L(s) = 1 | + (2.39 − 4.61i)3-s + (−2.5 − 4.33i)5-s + (−12.3 + 21.3i)7-s + (−15.5 − 22.0i)9-s + (31.3 − 54.2i)11-s + (−29.8 − 51.6i)13-s + (−25.9 + 1.17i)15-s − 85.2·17-s − 75.1·19-s + (68.8 + 107. i)21-s + (48.7 + 84.4i)23-s + (−12.5 + 21.6i)25-s + (−139. + 18.9i)27-s + (−79.6 + 137. i)29-s + (−159. − 275. i)31-s + ⋯ |
L(s) = 1 | + (0.460 − 0.887i)3-s + (−0.223 − 0.387i)5-s + (−0.664 + 1.15i)7-s + (−0.576 − 0.817i)9-s + (0.858 − 1.48i)11-s + (−0.636 − 1.10i)13-s + (−0.446 + 0.0202i)15-s − 1.21·17-s − 0.907·19-s + (0.715 + 1.11i)21-s + (0.442 + 0.765i)23-s + (−0.100 + 0.173i)25-s + (−0.990 + 0.135i)27-s + (−0.509 + 0.883i)29-s + (−0.922 − 1.59i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 180 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.904 + 0.425i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 180 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.904 + 0.425i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.234612 - 1.05049i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.234612 - 1.05049i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-2.39 + 4.61i)T \) |
| 5 | \( 1 + (2.5 + 4.33i)T \) |
good | 7 | \( 1 + (12.3 - 21.3i)T + (-171.5 - 297. i)T^{2} \) |
| 11 | \( 1 + (-31.3 + 54.2i)T + (-665.5 - 1.15e3i)T^{2} \) |
| 13 | \( 1 + (29.8 + 51.6i)T + (-1.09e3 + 1.90e3i)T^{2} \) |
| 17 | \( 1 + 85.2T + 4.91e3T^{2} \) |
| 19 | \( 1 + 75.1T + 6.85e3T^{2} \) |
| 23 | \( 1 + (-48.7 - 84.4i)T + (-6.08e3 + 1.05e4i)T^{2} \) |
| 29 | \( 1 + (79.6 - 137. i)T + (-1.21e4 - 2.11e4i)T^{2} \) |
| 31 | \( 1 + (159. + 275. i)T + (-1.48e4 + 2.57e4i)T^{2} \) |
| 37 | \( 1 - 393.T + 5.06e4T^{2} \) |
| 41 | \( 1 + (42.5 + 73.6i)T + (-3.44e4 + 5.96e4i)T^{2} \) |
| 43 | \( 1 + (-20.3 + 35.3i)T + (-3.97e4 - 6.88e4i)T^{2} \) |
| 47 | \( 1 + (-45.1 + 78.1i)T + (-5.19e4 - 8.99e4i)T^{2} \) |
| 53 | \( 1 - 691.T + 1.48e5T^{2} \) |
| 59 | \( 1 + (141. + 245. i)T + (-1.02e5 + 1.77e5i)T^{2} \) |
| 61 | \( 1 + (-216. + 374. i)T + (-1.13e5 - 1.96e5i)T^{2} \) |
| 67 | \( 1 + (154. + 267. i)T + (-1.50e5 + 2.60e5i)T^{2} \) |
| 71 | \( 1 - 302.T + 3.57e5T^{2} \) |
| 73 | \( 1 + 457.T + 3.89e5T^{2} \) |
| 79 | \( 1 + (-420. + 728. i)T + (-2.46e5 - 4.26e5i)T^{2} \) |
| 83 | \( 1 + (-394. + 682. i)T + (-2.85e5 - 4.95e5i)T^{2} \) |
| 89 | \( 1 - 1.11e3T + 7.04e5T^{2} \) |
| 97 | \( 1 + (598. - 1.03e3i)T + (-4.56e5 - 7.90e5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.92387850118314250990146376955, −11.08853560409944250106265320338, −9.246210136198462713250589886507, −8.836789195075785681407061025625, −7.76116966145161631903099260399, −6.40378339830971607444535506410, −5.62062872431967898637191015956, −3.57945833468572480716799167645, −2.36010488699218788467671208265, −0.43350627485104046328925229200,
2.31601217197303814851681593180, 4.07135969824889579634245090976, 4.45073135639204254619881244852, 6.64867767202237295427544139641, 7.27545632149358962781408975490, 8.873031410952193217482627343731, 9.685232806270943785832696684961, 10.47909572304930065977314292688, 11.42291278471251836562041033162, 12.70009624965334070806371631904