L(s) = 1 | + (−19.5 − 11.3i)2-s + (16.6 + 242. i)3-s + (255. + 443. i)4-s + (2.72e3 − 1.57e3i)5-s + (2.41e3 − 4.93e3i)6-s + (−1.76e3 + 3.06e3i)7-s − 1.15e4i·8-s + (−5.84e4 + 8.09e3i)9-s − 7.11e4·10-s + (1.01e5 + 5.88e4i)11-s + (−1.03e5 + 6.94e4i)12-s + (1.40e5 + 2.42e5i)13-s + (6.93e4 − 4.00e4i)14-s + (4.26e5 + 6.33e5i)15-s + (−1.31e5 + 2.27e5i)16-s + 2.62e6i·17-s + ⋯ |
L(s) = 1 | + (−0.612 − 0.353i)2-s + (0.0687 + 0.997i)3-s + (0.249 + 0.433i)4-s + (0.871 − 0.503i)5-s + (0.310 − 0.635i)6-s + (−0.105 + 0.182i)7-s − 0.353i·8-s + (−0.990 + 0.137i)9-s − 0.711·10-s + (0.632 + 0.365i)11-s + (−0.414 + 0.279i)12-s + (0.377 + 0.653i)13-s + (0.128 − 0.0744i)14-s + (0.561 + 0.834i)15-s + (−0.125 + 0.216i)16-s + 1.84i·17-s + ⋯ |
Λ(s)=(=(18s/2ΓC(s)L(s)(0.0370−0.999i)Λ(11−s)
Λ(s)=(=(18s/2ΓC(s+5)L(s)(0.0370−0.999i)Λ(1−s)
Degree: |
2 |
Conductor: |
18
= 2⋅32
|
Sign: |
0.0370−0.999i
|
Analytic conductor: |
11.4364 |
Root analytic conductor: |
3.38177 |
Motivic weight: |
10 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ18(11,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 18, ( :5), 0.0370−0.999i)
|
Particular Values
L(211) |
≈ |
0.954562+0.919869i |
L(21) |
≈ |
0.954562+0.919869i |
L(6) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(19.5+11.3i)T |
| 3 | 1+(−16.6−242.i)T |
good | 5 | 1+(−2.72e3+1.57e3i)T+(4.88e6−8.45e6i)T2 |
| 7 | 1+(1.76e3−3.06e3i)T+(−1.41e8−2.44e8i)T2 |
| 11 | 1+(−1.01e5−5.88e4i)T+(1.29e10+2.24e10i)T2 |
| 13 | 1+(−1.40e5−2.42e5i)T+(−6.89e10+1.19e11i)T2 |
| 17 | 1−2.62e6iT−2.01e12T2 |
| 19 | 1+1.16e6T+6.13e12T2 |
| 23 | 1+(6.93e6−4.00e6i)T+(2.07e13−3.58e13i)T2 |
| 29 | 1+(−2.58e7−1.49e7i)T+(2.10e14+3.64e14i)T2 |
| 31 | 1+(9.71e6+1.68e7i)T+(−4.09e14+7.09e14i)T2 |
| 37 | 1+2.58e7T+4.80e15T2 |
| 41 | 1+(3.60e7−2.08e7i)T+(6.71e15−1.16e16i)T2 |
| 43 | 1+(−9.70e7+1.68e8i)T+(−1.08e16−1.87e16i)T2 |
| 47 | 1+(−2.63e8−1.51e8i)T+(2.62e16+4.55e16i)T2 |
| 53 | 1−2.93e8iT−1.74e17T2 |
| 59 | 1+(−4.61e8+2.66e8i)T+(2.55e17−4.42e17i)T2 |
| 61 | 1+(−5.88e8+1.01e9i)T+(−3.56e17−6.17e17i)T2 |
| 67 | 1+(9.91e8+1.71e9i)T+(−9.11e17+1.57e18i)T2 |
| 71 | 1+1.40e9iT−3.25e18T2 |
| 73 | 1+6.62e7T+4.29e18T2 |
| 79 | 1+(2.94e9−5.10e9i)T+(−4.73e18−8.19e18i)T2 |
| 83 | 1+(−2.24e9−1.29e9i)T+(7.75e18+1.34e19i)T2 |
| 89 | 1+8.23e9iT−3.11e19T2 |
| 97 | 1+(6.95e9−1.20e10i)T+(−3.68e19−6.38e19i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−16.86235015692985114212574641458, −15.51491895844238825380269160146, −14.01867532573532465416364750890, −12.32912265472672438475422371242, −10.71227080164419263965403979208, −9.563308408843295656298843247272, −8.586957907161055876073032619010, −6.01361702542906465648343580157, −4.00959150960637542568399952362, −1.80547518043024740498930227835,
0.73058395315191136907555815427, 2.49873817544010628789556060786, 5.92849115647731593224658871335, 7.02754528840577214198758964916, 8.616345229672201391400761136210, 10.18551708470563750436416741073, 11.79204850084749136116601318789, 13.57437599697071137585020666442, 14.37420545099211937379605280278, 16.22729565618462854158235594064