L(s) = 1 | + (19.5 + 11.3i)2-s + (1.63 − 242. i)3-s + (255. + 443. i)4-s + (−1.94e3 + 1.12e3i)5-s + (2.78e3 − 4.74e3i)6-s + (1.48e4 − 2.57e4i)7-s + 1.15e4i·8-s + (−5.90e4 − 796. i)9-s − 5.08e4·10-s + (−1.39e5 − 8.06e4i)11-s + (1.08e5 − 6.14e4i)12-s + (−2.49e5 − 4.31e5i)13-s + (5.82e5 − 3.36e5i)14-s + (2.69e5 + 4.74e5i)15-s + (−1.31e5 + 2.27e5i)16-s − 1.34e6i·17-s + ⋯ |
L(s) = 1 | + (0.612 + 0.353i)2-s + (0.00674 − 0.999i)3-s + (0.249 + 0.433i)4-s + (−0.623 + 0.359i)5-s + (0.357 − 0.609i)6-s + (0.884 − 1.53i)7-s + 0.353i·8-s + (−0.999 − 0.0134i)9-s − 0.508·10-s + (−0.867 − 0.500i)11-s + (0.434 − 0.247i)12-s + (−0.671 − 1.16i)13-s + (1.08 − 0.625i)14-s + (0.355 + 0.625i)15-s + (−0.125 + 0.216i)16-s − 0.947i·17-s + ⋯ |
Λ(s)=(=(18s/2ΓC(s)L(s)(−0.186+0.982i)Λ(11−s)
Λ(s)=(=(18s/2ΓC(s+5)L(s)(−0.186+0.982i)Λ(1−s)
Degree: |
2 |
Conductor: |
18
= 2⋅32
|
Sign: |
−0.186+0.982i
|
Analytic conductor: |
11.4364 |
Root analytic conductor: |
3.38177 |
Motivic weight: |
10 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ18(11,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 18, ( :5), −0.186+0.982i)
|
Particular Values
L(211) |
≈ |
1.20365−1.45427i |
L(21) |
≈ |
1.20365−1.45427i |
L(6) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−19.5−11.3i)T |
| 3 | 1+(−1.63+242.i)T |
good | 5 | 1+(1.94e3−1.12e3i)T+(4.88e6−8.45e6i)T2 |
| 7 | 1+(−1.48e4+2.57e4i)T+(−1.41e8−2.44e8i)T2 |
| 11 | 1+(1.39e5+8.06e4i)T+(1.29e10+2.24e10i)T2 |
| 13 | 1+(2.49e5+4.31e5i)T+(−6.89e10+1.19e11i)T2 |
| 17 | 1+1.34e6iT−2.01e12T2 |
| 19 | 1−4.27e6T+6.13e12T2 |
| 23 | 1+(3.03e6−1.75e6i)T+(2.07e13−3.58e13i)T2 |
| 29 | 1+(−1.44e7−8.32e6i)T+(2.10e14+3.64e14i)T2 |
| 31 | 1+(−5.30e6−9.19e6i)T+(−4.09e14+7.09e14i)T2 |
| 37 | 1+3.61e6T+4.80e15T2 |
| 41 | 1+(−1.48e7+8.59e6i)T+(6.71e15−1.16e16i)T2 |
| 43 | 1+(−7.92e7+1.37e8i)T+(−1.08e16−1.87e16i)T2 |
| 47 | 1+(−1.61e8−9.32e7i)T+(2.62e16+4.55e16i)T2 |
| 53 | 1−6.84e8iT−1.74e17T2 |
| 59 | 1+(−1.08e8+6.28e7i)T+(2.55e17−4.42e17i)T2 |
| 61 | 1+(−3.64e8+6.31e8i)T+(−3.56e17−6.17e17i)T2 |
| 67 | 1+(1.98e8+3.43e8i)T+(−9.11e17+1.57e18i)T2 |
| 71 | 1+2.21e9iT−3.25e18T2 |
| 73 | 1−6.41e8T+4.29e18T2 |
| 79 | 1+(−1.46e9+2.54e9i)T+(−4.73e18−8.19e18i)T2 |
| 83 | 1+(1.18e9+6.83e8i)T+(7.75e18+1.34e19i)T2 |
| 89 | 1+6.25e9iT−3.11e19T2 |
| 97 | 1+(3.15e9−5.46e9i)T+(−3.68e19−6.38e19i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−15.78840535997494407628359349298, −14.20102610660413620058260185962, −13.53259424899115549171101395133, −11.96625702267590143676207846735, −10.76649509259247461489694515507, −7.71361143278423195361047851821, −7.43018793220643174302704224712, −5.22233606885039852913381922554, −3.13776557197626920441650710966, −0.69650368064368702835346536604,
2.40006786794799974464692664715, 4.40666615693135088851119809481, 5.47234564483050704645684343990, 8.254974194779930402153405582165, 9.749557158527949614474353361951, 11.49370859838403023278828993746, 12.19167101216001842733549253895, 14.29742677141776892542059304385, 15.30082241642498593230167990206, 16.11808387804499566840224322251