Properties

Label 180.4.i.c.61.5
Level $180$
Weight $4$
Character 180.61
Analytic conductor $10.620$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [180,4,Mod(61,180)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(180, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("180.61");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 180 = 2^{2} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 180.i (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.6203438010\)
Analytic rank: \(0\)
Dimension: \(14\)
Relative dimension: \(7\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - 7 x^{13} + 180 x^{12} - 989 x^{11} + 11627 x^{10} - 49236 x^{9} + 328637 x^{8} - 1029725 x^{7} + \cdots + 1484973 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{10}\cdot 3^{9} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 61.5
Root \(0.500000 - 0.166136i\) of defining polynomial
Character \(\chi\) \(=\) 180.61
Dual form 180.4.i.c.121.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.39211 - 4.61279i) q^{3} +(-2.50000 - 4.33013i) q^{5} +(-12.3017 + 21.3072i) q^{7} +(-15.5556 - 22.0686i) q^{9} +(31.3139 - 54.2372i) q^{11} +(-29.8261 - 51.6603i) q^{13} +(-25.9542 + 1.17384i) q^{15} -85.2021 q^{17} -75.1746 q^{19} +(68.8587 + 107.715i) q^{21} +(48.7776 + 84.4852i) q^{23} +(-12.5000 + 21.6506i) q^{25} +(-139.008 + 18.9645i) q^{27} +(-79.6256 + 137.915i) q^{29} +(-159.255 - 275.838i) q^{31} +(-175.279 - 274.185i) q^{33} +123.017 q^{35} +393.612 q^{37} +(-309.646 + 14.0045i) q^{39} +(-42.5407 - 73.6826i) q^{41} +(20.3818 - 35.3023i) q^{43} +(-56.6706 + 122.529i) q^{45} +(45.1454 - 78.1941i) q^{47} +(-131.166 - 227.185i) q^{49} +(-203.812 + 393.019i) q^{51} +691.499 q^{53} -313.139 q^{55} +(-179.826 + 346.765i) q^{57} +(-141.759 - 245.534i) q^{59} +(216.078 - 374.258i) q^{61} +(661.582 - 59.9660i) q^{63} +(-149.131 + 258.302i) q^{65} +(-154.180 - 267.048i) q^{67} +(506.394 - 22.9029i) q^{69} +302.675 q^{71} -457.563 q^{73} +(69.9685 + 109.451i) q^{75} +(770.430 + 1334.42i) q^{77} +(420.848 - 728.929i) q^{79} +(-245.044 + 686.582i) q^{81} +(394.090 - 682.584i) q^{83} +(213.005 + 368.936i) q^{85} +(445.702 + 697.205i) q^{87} +1119.35 q^{89} +1467.65 q^{91} +(-1653.34 + 74.7763i) q^{93} +(187.937 + 325.516i) q^{95} +(-598.850 + 1037.24i) q^{97} +(-1684.04 + 152.642i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q + 5 q^{3} - 35 q^{5} - 8 q^{7} + 5 q^{9} - 27 q^{11} - 32 q^{13} - 20 q^{15} + 246 q^{17} - 134 q^{19} + 28 q^{21} - 42 q^{23} - 175 q^{25} - 484 q^{27} - 324 q^{29} - 98 q^{31} + 657 q^{33} + 80 q^{35}+ \cdots + 270 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/180\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(91\) \(101\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.39211 4.61279i 0.460361 0.887732i
\(4\) 0 0
\(5\) −2.50000 4.33013i −0.223607 0.387298i
\(6\) 0 0
\(7\) −12.3017 + 21.3072i −0.664232 + 1.15048i 0.315262 + 0.949005i \(0.397908\pi\)
−0.979493 + 0.201478i \(0.935426\pi\)
\(8\) 0 0
\(9\) −15.5556 22.0686i −0.576135 0.817355i
\(10\) 0 0
\(11\) 31.3139 54.2372i 0.858316 1.48665i −0.0152173 0.999884i \(-0.504844\pi\)
0.873534 0.486764i \(-0.161823\pi\)
\(12\) 0 0
\(13\) −29.8261 51.6603i −0.636329 1.10215i −0.986232 0.165368i \(-0.947119\pi\)
0.349903 0.936786i \(-0.386215\pi\)
\(14\) 0 0
\(15\) −25.9542 + 1.17384i −0.446757 + 0.0202057i
\(16\) 0 0
\(17\) −85.2021 −1.21556 −0.607780 0.794105i \(-0.707940\pi\)
−0.607780 + 0.794105i \(0.707940\pi\)
\(18\) 0 0
\(19\) −75.1746 −0.907697 −0.453849 0.891079i \(-0.649949\pi\)
−0.453849 + 0.891079i \(0.649949\pi\)
\(20\) 0 0
\(21\) 68.8587 + 107.715i 0.715533 + 1.11930i
\(22\) 0 0
\(23\) 48.7776 + 84.4852i 0.442210 + 0.765930i 0.997853 0.0654909i \(-0.0208613\pi\)
−0.555643 + 0.831421i \(0.687528\pi\)
\(24\) 0 0
\(25\) −12.5000 + 21.6506i −0.100000 + 0.173205i
\(26\) 0 0
\(27\) −139.008 + 18.9645i −0.990822 + 0.135175i
\(28\) 0 0
\(29\) −79.6256 + 137.915i −0.509865 + 0.883113i 0.490069 + 0.871683i \(0.336971\pi\)
−0.999935 + 0.0114292i \(0.996362\pi\)
\(30\) 0 0
\(31\) −159.255 275.838i −0.922680 1.59813i −0.795251 0.606280i \(-0.792661\pi\)
−0.127428 0.991848i \(-0.540672\pi\)
\(32\) 0 0
\(33\) −175.279 274.185i −0.924609 1.44635i
\(34\) 0 0
\(35\) 123.017 0.594107
\(36\) 0 0
\(37\) 393.612 1.74890 0.874451 0.485114i \(-0.161222\pi\)
0.874451 + 0.485114i \(0.161222\pi\)
\(38\) 0 0
\(39\) −309.646 + 14.0045i −1.27136 + 0.0575003i
\(40\) 0 0
\(41\) −42.5407 73.6826i −0.162042 0.280666i 0.773559 0.633725i \(-0.218475\pi\)
−0.935601 + 0.353059i \(0.885141\pi\)
\(42\) 0 0
\(43\) 20.3818 35.3023i 0.0722835 0.125199i −0.827618 0.561291i \(-0.810305\pi\)
0.899902 + 0.436093i \(0.143638\pi\)
\(44\) 0 0
\(45\) −56.6706 + 122.529i −0.187732 + 0.405902i
\(46\) 0 0
\(47\) 45.1454 78.1941i 0.140109 0.242676i −0.787428 0.616406i \(-0.788588\pi\)
0.927538 + 0.373730i \(0.121921\pi\)
\(48\) 0 0
\(49\) −131.166 227.185i −0.382407 0.662348i
\(50\) 0 0
\(51\) −203.812 + 393.019i −0.559597 + 1.07909i
\(52\) 0 0
\(53\) 691.499 1.79216 0.896081 0.443890i \(-0.146402\pi\)
0.896081 + 0.443890i \(0.146402\pi\)
\(54\) 0 0
\(55\) −313.139 −0.767702
\(56\) 0 0
\(57\) −179.826 + 346.765i −0.417869 + 0.805791i
\(58\) 0 0
\(59\) −141.759 245.534i −0.312805 0.541794i 0.666164 0.745806i \(-0.267935\pi\)
−0.978968 + 0.204012i \(0.934602\pi\)
\(60\) 0 0
\(61\) 216.078 374.258i 0.453540 0.785555i −0.545063 0.838395i \(-0.683494\pi\)
0.998603 + 0.0528404i \(0.0168275\pi\)
\(62\) 0 0
\(63\) 661.582 59.9660i 1.32304 0.119921i
\(64\) 0 0
\(65\) −149.131 + 258.302i −0.284575 + 0.492898i
\(66\) 0 0
\(67\) −154.180 267.048i −0.281136 0.486942i 0.690529 0.723305i \(-0.257378\pi\)
−0.971665 + 0.236363i \(0.924045\pi\)
\(68\) 0 0
\(69\) 506.394 22.9029i 0.883517 0.0399592i
\(70\) 0 0
\(71\) 302.675 0.505928 0.252964 0.967476i \(-0.418595\pi\)
0.252964 + 0.967476i \(0.418595\pi\)
\(72\) 0 0
\(73\) −457.563 −0.733613 −0.366806 0.930297i \(-0.619549\pi\)
−0.366806 + 0.930297i \(0.619549\pi\)
\(74\) 0 0
\(75\) 69.9685 + 109.451i 0.107724 + 0.168510i
\(76\) 0 0
\(77\) 770.430 + 1334.42i 1.14024 + 1.97496i
\(78\) 0 0
\(79\) 420.848 728.929i 0.599355 1.03811i −0.393561 0.919298i \(-0.628757\pi\)
0.992916 0.118815i \(-0.0379096\pi\)
\(80\) 0 0
\(81\) −245.044 + 686.582i −0.336137 + 0.941813i
\(82\) 0 0
\(83\) 394.090 682.584i 0.521169 0.902691i −0.478528 0.878072i \(-0.658830\pi\)
0.999697 0.0246184i \(-0.00783707\pi\)
\(84\) 0 0
\(85\) 213.005 + 368.936i 0.271808 + 0.470785i
\(86\) 0 0
\(87\) 445.702 + 697.205i 0.549245 + 0.859174i
\(88\) 0 0
\(89\) 1119.35 1.33316 0.666578 0.745436i \(-0.267759\pi\)
0.666578 + 0.745436i \(0.267759\pi\)
\(90\) 0 0
\(91\) 1467.65 1.69068
\(92\) 0 0
\(93\) −1653.34 + 74.7763i −1.84347 + 0.0833757i
\(94\) 0 0
\(95\) 187.937 + 325.516i 0.202967 + 0.351550i
\(96\) 0 0
\(97\) −598.850 + 1037.24i −0.626846 + 1.08573i 0.361335 + 0.932436i \(0.382321\pi\)
−0.988181 + 0.153292i \(0.951012\pi\)
\(98\) 0 0
\(99\) −1684.04 + 152.642i −1.70962 + 0.154961i
\(100\) 0 0
\(101\) −708.679 + 1227.47i −0.698180 + 1.20928i 0.270917 + 0.962603i \(0.412673\pi\)
−0.969097 + 0.246680i \(0.920660\pi\)
\(102\) 0 0
\(103\) −207.647 359.655i −0.198641 0.344057i 0.749447 0.662065i \(-0.230320\pi\)
−0.948088 + 0.318008i \(0.896986\pi\)
\(104\) 0 0
\(105\) 294.271 567.453i 0.273504 0.527407i
\(106\) 0 0
\(107\) 766.240 0.692292 0.346146 0.938181i \(-0.387490\pi\)
0.346146 + 0.938181i \(0.387490\pi\)
\(108\) 0 0
\(109\) 349.214 0.306868 0.153434 0.988159i \(-0.450967\pi\)
0.153434 + 0.988159i \(0.450967\pi\)
\(110\) 0 0
\(111\) 941.562 1815.65i 0.805127 1.55256i
\(112\) 0 0
\(113\) 559.969 + 969.896i 0.466173 + 0.807435i 0.999254 0.0386296i \(-0.0122993\pi\)
−0.533081 + 0.846064i \(0.678966\pi\)
\(114\) 0 0
\(115\) 243.888 422.426i 0.197762 0.342534i
\(116\) 0 0
\(117\) −676.106 + 1461.83i −0.534239 + 1.15510i
\(118\) 0 0
\(119\) 1048.13 1815.42i 0.807414 1.39848i
\(120\) 0 0
\(121\) −1295.61 2244.07i −0.973414 1.68600i
\(122\) 0 0
\(123\) −441.644 + 19.9744i −0.323754 + 0.0146426i
\(124\) 0 0
\(125\) 125.000 0.0894427
\(126\) 0 0
\(127\) −871.649 −0.609027 −0.304513 0.952508i \(-0.598494\pi\)
−0.304513 + 0.952508i \(0.598494\pi\)
\(128\) 0 0
\(129\) −114.086 178.464i −0.0778663 0.121805i
\(130\) 0 0
\(131\) 60.4825 + 104.759i 0.0403388 + 0.0698688i 0.885490 0.464659i \(-0.153823\pi\)
−0.845151 + 0.534527i \(0.820490\pi\)
\(132\) 0 0
\(133\) 924.779 1601.76i 0.602921 1.04429i
\(134\) 0 0
\(135\) 429.640 + 554.513i 0.273908 + 0.353518i
\(136\) 0 0
\(137\) 227.352 393.785i 0.141781 0.245572i −0.786386 0.617735i \(-0.788050\pi\)
0.928167 + 0.372163i \(0.121384\pi\)
\(138\) 0 0
\(139\) −1170.31 2027.03i −0.714130 1.23691i −0.963294 0.268448i \(-0.913489\pi\)
0.249164 0.968461i \(-0.419844\pi\)
\(140\) 0 0
\(141\) −252.700 395.295i −0.150931 0.236098i
\(142\) 0 0
\(143\) −3735.88 −2.18469
\(144\) 0 0
\(145\) 796.256 0.456037
\(146\) 0 0
\(147\) −1361.72 + 61.5872i −0.764033 + 0.0345553i
\(148\) 0 0
\(149\) −1084.18 1877.86i −0.596106 1.03249i −0.993390 0.114790i \(-0.963380\pi\)
0.397283 0.917696i \(-0.369953\pi\)
\(150\) 0 0
\(151\) −1344.51 + 2328.76i −0.724601 + 1.25504i 0.234538 + 0.972107i \(0.424642\pi\)
−0.959138 + 0.282938i \(0.908691\pi\)
\(152\) 0 0
\(153\) 1325.37 + 1880.29i 0.700327 + 0.993544i
\(154\) 0 0
\(155\) −796.276 + 1379.19i −0.412635 + 0.714704i
\(156\) 0 0
\(157\) 1358.22 + 2352.50i 0.690430 + 1.19586i 0.971697 + 0.236230i \(0.0759120\pi\)
−0.281267 + 0.959630i \(0.590755\pi\)
\(158\) 0 0
\(159\) 1654.14 3189.74i 0.825042 1.59096i
\(160\) 0 0
\(161\) −2400.20 −1.17492
\(162\) 0 0
\(163\) 289.025 0.138885 0.0694423 0.997586i \(-0.477878\pi\)
0.0694423 + 0.997586i \(0.477878\pi\)
\(164\) 0 0
\(165\) −749.061 + 1444.44i −0.353420 + 0.681513i
\(166\) 0 0
\(167\) 179.279 + 310.521i 0.0830721 + 0.143885i 0.904568 0.426329i \(-0.140193\pi\)
−0.821496 + 0.570214i \(0.806860\pi\)
\(168\) 0 0
\(169\) −680.694 + 1179.00i −0.309829 + 0.536639i
\(170\) 0 0
\(171\) 1169.39 + 1659.00i 0.522956 + 0.741910i
\(172\) 0 0
\(173\) 675.169 1169.43i 0.296718 0.513930i −0.678665 0.734448i \(-0.737441\pi\)
0.975383 + 0.220518i \(0.0707746\pi\)
\(174\) 0 0
\(175\) −307.543 532.681i −0.132846 0.230097i
\(176\) 0 0
\(177\) −1471.70 + 66.5613i −0.624971 + 0.0282659i
\(178\) 0 0
\(179\) 1192.29 0.497854 0.248927 0.968522i \(-0.419922\pi\)
0.248927 + 0.968522i \(0.419922\pi\)
\(180\) 0 0
\(181\) −1785.62 −0.733283 −0.366641 0.930362i \(-0.619492\pi\)
−0.366641 + 0.930362i \(0.619492\pi\)
\(182\) 0 0
\(183\) −1209.49 1891.99i −0.488570 0.764261i
\(184\) 0 0
\(185\) −984.029 1704.39i −0.391066 0.677347i
\(186\) 0 0
\(187\) −2668.00 + 4621.12i −1.04334 + 1.80711i
\(188\) 0 0
\(189\) 1305.96 3195.18i 0.502619 1.22971i
\(190\) 0 0
\(191\) 786.425 1362.13i 0.297925 0.516022i −0.677736 0.735305i \(-0.737039\pi\)
0.975661 + 0.219284i \(0.0703720\pi\)
\(192\) 0 0
\(193\) −149.039 258.144i −0.0555860 0.0962777i 0.836893 0.547366i \(-0.184369\pi\)
−0.892479 + 0.451088i \(0.851036\pi\)
\(194\) 0 0
\(195\) 834.755 + 1305.79i 0.306554 + 0.479537i
\(196\) 0 0
\(197\) 881.991 0.318981 0.159490 0.987199i \(-0.449015\pi\)
0.159490 + 0.987199i \(0.449015\pi\)
\(198\) 0 0
\(199\) 2647.66 0.943155 0.471578 0.881825i \(-0.343685\pi\)
0.471578 + 0.881825i \(0.343685\pi\)
\(200\) 0 0
\(201\) −1600.65 + 72.3934i −0.561698 + 0.0254042i
\(202\) 0 0
\(203\) −1959.07 3393.20i −0.677337 1.17318i
\(204\) 0 0
\(205\) −212.703 + 368.413i −0.0724675 + 0.125517i
\(206\) 0 0
\(207\) 1105.70 2390.67i 0.371264 0.802721i
\(208\) 0 0
\(209\) −2354.01 + 4077.26i −0.779091 + 1.34943i
\(210\) 0 0
\(211\) −1832.29 3173.61i −0.597819 1.03545i −0.993142 0.116911i \(-0.962701\pi\)
0.395324 0.918542i \(-0.370632\pi\)
\(212\) 0 0
\(213\) 724.030 1396.17i 0.232910 0.449128i
\(214\) 0 0
\(215\) −203.818 −0.0646523
\(216\) 0 0
\(217\) 7836.46 2.45149
\(218\) 0 0
\(219\) −1094.54 + 2110.64i −0.337727 + 0.651251i
\(220\) 0 0
\(221\) 2541.25 + 4401.57i 0.773497 + 1.33974i
\(222\) 0 0
\(223\) −1988.20 + 3443.66i −0.597039 + 1.03410i 0.396217 + 0.918157i \(0.370323\pi\)
−0.993256 + 0.115945i \(0.963010\pi\)
\(224\) 0 0
\(225\) 672.244 60.9325i 0.199183 0.0180541i
\(226\) 0 0
\(227\) −221.774 + 384.123i −0.0648442 + 0.112313i −0.896625 0.442791i \(-0.853988\pi\)
0.831781 + 0.555104i \(0.187322\pi\)
\(228\) 0 0
\(229\) 347.983 + 602.724i 0.100416 + 0.173926i 0.911856 0.410510i \(-0.134649\pi\)
−0.811440 + 0.584436i \(0.801316\pi\)
\(230\) 0 0
\(231\) 7998.36 361.746i 2.27815 0.103035i
\(232\) 0 0
\(233\) 1469.06 0.413052 0.206526 0.978441i \(-0.433784\pi\)
0.206526 + 0.978441i \(0.433784\pi\)
\(234\) 0 0
\(235\) −451.454 −0.125317
\(236\) 0 0
\(237\) −2355.69 3684.96i −0.645646 1.00997i
\(238\) 0 0
\(239\) −1794.90 3108.86i −0.485784 0.841403i 0.514082 0.857741i \(-0.328133\pi\)
−0.999867 + 0.0163378i \(0.994799\pi\)
\(240\) 0 0
\(241\) 1950.32 3378.05i 0.521290 0.902900i −0.478404 0.878140i \(-0.658784\pi\)
0.999693 0.0247604i \(-0.00788228\pi\)
\(242\) 0 0
\(243\) 2580.89 + 2772.71i 0.681333 + 0.731974i
\(244\) 0 0
\(245\) −655.828 + 1135.93i −0.171018 + 0.296211i
\(246\) 0 0
\(247\) 2242.17 + 3883.55i 0.577594 + 1.00042i
\(248\) 0 0
\(249\) −2205.91 3450.67i −0.561421 0.878222i
\(250\) 0 0
\(251\) −5079.37 −1.27732 −0.638659 0.769490i \(-0.720511\pi\)
−0.638659 + 0.769490i \(0.720511\pi\)
\(252\) 0 0
\(253\) 6109.65 1.51822
\(254\) 0 0
\(255\) 2211.35 100.014i 0.543060 0.0245612i
\(256\) 0 0
\(257\) −1573.68 2725.69i −0.381959 0.661572i 0.609383 0.792876i \(-0.291417\pi\)
−0.991342 + 0.131304i \(0.958084\pi\)
\(258\) 0 0
\(259\) −4842.11 + 8386.78i −1.16168 + 2.01208i
\(260\) 0 0
\(261\) 4282.23 388.142i 1.01557 0.0920514i
\(262\) 0 0
\(263\) −148.631 + 257.437i −0.0348479 + 0.0603583i −0.882923 0.469517i \(-0.844428\pi\)
0.848075 + 0.529875i \(0.177761\pi\)
\(264\) 0 0
\(265\) −1728.75 2994.28i −0.400740 0.694102i
\(266\) 0 0
\(267\) 2677.60 5163.32i 0.613733 1.18348i
\(268\) 0 0
\(269\) −98.5534 −0.0223379 −0.0111690 0.999938i \(-0.503555\pi\)
−0.0111690 + 0.999938i \(0.503555\pi\)
\(270\) 0 0
\(271\) 2602.14 0.583280 0.291640 0.956528i \(-0.405799\pi\)
0.291640 + 0.956528i \(0.405799\pi\)
\(272\) 0 0
\(273\) 3510.78 6769.97i 0.778323 1.50087i
\(274\) 0 0
\(275\) 782.846 + 1355.93i 0.171663 + 0.297330i
\(276\) 0 0
\(277\) −3184.32 + 5515.40i −0.690712 + 1.19635i 0.280893 + 0.959739i \(0.409369\pi\)
−0.971605 + 0.236609i \(0.923964\pi\)
\(278\) 0 0
\(279\) −3610.03 + 7805.37i −0.774649 + 1.67489i
\(280\) 0 0
\(281\) −937.780 + 1624.28i −0.199086 + 0.344828i −0.948232 0.317577i \(-0.897131\pi\)
0.749146 + 0.662405i \(0.230464\pi\)
\(282\) 0 0
\(283\) 1034.85 + 1792.41i 0.217369 + 0.376494i 0.954003 0.299798i \(-0.0969192\pi\)
−0.736634 + 0.676292i \(0.763586\pi\)
\(284\) 0 0
\(285\) 1951.10 88.2433i 0.405520 0.0183406i
\(286\) 0 0
\(287\) 2093.30 0.430534
\(288\) 0 0
\(289\) 2346.39 0.477588
\(290\) 0 0
\(291\) 3352.05 + 5243.56i 0.675260 + 1.05630i
\(292\) 0 0
\(293\) 1144.25 + 1981.90i 0.228149 + 0.395166i 0.957260 0.289230i \(-0.0933993\pi\)
−0.729111 + 0.684396i \(0.760066\pi\)
\(294\) 0 0
\(295\) −708.796 + 1227.67i −0.139891 + 0.242298i
\(296\) 0 0
\(297\) −3324.31 + 8133.28i −0.649481 + 1.58903i
\(298\) 0 0
\(299\) 2909.69 5039.73i 0.562782 0.974767i
\(300\) 0 0
\(301\) 501.462 + 868.558i 0.0960259 + 0.166322i
\(302\) 0 0
\(303\) 3966.81 + 6205.22i 0.752104 + 1.17650i
\(304\) 0 0
\(305\) −2160.78 −0.405659
\(306\) 0 0
\(307\) −8234.22 −1.53079 −0.765394 0.643563i \(-0.777456\pi\)
−0.765394 + 0.643563i \(0.777456\pi\)
\(308\) 0 0
\(309\) −2155.73 + 97.4980i −0.396877 + 0.0179497i
\(310\) 0 0
\(311\) −2978.83 5159.49i −0.543132 0.940732i −0.998722 0.0505426i \(-0.983905\pi\)
0.455590 0.890190i \(-0.349428\pi\)
\(312\) 0 0
\(313\) −2566.33 + 4445.01i −0.463442 + 0.802705i −0.999130 0.0417112i \(-0.986719\pi\)
0.535688 + 0.844416i \(0.320052\pi\)
\(314\) 0 0
\(315\) −1913.62 2714.82i −0.342286 0.485596i
\(316\) 0 0
\(317\) 3842.89 6656.08i 0.680878 1.17931i −0.293836 0.955856i \(-0.594932\pi\)
0.974713 0.223459i \(-0.0717348\pi\)
\(318\) 0 0
\(319\) 4986.77 + 8637.33i 0.875252 + 1.51598i
\(320\) 0 0
\(321\) 1832.93 3534.50i 0.318704 0.614569i
\(322\) 0 0
\(323\) 6405.03 1.10336
\(324\) 0 0
\(325\) 1491.31 0.254532
\(326\) 0 0
\(327\) 835.356 1610.85i 0.141270 0.272416i
\(328\) 0 0
\(329\) 1110.73 + 1923.85i 0.186130 + 0.322386i
\(330\) 0 0
\(331\) 5790.60 10029.6i 0.961571 1.66549i 0.243013 0.970023i \(-0.421864\pi\)
0.718558 0.695467i \(-0.244803\pi\)
\(332\) 0 0
\(333\) −6122.89 8686.45i −1.00760 1.42947i
\(334\) 0 0
\(335\) −770.901 + 1335.24i −0.125728 + 0.217767i
\(336\) 0 0
\(337\) −3339.65 5784.44i −0.539828 0.935010i −0.998913 0.0466176i \(-0.985156\pi\)
0.459084 0.888393i \(-0.348178\pi\)
\(338\) 0 0
\(339\) 5813.43 262.927i 0.931393 0.0421246i
\(340\) 0 0
\(341\) −19947.6 −3.16780
\(342\) 0 0
\(343\) −1984.73 −0.312436
\(344\) 0 0
\(345\) −1365.16 2135.49i −0.213036 0.333249i
\(346\) 0 0
\(347\) −2550.12 4416.94i −0.394518 0.683325i 0.598522 0.801107i \(-0.295755\pi\)
−0.993039 + 0.117782i \(0.962422\pi\)
\(348\) 0 0
\(349\) 1196.19 2071.86i 0.183469 0.317778i −0.759591 0.650402i \(-0.774601\pi\)
0.943060 + 0.332624i \(0.107934\pi\)
\(350\) 0 0
\(351\) 5125.80 + 6615.59i 0.779472 + 1.00602i
\(352\) 0 0
\(353\) −1879.20 + 3254.86i −0.283341 + 0.490762i −0.972206 0.234129i \(-0.924776\pi\)
0.688864 + 0.724890i \(0.258110\pi\)
\(354\) 0 0
\(355\) −756.687 1310.62i −0.113129 0.195945i
\(356\) 0 0
\(357\) −5866.90 9177.50i −0.869775 1.36057i
\(358\) 0 0
\(359\) 796.747 0.117133 0.0585664 0.998284i \(-0.481347\pi\)
0.0585664 + 0.998284i \(0.481347\pi\)
\(360\) 0 0
\(361\) −1207.77 −0.176086
\(362\) 0 0
\(363\) −13450.7 + 608.340i −1.94484 + 0.0879602i
\(364\) 0 0
\(365\) 1143.91 + 1981.31i 0.164041 + 0.284127i
\(366\) 0 0
\(367\) 5648.53 9783.54i 0.803408 1.39154i −0.113952 0.993486i \(-0.536351\pi\)
0.917360 0.398058i \(-0.130316\pi\)
\(368\) 0 0
\(369\) −964.322 + 2084.99i −0.136045 + 0.294147i
\(370\) 0 0
\(371\) −8506.63 + 14733.9i −1.19041 + 2.06185i
\(372\) 0 0
\(373\) −4976.58 8619.69i −0.690825 1.19654i −0.971568 0.236761i \(-0.923914\pi\)
0.280743 0.959783i \(-0.409419\pi\)
\(374\) 0 0
\(375\) 299.013 576.599i 0.0411760 0.0794011i
\(376\) 0 0
\(377\) 9499.68 1.29777
\(378\) 0 0
\(379\) −5649.80 −0.765727 −0.382864 0.923805i \(-0.625062\pi\)
−0.382864 + 0.923805i \(0.625062\pi\)
\(380\) 0 0
\(381\) −2085.08 + 4020.73i −0.280372 + 0.540652i
\(382\) 0 0
\(383\) 259.482 + 449.436i 0.0346186 + 0.0599611i 0.882816 0.469720i \(-0.155645\pi\)
−0.848197 + 0.529681i \(0.822312\pi\)
\(384\) 0 0
\(385\) 3852.15 6672.12i 0.509932 0.883227i
\(386\) 0 0
\(387\) −1096.12 + 99.3529i −0.143977 + 0.0130501i
\(388\) 0 0
\(389\) −1161.52 + 2011.81i −0.151391 + 0.262218i −0.931739 0.363128i \(-0.881709\pi\)
0.780348 + 0.625346i \(0.215042\pi\)
\(390\) 0 0
\(391\) −4155.95 7198.32i −0.537533 0.931035i
\(392\) 0 0
\(393\) 627.911 28.3988i 0.0805952 0.00364512i
\(394\) 0 0
\(395\) −4208.48 −0.536080
\(396\) 0 0
\(397\) 4598.47 0.581336 0.290668 0.956824i \(-0.406122\pi\)
0.290668 + 0.956824i \(0.406122\pi\)
\(398\) 0 0
\(399\) −5176.43 8097.40i −0.649488 1.01598i
\(400\) 0 0
\(401\) 4714.52 + 8165.78i 0.587112 + 1.01691i 0.994609 + 0.103701i \(0.0330684\pi\)
−0.407497 + 0.913207i \(0.633598\pi\)
\(402\) 0 0
\(403\) −9499.92 + 16454.3i −1.17426 + 2.03387i
\(404\) 0 0
\(405\) 3585.60 655.384i 0.439925 0.0804106i
\(406\) 0 0
\(407\) 12325.5 21348.4i 1.50111 2.60000i
\(408\) 0 0
\(409\) −2982.30 5165.49i −0.360551 0.624492i 0.627501 0.778616i \(-0.284078\pi\)
−0.988052 + 0.154124i \(0.950745\pi\)
\(410\) 0 0
\(411\) −1272.60 1990.70i −0.152731 0.238915i
\(412\) 0 0
\(413\) 6975.54 0.831099
\(414\) 0 0
\(415\) −3940.90 −0.466147
\(416\) 0 0
\(417\) −12149.8 + 549.503i −1.42680 + 0.0645306i
\(418\) 0 0
\(419\) 4974.57 + 8616.21i 0.580009 + 1.00460i 0.995478 + 0.0949970i \(0.0302842\pi\)
−0.415469 + 0.909607i \(0.636383\pi\)
\(420\) 0 0
\(421\) 1596.08 2764.50i 0.184771 0.320032i −0.758729 0.651407i \(-0.774179\pi\)
0.943499 + 0.331375i \(0.107512\pi\)
\(422\) 0 0
\(423\) −2427.90 + 220.066i −0.279074 + 0.0252954i
\(424\) 0 0
\(425\) 1065.03 1844.68i 0.121556 0.210541i
\(426\) 0 0
\(427\) 5316.27 + 9208.05i 0.602512 + 1.04358i
\(428\) 0 0
\(429\) −8936.63 + 17232.8i −1.00574 + 1.93942i
\(430\) 0 0
\(431\) 8301.53 0.927774 0.463887 0.885894i \(-0.346454\pi\)
0.463887 + 0.885894i \(0.346454\pi\)
\(432\) 0 0
\(433\) 4712.24 0.522993 0.261496 0.965204i \(-0.415784\pi\)
0.261496 + 0.965204i \(0.415784\pi\)
\(434\) 0 0
\(435\) 1904.73 3672.96i 0.209942 0.404839i
\(436\) 0 0
\(437\) −3666.84 6351.15i −0.401393 0.695232i
\(438\) 0 0
\(439\) −1316.94 + 2281.02i −0.143176 + 0.247988i −0.928691 0.370854i \(-0.879065\pi\)
0.785515 + 0.618843i \(0.212398\pi\)
\(440\) 0 0
\(441\) −2973.29 + 6428.65i −0.321055 + 0.694164i
\(442\) 0 0
\(443\) −4670.68 + 8089.86i −0.500928 + 0.867632i 0.499072 + 0.866561i \(0.333674\pi\)
−0.999999 + 0.00107135i \(0.999659\pi\)
\(444\) 0 0
\(445\) −2798.37 4846.93i −0.298103 0.516329i
\(446\) 0 0
\(447\) −11255.7 + 509.065i −1.19100 + 0.0538657i
\(448\) 0 0
\(449\) 16365.3 1.72010 0.860051 0.510208i \(-0.170432\pi\)
0.860051 + 0.510208i \(0.170432\pi\)
\(450\) 0 0
\(451\) −5328.45 −0.556334
\(452\) 0 0
\(453\) 7525.87 + 11772.6i 0.780565 + 1.22102i
\(454\) 0 0
\(455\) −3669.13 6355.12i −0.378047 0.654797i
\(456\) 0 0
\(457\) −5330.73 + 9233.10i −0.545648 + 0.945090i 0.452918 + 0.891552i \(0.350383\pi\)
−0.998566 + 0.0535381i \(0.982950\pi\)
\(458\) 0 0
\(459\) 11843.8 1615.82i 1.20440 0.164313i
\(460\) 0 0
\(461\) −1172.45 + 2030.74i −0.118452 + 0.205164i −0.919154 0.393898i \(-0.871126\pi\)
0.800703 + 0.599062i \(0.204460\pi\)
\(462\) 0 0
\(463\) −1864.86 3230.04i −0.187187 0.324217i 0.757124 0.653271i \(-0.226604\pi\)
−0.944311 + 0.329054i \(0.893270\pi\)
\(464\) 0 0
\(465\) 4457.14 + 6972.22i 0.444505 + 0.695331i
\(466\) 0 0
\(467\) −4100.10 −0.406274 −0.203137 0.979150i \(-0.565114\pi\)
−0.203137 + 0.979150i \(0.565114\pi\)
\(468\) 0 0
\(469\) 7586.74 0.746957
\(470\) 0 0
\(471\) 14100.6 637.734i 1.37945 0.0623890i
\(472\) 0 0
\(473\) −1276.46 2210.90i −0.124084 0.214920i
\(474\) 0 0
\(475\) 939.683 1627.58i 0.0907697 0.157218i
\(476\) 0 0
\(477\) −10756.7 15260.4i −1.03253 1.46483i
\(478\) 0 0
\(479\) 2658.24 4604.21i 0.253566 0.439190i −0.710939 0.703254i \(-0.751730\pi\)
0.964505 + 0.264064i \(0.0850631\pi\)
\(480\) 0 0
\(481\) −11739.9 20334.1i −1.11288 1.92756i
\(482\) 0 0
\(483\) −5741.53 + 11071.6i −0.540887 + 1.04301i
\(484\) 0 0
\(485\) 5988.50 0.560668
\(486\) 0 0
\(487\) 3958.43 0.368324 0.184162 0.982896i \(-0.441043\pi\)
0.184162 + 0.982896i \(0.441043\pi\)
\(488\) 0 0
\(489\) 691.378 1333.21i 0.0639370 0.123292i
\(490\) 0 0
\(491\) 2025.85 + 3508.88i 0.186203 + 0.322512i 0.943981 0.329999i \(-0.107049\pi\)
−0.757778 + 0.652512i \(0.773715\pi\)
\(492\) 0 0
\(493\) 6784.26 11750.7i 0.619772 1.07348i
\(494\) 0 0
\(495\) 4871.07 + 6910.52i 0.442300 + 0.627484i
\(496\) 0 0
\(497\) −3723.42 + 6449.16i −0.336053 + 0.582061i
\(498\) 0 0
\(499\) 4551.45 + 7883.35i 0.408319 + 0.707229i 0.994702 0.102805i \(-0.0327818\pi\)
−0.586383 + 0.810034i \(0.699449\pi\)
\(500\) 0 0
\(501\) 1861.22 84.1784i 0.165975 0.00750661i
\(502\) 0 0
\(503\) 4980.47 0.441487 0.220744 0.975332i \(-0.429152\pi\)
0.220744 + 0.975332i \(0.429152\pi\)
\(504\) 0 0
\(505\) 7086.79 0.624471
\(506\) 0 0
\(507\) 3810.17 + 5960.18i 0.333759 + 0.522093i
\(508\) 0 0
\(509\) 8192.39 + 14189.6i 0.713402 + 1.23565i 0.963573 + 0.267446i \(0.0861798\pi\)
−0.250171 + 0.968202i \(0.580487\pi\)
\(510\) 0 0
\(511\) 5628.83 9749.41i 0.487289 0.844009i
\(512\) 0 0
\(513\) 10449.9 1425.65i 0.899366 0.122698i
\(514\) 0 0
\(515\) −1038.23 + 1798.27i −0.0888351 + 0.153867i
\(516\) 0 0
\(517\) −2827.35 4897.12i −0.240516 0.416586i
\(518\) 0 0
\(519\) −3779.24 5911.81i −0.319635 0.499999i
\(520\) 0 0
\(521\) 4814.03 0.404811 0.202406 0.979302i \(-0.435124\pi\)
0.202406 + 0.979302i \(0.435124\pi\)
\(522\) 0 0
\(523\) −815.794 −0.0682069 −0.0341034 0.999418i \(-0.510858\pi\)
−0.0341034 + 0.999418i \(0.510858\pi\)
\(524\) 0 0
\(525\) −3192.82 + 144.403i −0.265421 + 0.0120043i
\(526\) 0 0
\(527\) 13568.9 + 23502.0i 1.12157 + 1.94262i
\(528\) 0 0
\(529\) 1325.00 2294.96i 0.108901 0.188622i
\(530\) 0 0
\(531\) −3213.43 + 6947.87i −0.262620 + 0.567819i
\(532\) 0 0
\(533\) −2537.64 + 4395.33i −0.206224 + 0.357191i
\(534\) 0 0
\(535\) −1915.60 3317.92i −0.154801 0.268123i
\(536\) 0 0
\(537\) 2852.08 5499.77i 0.229192 0.441960i
\(538\) 0 0
\(539\) −16429.2 −1.31290
\(540\) 0 0
\(541\) 3305.78 0.262711 0.131355 0.991335i \(-0.458067\pi\)
0.131355 + 0.991335i \(0.458067\pi\)
\(542\) 0 0
\(543\) −4271.40 + 8236.69i −0.337575 + 0.650958i
\(544\) 0 0
\(545\) −873.034 1512.14i −0.0686177 0.118849i
\(546\) 0 0
\(547\) 3392.16 5875.39i 0.265152 0.459257i −0.702451 0.711732i \(-0.747911\pi\)
0.967603 + 0.252475i \(0.0812445\pi\)
\(548\) 0 0
\(549\) −11620.6 + 1053.29i −0.903377 + 0.0818825i
\(550\) 0 0
\(551\) 5985.82 10367.7i 0.462803 0.801599i
\(552\) 0 0
\(553\) 10354.3 + 17934.2i 0.796221 + 1.37910i
\(554\) 0 0
\(555\) −10215.9 + 462.039i −0.781334 + 0.0353378i
\(556\) 0 0
\(557\) 5708.87 0.434278 0.217139 0.976141i \(-0.430328\pi\)
0.217139 + 0.976141i \(0.430328\pi\)
\(558\) 0 0
\(559\) −2431.64 −0.183984
\(560\) 0 0
\(561\) 14934.1 + 23361.2i 1.12392 + 1.75813i
\(562\) 0 0
\(563\) −11002.5 19056.9i −0.823625 1.42656i −0.902965 0.429713i \(-0.858615\pi\)
0.0793400 0.996848i \(-0.474719\pi\)
\(564\) 0 0
\(565\) 2799.85 4849.48i 0.208479 0.361096i
\(566\) 0 0
\(567\) −11614.7 13667.4i −0.860267 1.01230i
\(568\) 0 0
\(569\) 10965.5 18992.8i 0.807906 1.39933i −0.106406 0.994323i \(-0.533934\pi\)
0.914312 0.405011i \(-0.132732\pi\)
\(570\) 0 0
\(571\) −4986.51 8636.89i −0.365462 0.632999i 0.623388 0.781913i \(-0.285756\pi\)
−0.988850 + 0.148913i \(0.952422\pi\)
\(572\) 0 0
\(573\) −4402.00 6885.97i −0.320936 0.502034i
\(574\) 0 0
\(575\) −2438.88 −0.176884
\(576\) 0 0
\(577\) −2721.94 −0.196388 −0.0981941 0.995167i \(-0.531307\pi\)
−0.0981941 + 0.995167i \(0.531307\pi\)
\(578\) 0 0
\(579\) −1547.28 + 69.9797i −0.111058 + 0.00502289i
\(580\) 0 0
\(581\) 9695.98 + 16793.9i 0.692353 + 1.19919i
\(582\) 0 0
\(583\) 21653.5 37504.9i 1.53824 2.66431i
\(584\) 0 0
\(585\) 8020.17 726.951i 0.566826 0.0513773i
\(586\) 0 0
\(587\) 13084.5 22663.0i 0.920027 1.59353i 0.120656 0.992694i \(-0.461500\pi\)
0.799371 0.600838i \(-0.205166\pi\)
\(588\) 0 0
\(589\) 11971.9 + 20736.0i 0.837513 + 1.45062i
\(590\) 0 0
\(591\) 2109.82 4068.44i 0.146846 0.283169i
\(592\) 0 0
\(593\) 19409.1 1.34408 0.672038 0.740516i \(-0.265419\pi\)
0.672038 + 0.740516i \(0.265419\pi\)
\(594\) 0 0
\(595\) −10481.3 −0.722173
\(596\) 0 0
\(597\) 6333.49 12213.1i 0.434192 0.837269i
\(598\) 0 0
\(599\) 7756.16 + 13434.1i 0.529062 + 0.916363i 0.999426 + 0.0338898i \(0.0107895\pi\)
−0.470363 + 0.882473i \(0.655877\pi\)
\(600\) 0 0
\(601\) −11723.2 + 20305.2i −0.795675 + 1.37815i 0.126735 + 0.991937i \(0.459550\pi\)
−0.922410 + 0.386212i \(0.873783\pi\)
\(602\) 0 0
\(603\) −3494.99 + 7556.64i −0.236032 + 0.510332i
\(604\) 0 0
\(605\) −6478.07 + 11220.4i −0.435324 + 0.754003i
\(606\) 0 0
\(607\) 8365.68 + 14489.8i 0.559394 + 0.968899i 0.997547 + 0.0699988i \(0.0222995\pi\)
−0.438153 + 0.898901i \(0.644367\pi\)
\(608\) 0 0
\(609\) −20338.4 + 919.855i −1.35329 + 0.0612059i
\(610\) 0 0
\(611\) −5386.05 −0.356622
\(612\) 0 0
\(613\) −5457.03 −0.359555 −0.179777 0.983707i \(-0.557538\pi\)
−0.179777 + 0.983707i \(0.557538\pi\)
\(614\) 0 0
\(615\) 1190.60 + 1862.44i 0.0780646 + 0.122115i
\(616\) 0 0
\(617\) 2475.48 + 4287.66i 0.161522 + 0.279764i 0.935415 0.353552i \(-0.115026\pi\)
−0.773893 + 0.633317i \(0.781693\pi\)
\(618\) 0 0
\(619\) −3244.81 + 5620.17i −0.210694 + 0.364933i −0.951932 0.306309i \(-0.900906\pi\)
0.741238 + 0.671243i \(0.234239\pi\)
\(620\) 0 0
\(621\) −8382.72 10819.1i −0.541686 0.699124i
\(622\) 0 0
\(623\) −13769.9 + 23850.2i −0.885524 + 1.53377i
\(624\) 0 0
\(625\) −312.500 541.266i −0.0200000 0.0346410i
\(626\) 0 0
\(627\) 13176.5 + 20611.8i 0.839265 + 1.31285i
\(628\) 0 0
\(629\) −33536.5 −2.12590
\(630\) 0 0
\(631\) −16613.1 −1.04811 −0.524054 0.851685i \(-0.675581\pi\)
−0.524054 + 0.851685i \(0.675581\pi\)
\(632\) 0 0
\(633\) −19022.2 + 860.328i −1.19442 + 0.0540205i
\(634\) 0 0
\(635\) 2179.12 + 3774.35i 0.136182 + 0.235875i
\(636\) 0 0
\(637\) −7824.32 + 13552.1i −0.486673 + 0.842943i
\(638\) 0 0
\(639\) −4708.30 6679.60i −0.291483 0.413522i
\(640\) 0 0
\(641\) −9390.29 + 16264.5i −0.578618 + 1.00220i 0.417020 + 0.908897i \(0.363074\pi\)
−0.995638 + 0.0932982i \(0.970259\pi\)
\(642\) 0 0
\(643\) 5040.38 + 8730.20i 0.309134 + 0.535436i 0.978173 0.207791i \(-0.0666275\pi\)
−0.669039 + 0.743227i \(0.733294\pi\)
\(644\) 0 0
\(645\) −487.554 + 940.168i −0.0297634 + 0.0573939i
\(646\) 0 0
\(647\) 14010.0 0.851296 0.425648 0.904889i \(-0.360046\pi\)
0.425648 + 0.904889i \(0.360046\pi\)
\(648\) 0 0
\(649\) −17756.1 −1.07394
\(650\) 0 0
\(651\) 18745.7 36147.9i 1.12857 2.17627i
\(652\) 0 0
\(653\) −10833.4 18764.0i −0.649226 1.12449i −0.983308 0.181948i \(-0.941760\pi\)
0.334082 0.942544i \(-0.391574\pi\)
\(654\) 0 0
\(655\) 302.412 523.794i 0.0180401 0.0312463i
\(656\) 0 0
\(657\) 7117.69 + 10097.8i 0.422660 + 0.599622i
\(658\) 0 0
\(659\) 7697.74 13332.9i 0.455025 0.788126i −0.543665 0.839302i \(-0.682964\pi\)
0.998690 + 0.0511765i \(0.0162971\pi\)
\(660\) 0 0
\(661\) 9831.93 + 17029.4i 0.578544 + 1.00207i 0.995647 + 0.0932085i \(0.0297123\pi\)
−0.417102 + 0.908860i \(0.636954\pi\)
\(662\) 0 0
\(663\) 26382.4 1193.21i 1.54541 0.0698951i
\(664\) 0 0
\(665\) −9247.79 −0.539269
\(666\) 0 0
\(667\) −15535.8 −0.901870
\(668\) 0 0
\(669\) 11128.9 + 17408.8i 0.643151 + 1.00607i
\(670\) 0 0
\(671\) −13532.5 23438.9i −0.778562 1.34851i
\(672\) 0 0
\(673\) −571.113 + 989.197i −0.0327114 + 0.0566579i −0.881918 0.471403i \(-0.843748\pi\)
0.849206 + 0.528061i \(0.177081\pi\)
\(674\) 0 0
\(675\) 1327.01 3246.68i 0.0756692 0.185133i
\(676\) 0 0
\(677\) −10714.7 + 18558.3i −0.608269 + 1.05355i 0.383257 + 0.923642i \(0.374802\pi\)
−0.991526 + 0.129911i \(0.958531\pi\)
\(678\) 0 0
\(679\) −14733.8 25519.7i −0.832741 1.44235i
\(680\) 0 0
\(681\) 1241.37 + 1941.86i 0.0698525 + 0.109269i
\(682\) 0 0
\(683\) −246.980 −0.0138366 −0.00691832 0.999976i \(-0.502202\pi\)
−0.00691832 + 0.999976i \(0.502202\pi\)
\(684\) 0 0
\(685\) −2273.52 −0.126813
\(686\) 0 0
\(687\) 3612.65 163.391i 0.200628 0.00907388i
\(688\) 0 0
\(689\) −20624.7 35723.0i −1.14040 1.97524i
\(690\) 0 0
\(691\) 15118.0 26185.2i 0.832297 1.44158i −0.0639146 0.997955i \(-0.520359\pi\)
0.896212 0.443626i \(-0.146308\pi\)
\(692\) 0 0
\(693\) 17464.3 37760.1i 0.957306 2.06982i
\(694\) 0 0
\(695\) −5851.53 + 10135.1i −0.319369 + 0.553163i
\(696\) 0 0
\(697\) 3624.55 + 6277.91i 0.196972 + 0.341166i
\(698\) 0 0
\(699\) 3514.14 6776.45i 0.190153 0.366679i
\(700\) 0 0
\(701\) −30606.5 −1.64906 −0.824530 0.565818i \(-0.808560\pi\)
−0.824530 + 0.565818i \(0.808560\pi\)
\(702\) 0 0
\(703\) −29589.6 −1.58747
\(704\) 0 0
\(705\) −1079.93 + 2082.46i −0.0576913 + 0.111248i
\(706\) 0 0
\(707\) −17436.0 30200.0i −0.927506 1.60649i
\(708\) 0 0
\(709\) 6148.17 10648.9i 0.325669 0.564075i −0.655978 0.754780i \(-0.727744\pi\)
0.981648 + 0.190704i \(0.0610771\pi\)
\(710\) 0 0
\(711\) −22633.0 + 2051.46i −1.19382 + 0.108208i
\(712\) 0 0
\(713\) 15536.2 26909.4i 0.816036 1.41342i
\(714\) 0 0
\(715\) 9339.70 + 16176.8i 0.488511 + 0.846125i
\(716\) 0 0
\(717\) −18634.1 + 842.774i −0.970577 + 0.0438967i
\(718\) 0 0
\(719\) 32946.1 1.70888 0.854438 0.519553i \(-0.173902\pi\)
0.854438 + 0.519553i \(0.173902\pi\)
\(720\) 0 0
\(721\) 10217.7 0.527775
\(722\) 0 0
\(723\) −10916.8 17077.0i −0.561552 0.878426i
\(724\) 0 0
\(725\) −1990.64 3447.89i −0.101973 0.176623i
\(726\) 0 0
\(727\) −5714.65 + 9898.06i −0.291533 + 0.504950i −0.974172 0.225805i \(-0.927499\pi\)
0.682639 + 0.730755i \(0.260832\pi\)
\(728\) 0 0
\(729\) 18963.7 5272.46i 0.963455 0.267869i
\(730\) 0 0
\(731\) −1736.57 + 3007.82i −0.0878650 + 0.152187i
\(732\) 0 0
\(733\) 11461.8 + 19852.4i 0.577560 + 1.00036i 0.995758 + 0.0920074i \(0.0293284\pi\)
−0.418198 + 0.908356i \(0.637338\pi\)
\(734\) 0 0
\(735\) 3670.98 + 5742.46i 0.184226 + 0.288182i
\(736\) 0 0
\(737\) −19311.9 −0.965215
\(738\) 0 0
\(739\) −4769.73 −0.237426 −0.118713 0.992929i \(-0.537877\pi\)
−0.118713 + 0.992929i \(0.537877\pi\)
\(740\) 0 0
\(741\) 23277.5 1052.78i 1.15401 0.0521929i
\(742\) 0 0
\(743\) −7013.95 12148.5i −0.346322 0.599847i 0.639271 0.768981i \(-0.279236\pi\)
−0.985593 + 0.169135i \(0.945903\pi\)
\(744\) 0 0
\(745\) −5420.92 + 9389.31i −0.266587 + 0.461742i
\(746\) 0 0
\(747\) −21194.0 + 1921.03i −1.03808 + 0.0940921i
\(748\) 0 0
\(749\) −9426.08 + 16326.5i −0.459842 + 0.796470i
\(750\) 0 0
\(751\) 14096.6 + 24415.9i 0.684941 + 1.18635i 0.973455 + 0.228877i \(0.0735052\pi\)
−0.288515 + 0.957475i \(0.593161\pi\)
\(752\) 0 0
\(753\) −12150.4 + 23430.1i −0.588028 + 1.13392i
\(754\) 0 0
\(755\) 13445.1 0.648102
\(756\) 0 0
\(757\) −13350.5 −0.640992 −0.320496 0.947250i \(-0.603850\pi\)
−0.320496 + 0.947250i \(0.603850\pi\)
\(758\) 0 0
\(759\) 14614.9 28182.5i 0.698931 1.34778i
\(760\) 0 0
\(761\) −242.926 420.759i −0.0115717 0.0200427i 0.860182 0.509988i \(-0.170350\pi\)
−0.871753 + 0.489945i \(0.837017\pi\)
\(762\) 0 0
\(763\) −4295.93 + 7440.78i −0.203831 + 0.353046i
\(764\) 0 0
\(765\) 4828.45 10439.8i 0.228200 0.493399i
\(766\) 0 0
\(767\) −8456.26 + 14646.7i −0.398094 + 0.689518i
\(768\) 0 0
\(769\) −7067.93 12242.0i −0.331438 0.574068i 0.651356 0.758773i \(-0.274201\pi\)
−0.982794 + 0.184704i \(0.940867\pi\)
\(770\) 0 0
\(771\) −16337.4 + 738.902i −0.763137 + 0.0345148i
\(772\) 0 0
\(773\) 25340.8 1.17910 0.589552 0.807731i \(-0.299304\pi\)
0.589552 + 0.807731i \(0.299304\pi\)
\(774\) 0 0
\(775\) 7962.76 0.369072
\(776\) 0 0
\(777\) 27103.6 + 42397.7i 1.25140 + 1.95754i
\(778\) 0 0
\(779\) 3197.98 + 5539.06i 0.147085 + 0.254759i
\(780\) 0 0
\(781\) 9477.91 16416.2i 0.434246 0.752136i
\(782\) 0 0
\(783\) 8453.12 20681.5i 0.385811 0.943928i
\(784\) 0 0
\(785\) 6791.08 11762.5i 0.308770 0.534805i
\(786\) 0 0
\(787\) 11100.4 + 19226.5i 0.502780 + 0.870840i 0.999995 + 0.00321296i \(0.00102272\pi\)
−0.497215 + 0.867627i \(0.665644\pi\)
\(788\) 0 0
\(789\) 831.959 + 1301.42i 0.0375393 + 0.0587222i
\(790\) 0 0
\(791\) −27554.4 −1.23859
\(792\) 0 0
\(793\) −25779.1 −1.15440
\(794\) 0 0
\(795\) −17947.3 + 811.712i −0.800661 + 0.0362119i
\(796\) 0 0
\(797\) 15935.9 + 27601.8i 0.708255 + 1.22673i 0.965504 + 0.260389i \(0.0838507\pi\)
−0.257249 + 0.966345i \(0.582816\pi\)
\(798\) 0 0
\(799\) −3846.48 + 6662.30i −0.170311 + 0.294988i
\(800\) 0 0
\(801\) −17412.2 24702.4i −0.768077 1.08966i
\(802\) 0 0
\(803\) −14328.1 + 24816.9i −0.629672 + 1.09062i
\(804\) 0 0
\(805\) 6000.49 + 10393.2i 0.262720 + 0.455044i
\(806\) 0 0
\(807\) −235.750 + 454.606i −0.0102835 + 0.0198301i
\(808\) 0 0
\(809\) −29707.7 −1.29106 −0.645529 0.763736i \(-0.723363\pi\)
−0.645529 + 0.763736i \(0.723363\pi\)
\(810\) 0 0
\(811\) 34903.2 1.51124 0.755621 0.655009i \(-0.227335\pi\)
0.755621 + 0.655009i \(0.227335\pi\)
\(812\) 0 0
\(813\) 6224.60 12003.1i 0.268520 0.517796i
\(814\) 0 0
\(815\) −722.562 1251.51i −0.0310555 0.0537897i
\(816\) 0 0
\(817\) −1532.19 + 2653.83i −0.0656115 + 0.113642i
\(818\) 0 0
\(819\) −22830.3 32389.0i −0.974059 1.38188i
\(820\) 0 0
\(821\) 21082.2 36515.4i 0.896191 1.55225i 0.0638668 0.997958i \(-0.479657\pi\)
0.832324 0.554289i \(-0.187010\pi\)
\(822\) 0 0
\(823\) 2126.50 + 3683.21i 0.0900671 + 0.156001i 0.907539 0.419967i \(-0.137959\pi\)
−0.817472 + 0.575968i \(0.804625\pi\)
\(824\) 0 0
\(825\) 8127.27 367.576i 0.342976 0.0155119i
\(826\) 0 0
\(827\) −31806.5 −1.33739 −0.668694 0.743538i \(-0.733146\pi\)
−0.668694 + 0.743538i \(0.733146\pi\)
\(828\) 0 0
\(829\) 32483.0 1.36089 0.680447 0.732797i \(-0.261785\pi\)
0.680447 + 0.732797i \(0.261785\pi\)
\(830\) 0 0
\(831\) 17824.2 + 27882.0i 0.744059 + 1.16392i
\(832\) 0 0
\(833\) 11175.6 + 19356.7i 0.464839 + 0.805125i
\(834\) 0 0
\(835\) 896.396 1552.60i 0.0371510 0.0643474i
\(836\) 0 0
\(837\) 27368.9 + 35323.6i 1.13024 + 1.45874i
\(838\) 0 0
\(839\) −9372.04 + 16232.8i −0.385648 + 0.667962i −0.991859 0.127342i \(-0.959355\pi\)
0.606211 + 0.795304i \(0.292689\pi\)
\(840\) 0 0
\(841\) −485.957 841.701i −0.0199252 0.0345115i
\(842\) 0 0
\(843\) 5249.20 + 8211.24i 0.214463 + 0.335480i
\(844\) 0 0
\(845\) 6806.94 0.277119
\(846\) 0 0
\(847\) 63753.2 2.58629
\(848\) 0 0
\(849\) 10743.5 485.901i 0.434294 0.0196420i
\(850\) 0 0
\(851\) 19199.4 + 33254.4i 0.773382 + 1.33954i
\(852\) 0 0
\(853\) −15064.1 + 26091.7i −0.604670 + 1.04732i 0.387434 + 0.921898i \(0.373362\pi\)
−0.992104 + 0.125421i \(0.959972\pi\)
\(854\) 0 0
\(855\) 4260.19 9211.10i 0.170404 0.368436i
\(856\) 0 0
\(857\) 9199.23 15933.5i 0.366674 0.635098i −0.622369 0.782724i \(-0.713830\pi\)
0.989043 + 0.147626i \(0.0471631\pi\)
\(858\) 0 0
\(859\) 9130.70 + 15814.8i 0.362672 + 0.628166i 0.988400 0.151875i \(-0.0485312\pi\)
−0.625728 + 0.780042i \(0.715198\pi\)
\(860\) 0 0
\(861\) 5007.39 9655.93i 0.198201 0.382199i
\(862\) 0 0
\(863\) −44247.0 −1.74529 −0.872645 0.488355i \(-0.837597\pi\)
−0.872645 + 0.488355i \(0.837597\pi\)
\(864\) 0 0
\(865\) −6751.69 −0.265392
\(866\) 0 0
\(867\) 5612.82 10823.4i 0.219863 0.423970i
\(868\) 0 0
\(869\) −26356.7 45651.2i −1.02887 1.78206i
\(870\) 0 0
\(871\) −9197.19 + 15930.0i −0.357790 + 0.619710i
\(872\) 0 0
\(873\) 32205.9 2919.15i 1.24857 0.113171i
\(874\) 0 0
\(875\) −1537.72 + 2663.40i −0.0594107 + 0.102902i
\(876\) 0 0
\(877\) 10906.9 + 18891.3i 0.419954 + 0.727381i 0.995934 0.0900820i \(-0.0287129\pi\)
−0.575980 + 0.817463i \(0.695380\pi\)
\(878\) 0 0
\(879\) 11879.2 537.268i 0.455832 0.0206161i
\(880\) 0 0
\(881\) −10425.7 −0.398694 −0.199347 0.979929i \(-0.563882\pi\)
−0.199347 + 0.979929i \(0.563882\pi\)
\(882\) 0 0
\(883\) 3527.13 0.134425 0.0672125 0.997739i \(-0.478589\pi\)
0.0672125 + 0.997739i \(0.478589\pi\)
\(884\) 0 0
\(885\) 3967.47 + 6206.25i 0.150695 + 0.235730i
\(886\) 0 0
\(887\) 14373.4 + 24895.4i 0.544093 + 0.942397i 0.998663 + 0.0516861i \(0.0164595\pi\)
−0.454570 + 0.890711i \(0.650207\pi\)
\(888\) 0 0
\(889\) 10722.8 18572.4i 0.404535 0.700675i
\(890\) 0 0
\(891\) 29565.0 + 34790.0i 1.11163 + 1.30809i
\(892\) 0 0
\(893\) −3393.79 + 5878.21i −0.127177 + 0.220277i
\(894\) 0 0
\(895\) −2980.72 5162.76i −0.111323 0.192818i
\(896\) 0 0
\(897\) −16286.9 25477.4i −0.606248 0.948344i
\(898\) 0 0
\(899\) 50723.1 1.88177
\(900\) 0 0
\(901\) −58917.1 −2.17848
\(902\) 0 0
\(903\) 5206.03 235.455i 0.191856 0.00867715i
\(904\) 0 0
\(905\) 4464.05 + 7731.97i 0.163967 + 0.283999i
\(906\) 0 0
\(907\) 16153.3 27978.3i 0.591357 1.02426i −0.402693 0.915335i \(-0.631926\pi\)
0.994050 0.108925i \(-0.0347409\pi\)
\(908\) 0 0
\(909\) 38112.4 3454.52i 1.39066 0.126050i
\(910\) 0 0
\(911\) 23693.5 41038.3i 0.861691 1.49249i −0.00860466 0.999963i \(-0.502739\pi\)
0.870296 0.492530i \(-0.163928\pi\)
\(912\) 0 0
\(913\) −24680.9 42748.7i −0.894655 1.54959i
\(914\) 0 0
\(915\) −5168.82 + 9967.23i −0.186750 + 0.360116i
\(916\) 0 0
\(917\) −2976.16 −0.107177
\(918\) 0 0
\(919\) −25628.3 −0.919914 −0.459957 0.887941i \(-0.652135\pi\)
−0.459957 + 0.887941i \(0.652135\pi\)
\(920\) 0 0
\(921\) −19697.1 + 37982.7i −0.704715 + 1.35893i
\(922\) 0 0
\(923\) −9027.61 15636.3i −0.321936 0.557610i
\(924\) 0 0
\(925\) −4920.15 + 8521.95i −0.174890 + 0.302919i
\(926\) 0 0
\(927\) −4706.99 + 10177.1i −0.166772 + 0.360583i
\(928\) 0 0
\(929\) 18272.3 31648.6i 0.645312 1.11771i −0.338917 0.940816i \(-0.610061\pi\)
0.984229 0.176897i \(-0.0566060\pi\)
\(930\) 0 0
\(931\) 9860.33 + 17078.6i 0.347110 + 0.601212i
\(932\) 0 0
\(933\) −30925.3 + 1398.67i −1.08516 + 0.0490788i
\(934\) 0 0
\(935\) 26680.0 0.933188
\(936\) 0 0
\(937\) −46590.4 −1.62438 −0.812189 0.583394i \(-0.801724\pi\)
−0.812189 + 0.583394i \(0.801724\pi\)
\(938\) 0 0
\(939\) 14365.0 + 22470.9i 0.499236 + 0.780946i
\(940\) 0 0
\(941\) 6750.15 + 11691.6i 0.233846 + 0.405032i 0.958937 0.283621i \(-0.0915356\pi\)
−0.725091 + 0.688653i \(0.758202\pi\)
\(942\) 0 0
\(943\) 4150.06 7188.11i 0.143313 0.248226i
\(944\) 0 0
\(945\) −17100.5 + 2332.97i −0.588654 + 0.0803084i
\(946\) 0 0
\(947\) −17927.8 + 31051.8i −0.615179 + 1.06552i 0.375174 + 0.926955i \(0.377583\pi\)
−0.990353 + 0.138567i \(0.955750\pi\)
\(948\) 0 0
\(949\) 13647.3 + 23637.9i 0.466819 + 0.808554i
\(950\) 0 0
\(951\) −21510.5 33648.5i −0.733465 1.14735i
\(952\) 0 0
\(953\) 44408.4 1.50948 0.754738 0.656027i \(-0.227764\pi\)
0.754738 + 0.656027i \(0.227764\pi\)
\(954\) 0 0
\(955\) −7864.25 −0.266473
\(956\) 0 0
\(957\) 51771.1 2341.47i 1.74872 0.0790900i
\(958\) 0 0
\(959\) 5593.65 + 9688.48i 0.188351 + 0.326233i
\(960\) 0 0
\(961\) −35828.9 + 62057.5i −1.20268 + 2.08309i
\(962\) 0 0
\(963\) −11919.4 16909.8i −0.398853 0.565848i
\(964\) 0 0
\(965\) −745.197 + 1290.72i −0.0248588 + 0.0430567i
\(966\) 0 0
\(967\) 1812.84 + 3139.93i 0.0602865 + 0.104419i 0.894593 0.446881i \(-0.147465\pi\)
−0.834307 + 0.551300i \(0.814132\pi\)
\(968\) 0 0
\(969\) 15321.5 29545.1i 0.507945 0.979489i
\(970\) 0 0
\(971\) −7066.70 −0.233554 −0.116777 0.993158i \(-0.537256\pi\)
−0.116777 + 0.993158i \(0.537256\pi\)
\(972\) 0 0
\(973\) 57587.2 1.89739
\(974\) 0 0
\(975\) 3567.36 6879.08i 0.117176 0.225956i
\(976\) 0 0
\(977\) −6297.24 10907.1i −0.206209 0.357165i 0.744308 0.667836i \(-0.232779\pi\)
−0.950517 + 0.310671i \(0.899446\pi\)
\(978\) 0 0
\(979\) 35051.1 60710.4i 1.14427 1.98193i
\(980\) 0 0
\(981\) −5432.24 7706.65i −0.176797 0.250820i
\(982\) 0 0
\(983\) −8645.35 + 14974.2i −0.280513 + 0.485862i −0.971511 0.236994i \(-0.923838\pi\)
0.690998 + 0.722856i \(0.257171\pi\)
\(984\) 0 0
\(985\) −2204.98 3819.13i −0.0713263 0.123541i
\(986\) 0 0
\(987\) 11531.3 521.531i 0.371880 0.0168192i
\(988\) 0 0
\(989\) 3976.69 0.127858
\(990\) 0 0
\(991\) −355.437 −0.0113934 −0.00569669 0.999984i \(-0.501813\pi\)
−0.00569669 + 0.999984i \(0.501813\pi\)
\(992\) 0 0
\(993\) −32412.7 50702.7i −1.03584 1.62034i
\(994\) 0 0
\(995\) −6619.16 11464.7i −0.210896 0.365282i
\(996\) 0 0
\(997\) 9008.94 15603.9i 0.286175 0.495669i −0.686719 0.726923i \(-0.740950\pi\)
0.972893 + 0.231254i \(0.0742829\pi\)
\(998\) 0 0
\(999\) −54715.4 + 7464.66i −1.73285 + 0.236408i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 180.4.i.c.61.5 14
3.2 odd 2 540.4.i.c.181.2 14
9.2 odd 6 1620.4.a.k.1.6 7
9.4 even 3 inner 180.4.i.c.121.5 yes 14
9.5 odd 6 540.4.i.c.361.2 14
9.7 even 3 1620.4.a.l.1.6 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
180.4.i.c.61.5 14 1.1 even 1 trivial
180.4.i.c.121.5 yes 14 9.4 even 3 inner
540.4.i.c.181.2 14 3.2 odd 2
540.4.i.c.361.2 14 9.5 odd 6
1620.4.a.k.1.6 7 9.2 odd 6
1620.4.a.l.1.6 7 9.7 even 3