L(s) = 1 | + 45.2i·2-s − 2.04e3·4-s + 2.05e4i·5-s + 3.35e4·7-s − 9.26e4i·8-s − 9.32e5·10-s + 1.71e6i·11-s − 5.19e6·13-s + 1.51e6i·14-s + 4.19e6·16-s − 3.13e7i·17-s − 6.60e7·19-s − 4.21e7i·20-s − 7.75e7·22-s − 1.72e8i·23-s + ⋯ |
L(s) = 1 | + 0.707i·2-s − 0.500·4-s + 1.31i·5-s + 0.285·7-s − 0.353i·8-s − 0.932·10-s + 0.967i·11-s − 1.07·13-s + 0.201i·14-s + 0.250·16-s − 1.29i·17-s − 1.40·19-s − 0.659i·20-s − 0.684·22-s − 1.16i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 18 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.816 + 0.577i)\, \overline{\Lambda}(13-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 18 ^{s/2} \, \Gamma_{\C}(s+6) \, L(s)\cr =\mathstrut & (-0.816 + 0.577i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{13}{2})\) |
\(\approx\) |
\(0.220889 - 0.694977i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.220889 - 0.694977i\) |
\(L(7)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - 45.2iT \) |
| 3 | \( 1 \) |
good | 5 | \( 1 - 2.05e4iT - 2.44e8T^{2} \) |
| 7 | \( 1 - 3.35e4T + 1.38e10T^{2} \) |
| 11 | \( 1 - 1.71e6iT - 3.13e12T^{2} \) |
| 13 | \( 1 + 5.19e6T + 2.32e13T^{2} \) |
| 17 | \( 1 + 3.13e7iT - 5.82e14T^{2} \) |
| 19 | \( 1 + 6.60e7T + 2.21e15T^{2} \) |
| 23 | \( 1 + 1.72e8iT - 2.19e16T^{2} \) |
| 29 | \( 1 - 4.04e8iT - 3.53e17T^{2} \) |
| 31 | \( 1 + 1.73e9T + 7.87e17T^{2} \) |
| 37 | \( 1 - 4.29e9T + 6.58e18T^{2} \) |
| 41 | \( 1 - 8.42e9iT - 2.25e19T^{2} \) |
| 43 | \( 1 - 2.71e9T + 3.99e19T^{2} \) |
| 47 | \( 1 - 8.00e9iT - 1.16e20T^{2} \) |
| 53 | \( 1 - 1.16e10iT - 4.91e20T^{2} \) |
| 59 | \( 1 + 1.07e10iT - 1.77e21T^{2} \) |
| 61 | \( 1 + 3.74e10T + 2.65e21T^{2} \) |
| 67 | \( 1 - 7.46e10T + 8.18e21T^{2} \) |
| 71 | \( 1 - 7.21e10iT - 1.64e22T^{2} \) |
| 73 | \( 1 + 7.22e10T + 2.29e22T^{2} \) |
| 79 | \( 1 - 3.17e11T + 5.90e22T^{2} \) |
| 83 | \( 1 + 1.22e11iT - 1.06e23T^{2} \) |
| 89 | \( 1 - 2.36e11iT - 2.46e23T^{2} \) |
| 97 | \( 1 + 1.34e11T + 6.93e23T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−16.51921311414961822109780103279, −14.79587223845900709831801292028, −14.58672182690319023663664124672, −12.68639789252526026843061598844, −10.94482426352989567945839697814, −9.562971217129862458655237462806, −7.58748045305022106002296336561, −6.60545183937517885039668823130, −4.65397331821090732381970650134, −2.53436428829489754739677558188,
0.27309252011008683145190181076, 1.83820940461222875089441113121, 4.04732245275144891177602329047, 5.52738222820608218839524591322, 8.143873876351027827017920751480, 9.279779321535803293214060340964, 10.92304159676229824796348545054, 12.35599652170272402860594893378, 13.23799105504029971697980062431, 14.84229774903433363192870780566