Properties

Label 18.13.b.b
Level 1818
Weight 1313
Character orbit 18.b
Analytic conductor 16.45216.452
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [18,13,Mod(17,18)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(18, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 13, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("18.17");
 
S:= CuspForms(chi, 13);
 
N := Newforms(S);
 
Level: N N == 18=232 18 = 2 \cdot 3^{2}
Weight: k k == 13 13
Character orbit: [χ][\chi] == 18.b (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 16.451888711016.4518887110
Analytic rank: 00
Dimension: 22
Coefficient field: Q(2)\Q(\sqrt{-2})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2+2 x^{2} + 2 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=2\beta = \sqrt{-2}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+32βq22048q4+14565βq5+33572q765536βq8932160q10+1211892βq115196976q13+1074304βq14+4194304q1622150593βq17+406854656544βq98+O(q100) q + 32 \beta q^{2} - 2048 q^{4} + 14565 \beta q^{5} + 33572 q^{7} - 65536 \beta q^{8} - 932160 q^{10} + 1211892 \beta q^{11} - 5196976 q^{13} + 1074304 \beta q^{14} + 4194304 q^{16} - 22150593 \beta q^{17} + \cdots - 406854656544 \beta q^{98} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q4096q4+67144q71864320q1010393952q13+8388608q16132114848q19155122176q22360275650q25137510912q283461864792q31+2835275904q34+8583124684q37+269386618496q97+O(q100) 2 q - 4096 q^{4} + 67144 q^{7} - 1864320 q^{10} - 10393952 q^{13} + 8388608 q^{16} - 132114848 q^{19} - 155122176 q^{22} - 360275650 q^{25} - 137510912 q^{28} - 3461864792 q^{31} + 2835275904 q^{34} + 8583124684 q^{37}+ \cdots - 269386618496 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/18Z)×\left(\mathbb{Z}/18\mathbb{Z}\right)^\times.

nn 1111
χ(n)\chi(n) 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
17.1
1.41421i
1.41421i
45.2548i 0 −2048.00 20598.0i 0 33572.0 92681.9i 0 −932160.
17.2 45.2548i 0 −2048.00 20598.0i 0 33572.0 92681.9i 0 −932160.
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 18.13.b.b 2
3.b odd 2 1 inner 18.13.b.b 2
4.b odd 2 1 144.13.e.b 2
9.c even 3 2 162.13.d.a 4
9.d odd 6 2 162.13.d.a 4
12.b even 2 1 144.13.e.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
18.13.b.b 2 1.a even 1 1 trivial
18.13.b.b 2 3.b odd 2 1 inner
144.13.e.b 2 4.b odd 2 1
144.13.e.b 2 12.b even 2 1
162.13.d.a 4 9.c even 3 2
162.13.d.a 4 9.d odd 6 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T52+424278450 T_{5}^{2} + 424278450 acting on S13new(18,[χ])S_{13}^{\mathrm{new}}(18, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2+2048 T^{2} + 2048 Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 T2+424278450 T^{2} + 424278450 Copy content Toggle raw display
77 (T33572)2 (T - 33572)^{2} Copy content Toggle raw display
1111 T2+2937364439328 T^{2} + 2937364439328 Copy content Toggle raw display
1313 (T+5196976)2 (T + 5196976)^{2} Copy content Toggle raw display
1717 T2+981297540503298 T^{2} + 981297540503298 Copy content Toggle raw display
1919 (T+66057424)2 (T + 66057424)^{2} Copy content Toggle raw display
2323 T2+29 ⁣ ⁣32 T^{2} + 29\!\cdots\!32 Copy content Toggle raw display
2929 T2+16 ⁣ ⁣58 T^{2} + 16\!\cdots\!58 Copy content Toggle raw display
3131 (T+1730932396)2 (T + 1730932396)^{2} Copy content Toggle raw display
3737 (T4291562342)2 (T - 4291562342)^{2} Copy content Toggle raw display
4141 T2+70 ⁣ ⁣78 T^{2} + 70\!\cdots\!78 Copy content Toggle raw display
4343 (T2713386440)2 (T - 2713386440)^{2} Copy content Toggle raw display
4747 T2+64 ⁣ ⁣00 T^{2} + 64\!\cdots\!00 Copy content Toggle raw display
5353 T2+13 ⁣ ⁣82 T^{2} + 13\!\cdots\!82 Copy content Toggle raw display
5959 T2+11 ⁣ ⁣72 T^{2} + 11\!\cdots\!72 Copy content Toggle raw display
6161 (T+37496538790)2 (T + 37496538790)^{2} Copy content Toggle raw display
6767 (T74662225976)2 (T - 74662225976)^{2} Copy content Toggle raw display
7171 T2+51 ⁣ ⁣92 T^{2} + 51\!\cdots\!92 Copy content Toggle raw display
7373 (T+72295502128)2 (T + 72295502128)^{2} Copy content Toggle raw display
7979 (T317431332236)2 (T - 317431332236)^{2} Copy content Toggle raw display
8383 T2+14 ⁣ ⁣68 T^{2} + 14\!\cdots\!68 Copy content Toggle raw display
8989 T2+56 ⁣ ⁣62 T^{2} + 56\!\cdots\!62 Copy content Toggle raw display
9797 (T+134693309248)2 (T + 134693309248)^{2} Copy content Toggle raw display
show more
show less