29605866477210 \beta_{19} + 25031329693974 \beta_{18} - 250500745288382 \beta_{17} + \cdots + 55\!\cdots\!23 ) / 486 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( ( 73\!\cdots\!36 \beta_{19} + \cdots + 18\!\cdots\!78 ) / 3888 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( ( 21\!\cdots\!48 \beta_{19} + \cdots - 30\!\cdots\!44 ) / 1944 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( ( - 11\!\cdots\!20 \beta_{19} + \cdots - 31\!\cdots\!06 ) / 3888 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( ( - 19\!\cdots\!16 \beta_{19} + \cdots + 21\!\cdots\!34 ) / 972 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( ( 18\!\cdots\!40 \beta_{19} + \cdots + 50\!\cdots\!56 ) / 3888 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( ( 65\!\cdots\!56 \beta_{19} + \cdots - 61\!\cdots\!02 ) / 1944 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( ( - 29\!\cdots\!64 \beta_{19} + \cdots - 80\!\cdots\!42 ) / 3888 \) Copy content Toggle raw display
\(\nu^{16}\)\(=\) \( ( - 27\!\cdots\!90 \beta_{19} + \cdots + 22\!\cdots\!81 ) / 486 \) Copy content Toggle raw display
\(\nu^{17}\)\(=\) \( ( 47\!\cdots\!52 \beta_{19} + \cdots + 12\!\cdots\!50 ) / 3888 \) Copy content Toggle raw display
\(\nu^{18}\)\(=\) \( ( 18\!\cdots\!16 \beta_{19} + \cdots - 13\!\cdots\!90 ) / 1944 \) Copy content Toggle raw display
\(\nu^{19}\)\(=\) \( ( - 74\!\cdots\!32 \beta_{19} + \cdots - 20\!\cdots\!92 ) / 3888 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/18\mathbb{Z}\right)^\times\).

\(n\) \(11\)
\(\chi(n)\) \(\beta_{1}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
5.1
0.500000 79.2536i
0.500000 100.759i
0.500000 + 66.6144i
0.500000 10.2011i
0.500000 + 125.561i
0.500000 18.4488i
0.500000 + 111.664i
0.500000 106.731i
0.500000 + 42.2052i
0.500000 32.3837i
0.500000 + 79.2536i
0.500000 + 100.759i
0.500000 66.6144i
0.500000 + 10.2011i
0.500000 125.561i
0.500000 + 18.4488i
0.500000 111.664i
0.500000 + 106.731i
0.500000 42.2052i
0.500000 + 32.3837i
−19.5959 + 11.3137i −237.011 53.6159i 256.000 443.405i −1517.40 876.072i 5251.05 1630.82i −13322.5 23075.2i 11585.2i 53299.7 + 25415.2i 39646.5
5.2 −19.5959 + 11.3137i −196.987 + 142.285i 256.000 443.405i 3091.89 + 1785.10i 2250.37 5016.87i 12604.4 + 21831.4i 11585.2i 18558.8 56056.7i −80784.5
5.3 −19.5959 + 11.3137i 16.6955 242.426i 256.000 443.405i 2723.51 + 1572.42i 2415.57 + 4939.44i −1768.70 3063.49i 11585.2i −58491.5 8094.85i −71159.5
5.4 −19.5959 + 11.3137i 57.7167 + 236.046i 256.000 443.405i −2305.51 1331.09i −3801.57 3972.55i −3513.89 6086.24i 11585.2i −52386.6 + 27247.6i 60238.1
5.5 −19.5959 + 11.3137i 208.763 124.366i 256.000 443.405i −4471.98 2581.90i −2683.86 + 4798.96i 7939.56 + 13751.7i 11585.2i 28115.1 51926.2i 116843.
5.6 19.5959 11.3137i −230.699 + 76.3332i 256.000 443.405i 1617.35 + 933.780i −3657.16 + 4105.89i −504.464 873.757i 11585.2i 47395.5 35220.0i 42258.0
5.7 19.5959 11.3137i −120.535 210.998i 256.000 443.405i −1022.89 590.567i −4749.17 2771.00i −2684.05 4648.92i 11585.2i −29991.5 + 50865.5i −26726.0
5.8 19.5959 11.3137i 1.63905 + 242.994i 256.000 443.405i −1947.00 1124.10i 2781.29 + 4743.16i 14864.4 + 25746.0i 11585.2i −59043.6 + 796.560i −50871.1
5.9 19.5959 11.3137i 223.765 94.7529i 256.000 443.405i 3162.64 + 1825.95i 3312.88 4388.38i 5852.43 + 10136.7i 11585.2i 41092.8 42404.8i 82633.0
5.10 19.5959 11.3137i 234.653 + 63.1409i 256.000 443.405i −4289.59 2476.60i 5312.61 1417.50i −13348.2 23119.8i 11585.2i 51075.4 + 29632.5i −112078.
11.1 −19.5959 11.3137i −237.011 + 53.6159i 256.000 + 443.405i −1517.40 + 876.072i 5251.05 + 1630.82i −13322.5 + 23075.2i 11585.2i 53299.7 25415.2i 39646.5
11.2 −19.5959 11.3137i −196.987 142.285i 256.000 + 443.405i 3091.89 1785.10i 2250.37 + 5016.87i 12604.4 21831.4i 11585.2i 18558.8 + 56056.7i −80784.5
11.3 −19.5959 11.3137i 16.6955 + 242.426i 256.000 + 443.405i 2723.51 1572.42i 2415.57 4939.44i −1768.70 + 3063.49i 11585.2i −58491.5 + 8094.85i −71159.5
11.4 −19.5959 11.3137i 57.7167 236.046i 256.000 + 443.405i −2305.51 + 1331.09i −3801.57 + 3972.55i −3513.89 + 6086.24i 11585.2i −52386.6 27247.6i 60238.1
11.5 −19.5959 11.3137i 208.763 + 124.366i 256.000 + 443.405i −4471.98 + 2581.90i −2683.86 4798.96i 7939.56 13751.7i 11585.2i 28115.1 + 51926.2i 116843.
11.6 19.5959 + 11.3137i −230.699 76.3332i 256.000 + 443.405i 1617.35 933.780i −3657.16 4105.89i −504.464 + 873.757i 11585.2i 47395.5 + 35220.0i 42258.0
11.7 19.5959 + 11.3137i −120.535 + 210.998i 256.000 + 443.405i −1022.89 + 590.567i −4749.17 + 2771.00i −2684.05 + 4648.92i 11585.2i −29991.5 50865.5i −26726.0
11.8 19.5959 + 11.3137i 1.63905 242.994i 256.000 + 443.405i −1947.00 + 1124.10i 2781.29 4743.16i 14864.4 25746.0i 11585.2i −59043.6 796.560i −50871.1
11.9 19.5959 + 11.3137i 223.765 + 94.7529i 256.000 + 443.405i 3162.64 1825.95i 3312.88 + 4388.38i 5852.43 10136.7i 11585.2i 41092.8 + 42404.8i 82633.0
11.10 19.5959 + 11.3137i 234.653 63.1409i 256.000 + 443.405i −4289.59 + 2476.60i 5312.61 + 1417.50i −13348.2 + 23119.8i 11585.2i 51075.4 29632.5i −112078.
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 5.10
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.d odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 18.11.d.a 20
3.b odd 2 1 54.11.d.a 20
9.c even 3 1 54.11.d.a 20
9.c even 3 1 162.11.b.c 20
9.d odd 6 1 inner 18.11.d.a 20
9.d odd 6 1 162.11.b.c 20
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
18.11.d.a 20 1.a even 1 1 trivial
18.11.d.a 20 9.d odd 6 1 inner
54.11.d.a 20 3.b odd 2 1
54.11.d.a 20 9.c even 3 1
162.11.b.c 20 9.c even 3 1
162.11.b.c 20 9.d odd 6 1

Hecke kernels

This newform subspace is the entire newspace \(S_{11}^{\mathrm{new}}(18, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{4} - 512 T^{2} + 262144)^{5} \) Copy content Toggle raw display
$3$ \( T^{20} + \cdots + 51\!\cdots\!01 \) Copy content Toggle raw display
$5$ \( T^{20} + \cdots + 58\!\cdots\!00 \) Copy content Toggle raw display
$7$ \( T^{20} + \cdots + 17\!\cdots\!00 \) Copy content Toggle raw display
$11$ \( T^{20} + \cdots + 18\!\cdots\!81 \) Copy content Toggle raw display
$13$ \( T^{20} + \cdots + 53\!\cdots\!56 \) Copy content Toggle raw display
$17$ \( T^{20} + \cdots + 75\!\cdots\!00 \) Copy content Toggle raw display
$19$ \( (T^{10} + \cdots + 33\!\cdots\!40)^{2} \) Copy content Toggle raw display
$23$ \( T^{20} + \cdots + 48\!\cdots\!56 \) Copy content Toggle raw display
$29$ \( T^{20} + \cdots + 39\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( T^{20} + \cdots + 34\!\cdots\!00 \) Copy content Toggle raw display
$37$ \( (T^{10} + \cdots + 64\!\cdots\!68)^{2} \) Copy content Toggle raw display
$41$ \( T^{20} + \cdots + 75\!\cdots\!25 \) Copy content Toggle raw display
$43$ \( T^{20} + \cdots + 12\!\cdots\!25 \) Copy content Toggle raw display
$47$ \( T^{20} + \cdots + 90\!\cdots\!16 \) Copy content Toggle raw display
$53$ \( T^{20} + \cdots + 10\!\cdots\!00 \) Copy content Toggle raw display
$59$ \( T^{20} + \cdots + 60\!\cdots\!25 \) Copy content Toggle raw display
$61$ \( T^{20} + \cdots + 35\!\cdots\!04 \) Copy content Toggle raw display
$67$ \( T^{20} + \cdots + 41\!\cdots\!25 \) Copy content Toggle raw display
$71$ \( T^{20} + \cdots + 47\!\cdots\!64 \) Copy content Toggle raw display
$73$ \( (T^{10} + \cdots + 20\!\cdots\!20)^{2} \) Copy content Toggle raw display
$79$ \( T^{20} + \cdots + 39\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{20} + \cdots + 22\!\cdots\!84 \) Copy content Toggle raw display
$89$ \( T^{20} + \cdots + 20\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{20} + \cdots + 45\!\cdots\!25 \) Copy content Toggle raw display
show more
show less