Properties

Label 2-18-9.5-c10-0-5
Degree 22
Conductor 1818
Sign 0.608+0.793i0.608 + 0.793i
Analytic cond. 11.436411.4364
Root an. cond. 3.381773.38177
Motivic weight 1010
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−19.5 + 11.3i)2-s + (57.7 + 236. i)3-s + (255. − 443. i)4-s + (−2.30e3 − 1.33e3i)5-s + (−3.80e3 − 3.97e3i)6-s + (−3.51e3 − 6.08e3i)7-s + 1.15e4i·8-s + (−5.23e4 + 2.72e4i)9-s + 6.02e4·10-s + (2.13e4 − 1.23e4i)11-s + (1.19e5 + 3.48e4i)12-s + (2.70e5 − 4.68e5i)13-s + (1.37e5 + 7.95e4i)14-s + (1.81e5 − 6.21e5i)15-s + (−1.31e5 − 2.27e5i)16-s − 1.33e6i·17-s + ⋯
L(s)  = 1  + (−0.612 + 0.353i)2-s + (0.237 + 0.971i)3-s + (0.249 − 0.433i)4-s + (−0.737 − 0.425i)5-s + (−0.488 − 0.510i)6-s + (−0.209 − 0.362i)7-s + 0.353i·8-s + (−0.887 + 0.461i)9-s + 0.602·10-s + (0.132 − 0.0764i)11-s + (0.480 + 0.139i)12-s + (0.728 − 1.26i)13-s + (0.256 + 0.147i)14-s + (0.238 − 0.817i)15-s + (−0.125 − 0.216i)16-s − 0.943i·17-s + ⋯

Functional equation

Λ(s)=(18s/2ΓC(s)L(s)=((0.608+0.793i)Λ(11s)\begin{aligned}\Lambda(s)=\mathstrut & 18 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.608 + 0.793i)\, \overline{\Lambda}(11-s) \end{aligned}
Λ(s)=(18s/2ΓC(s+5)L(s)=((0.608+0.793i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 18 ^{s/2} \, \Gamma_{\C}(s+5) \, L(s)\cr =\mathstrut & (0.608 + 0.793i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 1818    =    2322 \cdot 3^{2}
Sign: 0.608+0.793i0.608 + 0.793i
Analytic conductor: 11.436411.4364
Root analytic conductor: 3.381773.38177
Motivic weight: 1010
Rational: no
Arithmetic: yes
Character: χ18(5,)\chi_{18} (5, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 18, ( :5), 0.608+0.793i)(2,\ 18,\ (\ :5),\ 0.608 + 0.793i)

Particular Values

L(112)L(\frac{11}{2}) \approx 0.7155860.353042i0.715586 - 0.353042i
L(12)L(\frac12) \approx 0.7155860.353042i0.715586 - 0.353042i
L(6)L(6) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+(19.511.3i)T 1 + (19.5 - 11.3i)T
3 1+(57.7236.i)T 1 + (-57.7 - 236. i)T
good5 1+(2.30e3+1.33e3i)T+(4.88e6+8.45e6i)T2 1 + (2.30e3 + 1.33e3i)T + (4.88e6 + 8.45e6i)T^{2}
7 1+(3.51e3+6.08e3i)T+(1.41e8+2.44e8i)T2 1 + (3.51e3 + 6.08e3i)T + (-1.41e8 + 2.44e8i)T^{2}
11 1+(2.13e4+1.23e4i)T+(1.29e102.24e10i)T2 1 + (-2.13e4 + 1.23e4i)T + (1.29e10 - 2.24e10i)T^{2}
13 1+(2.70e5+4.68e5i)T+(6.89e101.19e11i)T2 1 + (-2.70e5 + 4.68e5i)T + (-6.89e10 - 1.19e11i)T^{2}
17 1+1.33e6iT2.01e12T2 1 + 1.33e6iT - 2.01e12T^{2}
19 13.09e6T+6.13e12T2 1 - 3.09e6T + 6.13e12T^{2}
23 1+(2.15e61.24e6i)T+(2.07e13+3.58e13i)T2 1 + (-2.15e6 - 1.24e6i)T + (2.07e13 + 3.58e13i)T^{2}
29 1+(2.67e71.54e7i)T+(2.10e143.64e14i)T2 1 + (2.67e7 - 1.54e7i)T + (2.10e14 - 3.64e14i)T^{2}
31 1+(1.67e7+2.89e7i)T+(4.09e147.09e14i)T2 1 + (-1.67e7 + 2.89e7i)T + (-4.09e14 - 7.09e14i)T^{2}
37 1+3.54e7T+4.80e15T2 1 + 3.54e7T + 4.80e15T^{2}
41 1+(1.05e8+6.10e7i)T+(6.71e15+1.16e16i)T2 1 + (1.05e8 + 6.10e7i)T + (6.71e15 + 1.16e16i)T^{2}
43 1+(1.18e8+2.05e8i)T+(1.08e16+1.87e16i)T2 1 + (1.18e8 + 2.05e8i)T + (-1.08e16 + 1.87e16i)T^{2}
47 1+(5.31e7+3.06e7i)T+(2.62e164.55e16i)T2 1 + (-5.31e7 + 3.06e7i)T + (2.62e16 - 4.55e16i)T^{2}
53 13.59e8iT1.74e17T2 1 - 3.59e8iT - 1.74e17T^{2}
59 1+(8.65e8+4.99e8i)T+(2.55e17+4.42e17i)T2 1 + (8.65e8 + 4.99e8i)T + (2.55e17 + 4.42e17i)T^{2}
61 1+(1.65e8+2.85e8i)T+(3.56e17+6.17e17i)T2 1 + (1.65e8 + 2.85e8i)T + (-3.56e17 + 6.17e17i)T^{2}
67 1+(9.42e81.63e9i)T+(9.11e171.57e18i)T2 1 + (9.42e8 - 1.63e9i)T + (-9.11e17 - 1.57e18i)T^{2}
71 11.92e9iT3.25e18T2 1 - 1.92e9iT - 3.25e18T^{2}
73 12.12e9T+4.29e18T2 1 - 2.12e9T + 4.29e18T^{2}
79 1+(1.67e8+2.90e8i)T+(4.73e18+8.19e18i)T2 1 + (1.67e8 + 2.90e8i)T + (-4.73e18 + 8.19e18i)T^{2}
83 1+(5.02e9+2.90e9i)T+(7.75e181.34e19i)T2 1 + (-5.02e9 + 2.90e9i)T + (7.75e18 - 1.34e19i)T^{2}
89 1+1.02e10iT3.11e19T2 1 + 1.02e10iT - 3.11e19T^{2}
97 1+(5.48e99.50e9i)T+(3.68e19+6.38e19i)T2 1 + (-5.48e9 - 9.50e9i)T + (-3.68e19 + 6.38e19i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−15.99043417615301716687396368530, −15.31033934762495598283573441276, −13.68266491987183093575743699232, −11.60047655518057805341689061591, −10.26771763369224977950320858893, −8.930698387980429475022268847077, −7.64295526509202331965920368397, −5.32865880998141494207350638972, −3.47396082334519368466819144701, −0.44381490262993217299827613638, 1.54435693365863549505116885424, 3.38026199651728517675935662020, 6.51769486992374685524184672264, 7.83894131503074214544610437397, 9.173678048718372686647603869962, 11.23259114757426153247593920414, 12.13439720954650894861380422545, 13.63382701123202567601021169665, 15.18045414318985129610414619798, 16.68750241866665522610645090545

Graph of the ZZ-function along the critical line