L(s) = 1 | + 45.2i·2-s − 2.04e3·4-s + 2.05e4i·5-s + 3.35e4·7-s − 9.26e4i·8-s − 9.32e5·10-s + 1.71e6i·11-s − 5.19e6·13-s + 1.51e6i·14-s + 4.19e6·16-s − 3.13e7i·17-s − 6.60e7·19-s − 4.21e7i·20-s − 7.75e7·22-s − 1.72e8i·23-s + ⋯ |
L(s) = 1 | + 0.707i·2-s − 0.500·4-s + 1.31i·5-s + 0.285·7-s − 0.353i·8-s − 0.932·10-s + 0.967i·11-s − 1.07·13-s + 0.201i·14-s + 0.250·16-s − 1.29i·17-s − 1.40·19-s − 0.659i·20-s − 0.684·22-s − 1.16i·23-s + ⋯ |
Λ(s)=(=(18s/2ΓC(s)L(s)(−0.816+0.577i)Λ(13−s)
Λ(s)=(=(18s/2ΓC(s+6)L(s)(−0.816+0.577i)Λ(1−s)
Degree: |
2 |
Conductor: |
18
= 2⋅32
|
Sign: |
−0.816+0.577i
|
Analytic conductor: |
16.4518 |
Root analytic conductor: |
4.05609 |
Motivic weight: |
12 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ18(17,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 18, ( :6), −0.816+0.577i)
|
Particular Values
L(213) |
≈ |
0.220889−0.694977i |
L(21) |
≈ |
0.220889−0.694977i |
L(7) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−45.2iT |
| 3 | 1 |
good | 5 | 1−2.05e4iT−2.44e8T2 |
| 7 | 1−3.35e4T+1.38e10T2 |
| 11 | 1−1.71e6iT−3.13e12T2 |
| 13 | 1+5.19e6T+2.32e13T2 |
| 17 | 1+3.13e7iT−5.82e14T2 |
| 19 | 1+6.60e7T+2.21e15T2 |
| 23 | 1+1.72e8iT−2.19e16T2 |
| 29 | 1−4.04e8iT−3.53e17T2 |
| 31 | 1+1.73e9T+7.87e17T2 |
| 37 | 1−4.29e9T+6.58e18T2 |
| 41 | 1−8.42e9iT−2.25e19T2 |
| 43 | 1−2.71e9T+3.99e19T2 |
| 47 | 1−8.00e9iT−1.16e20T2 |
| 53 | 1−1.16e10iT−4.91e20T2 |
| 59 | 1+1.07e10iT−1.77e21T2 |
| 61 | 1+3.74e10T+2.65e21T2 |
| 67 | 1−7.46e10T+8.18e21T2 |
| 71 | 1−7.21e10iT−1.64e22T2 |
| 73 | 1+7.22e10T+2.29e22T2 |
| 79 | 1−3.17e11T+5.90e22T2 |
| 83 | 1+1.22e11iT−1.06e23T2 |
| 89 | 1−2.36e11iT−2.46e23T2 |
| 97 | 1+1.34e11T+6.93e23T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−16.51921311414961822109780103279, −14.79587223845900709831801292028, −14.58672182690319023663664124672, −12.68639789252526026843061598844, −10.94482426352989567945839697814, −9.562971217129862458655237462806, −7.58748045305022106002296336561, −6.60545183937517885039668823130, −4.65397331821090732381970650134, −2.53436428829489754739677558188,
0.27309252011008683145190181076, 1.83820940461222875089441113121, 4.04732245275144891177602329047, 5.52738222820608218839524591322, 8.143873876351027827017920751480, 9.279779321535803293214060340964, 10.92304159676229824796348545054, 12.35599652170272402860594893378, 13.23799105504029971697980062431, 14.84229774903433363192870780566