L(s) = 1 | + (−19.5 + 11.3i)2-s + (208. − 124. i)3-s + (255. − 443. i)4-s + (−4.47e3 − 2.58e3i)5-s + (−2.68e3 + 4.79e3i)6-s + (7.93e3 + 1.37e4i)7-s + 1.15e4i·8-s + (2.81e4 − 5.19e4i)9-s + 1.16e5·10-s + (−1.21e5 + 6.99e4i)11-s + (−1.70e3 − 1.24e5i)12-s + (−3.43e5 + 5.95e5i)13-s + (−3.11e5 − 1.79e5i)14-s + (−1.25e6 + 1.71e4i)15-s + (−1.31e5 − 2.27e5i)16-s − 9.11e5i·17-s + ⋯ |
L(s) = 1 | + (−0.612 + 0.353i)2-s + (0.859 − 0.511i)3-s + (0.249 − 0.433i)4-s + (−1.43 − 0.826i)5-s + (−0.345 + 0.617i)6-s + (0.472 + 0.818i)7-s + 0.353i·8-s + (0.476 − 0.879i)9-s + 1.16·10-s + (−0.752 + 0.434i)11-s + (−0.00683 − 0.499i)12-s + (−0.925 + 1.60i)13-s + (−0.578 − 0.334i)14-s + (−1.65 + 0.0225i)15-s + (−0.125 − 0.216i)16-s − 0.642i·17-s + ⋯ |
Λ(s)=(=(18s/2ΓC(s)L(s)(−0.948−0.316i)Λ(11−s)
Λ(s)=(=(18s/2ΓC(s+5)L(s)(−0.948−0.316i)Λ(1−s)
Degree: |
2 |
Conductor: |
18
= 2⋅32
|
Sign: |
−0.948−0.316i
|
Analytic conductor: |
11.4364 |
Root analytic conductor: |
3.38177 |
Motivic weight: |
10 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ18(5,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 18, ( :5), −0.948−0.316i)
|
Particular Values
L(211) |
≈ |
0.0162099+0.0999009i |
L(21) |
≈ |
0.0162099+0.0999009i |
L(6) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(19.5−11.3i)T |
| 3 | 1+(−208.+124.i)T |
good | 5 | 1+(4.47e3+2.58e3i)T+(4.88e6+8.45e6i)T2 |
| 7 | 1+(−7.93e3−1.37e4i)T+(−1.41e8+2.44e8i)T2 |
| 11 | 1+(1.21e5−6.99e4i)T+(1.29e10−2.24e10i)T2 |
| 13 | 1+(3.43e5−5.95e5i)T+(−6.89e10−1.19e11i)T2 |
| 17 | 1+9.11e5iT−2.01e12T2 |
| 19 | 1+3.96e6T+6.13e12T2 |
| 23 | 1+(2.79e5+1.61e5i)T+(2.07e13+3.58e13i)T2 |
| 29 | 1+(1.96e7−1.13e7i)T+(2.10e14−3.64e14i)T2 |
| 31 | 1+(4.80e5−8.32e5i)T+(−4.09e14−7.09e14i)T2 |
| 37 | 1−8.29e7T+4.80e15T2 |
| 41 | 1+(4.29e7+2.47e7i)T+(6.71e15+1.16e16i)T2 |
| 43 | 1+(1.64e7+2.85e7i)T+(−1.08e16+1.87e16i)T2 |
| 47 | 1+(8.48e6−4.89e6i)T+(2.62e16−4.55e16i)T2 |
| 53 | 1+1.50e8iT−1.74e17T2 |
| 59 | 1+(6.48e8+3.74e8i)T+(2.55e17+4.42e17i)T2 |
| 61 | 1+(3.97e7+6.88e7i)T+(−3.56e17+6.17e17i)T2 |
| 67 | 1+(1.31e8−2.28e8i)T+(−9.11e17−1.57e18i)T2 |
| 71 | 1−1.74e8iT−3.25e18T2 |
| 73 | 1−1.37e9T+4.29e18T2 |
| 79 | 1+(2.41e9+4.18e9i)T+(−4.73e18+8.19e18i)T2 |
| 83 | 1+(4.80e9−2.77e9i)T+(7.75e18−1.34e19i)T2 |
| 89 | 1−3.34e9iT−3.11e19T2 |
| 97 | 1+(6.16e9+1.06e10i)T+(−3.68e19+6.38e19i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−16.73786222115780304334020839846, −15.47678417101076356204985783358, −14.64767162795425803994097411050, −12.66246827985630516099475062730, −11.62493674682044567297494143098, −9.221910827232684382047585960141, −8.280438764903187959201137586095, −7.18757938313609848096400104292, −4.54531880389023683113858412803, −2.06088104474018727677836216144,
0.04710630738326260869514210760, 2.79877334379376025231418722940, 4.12086723678550276284513452917, 7.61068481017722376140944089740, 8.140138999694224419837418880051, 10.34037284498689335669540411951, 10.97968718795100662245284974077, 12.91390390203576059796545398342, 14.79873966431005221501318211970, 15.44282588199116987716328553446