Properties

Label 18.13.b.b
Level $18$
Weight $13$
Character orbit 18.b
Analytic conductor $16.452$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [18,13,Mod(17,18)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(18, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 13, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("18.17");
 
S:= CuspForms(chi, 13);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 18 = 2 \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 13 \)
Character orbit: \([\chi]\) \(=\) 18.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.4518887110\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-2}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{-2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 32 \beta q^{2} - 2048 q^{4} + 14565 \beta q^{5} + 33572 q^{7} - 65536 \beta q^{8} - 932160 q^{10} + 1211892 \beta q^{11} - 5196976 q^{13} + 1074304 \beta q^{14} + 4194304 q^{16} - 22150593 \beta q^{17} + \cdots - 406854656544 \beta q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4096 q^{4} + 67144 q^{7} - 1864320 q^{10} - 10393952 q^{13} + 8388608 q^{16} - 132114848 q^{19} - 155122176 q^{22} - 360275650 q^{25} - 137510912 q^{28} - 3461864792 q^{31} + 2835275904 q^{34} + 8583124684 q^{37}+ \cdots - 269386618496 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/18\mathbb{Z}\right)^\times\).

\(n\) \(11\)
\(\chi(n)\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
17.1
1.41421i
1.41421i
45.2548i 0 −2048.00 20598.0i 0 33572.0 92681.9i 0 −932160.
17.2 45.2548i 0 −2048.00 20598.0i 0 33572.0 92681.9i 0 −932160.
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 18.13.b.b 2
3.b odd 2 1 inner 18.13.b.b 2
4.b odd 2 1 144.13.e.b 2
9.c even 3 2 162.13.d.a 4
9.d odd 6 2 162.13.d.a 4
12.b even 2 1 144.13.e.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
18.13.b.b 2 1.a even 1 1 trivial
18.13.b.b 2 3.b odd 2 1 inner
144.13.e.b 2 4.b odd 2 1
144.13.e.b 2 12.b even 2 1
162.13.d.a 4 9.c even 3 2
162.13.d.a 4 9.d odd 6 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{2} + 424278450 \) acting on \(S_{13}^{\mathrm{new}}(18, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 2048 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 424278450 \) Copy content Toggle raw display
$7$ \( (T - 33572)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 2937364439328 \) Copy content Toggle raw display
$13$ \( (T + 5196976)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + 981297540503298 \) Copy content Toggle raw display
$19$ \( (T + 66057424)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 29\!\cdots\!32 \) Copy content Toggle raw display
$29$ \( T^{2} + 16\!\cdots\!58 \) Copy content Toggle raw display
$31$ \( (T + 1730932396)^{2} \) Copy content Toggle raw display
$37$ \( (T - 4291562342)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} + 70\!\cdots\!78 \) Copy content Toggle raw display
$43$ \( (T - 2713386440)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} + 64\!\cdots\!00 \) Copy content Toggle raw display
$53$ \( T^{2} + 13\!\cdots\!82 \) Copy content Toggle raw display
$59$ \( T^{2} + 11\!\cdots\!72 \) Copy content Toggle raw display
$61$ \( (T + 37496538790)^{2} \) Copy content Toggle raw display
$67$ \( (T - 74662225976)^{2} \) Copy content Toggle raw display
$71$ \( T^{2} + 51\!\cdots\!92 \) Copy content Toggle raw display
$73$ \( (T + 72295502128)^{2} \) Copy content Toggle raw display
$79$ \( (T - 317431332236)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 14\!\cdots\!68 \) Copy content Toggle raw display
$89$ \( T^{2} + 56\!\cdots\!62 \) Copy content Toggle raw display
$97$ \( (T + 134693309248)^{2} \) Copy content Toggle raw display
show more
show less