L(s) = 1 | + (0.207 + 0.978i)2-s + (0.809 + 0.587i)3-s + (−0.913 + 0.406i)4-s + (−0.406 − 0.913i)5-s + (−0.406 + 0.913i)6-s + (−0.866 + 0.5i)7-s + (−0.587 − 0.809i)8-s + (0.309 + 0.951i)9-s + (0.809 − 0.587i)10-s + (0.604 − 0.128i)11-s + (−0.978 − 0.207i)12-s + (−0.336 + 1.58i)13-s + (−0.669 − 0.743i)14-s + (0.207 − 0.978i)15-s + (0.669 − 0.743i)16-s + (−0.809 + 0.587i)17-s + ⋯ |
L(s) = 1 | + (0.207 + 0.978i)2-s + (0.809 + 0.587i)3-s + (−0.913 + 0.406i)4-s + (−0.406 − 0.913i)5-s + (−0.406 + 0.913i)6-s + (−0.866 + 0.5i)7-s + (−0.587 − 0.809i)8-s + (0.309 + 0.951i)9-s + (0.809 − 0.587i)10-s + (0.604 − 0.128i)11-s + (−0.978 − 0.207i)12-s + (−0.336 + 1.58i)13-s + (−0.669 − 0.743i)14-s + (0.207 − 0.978i)15-s + (0.669 − 0.743i)16-s + (−0.809 + 0.587i)17-s + ⋯ |
Λ(s)=(=(1800s/2ΓC(s)L(s)(−0.979−0.201i)Λ(1−s)
Λ(s)=(=(1800s/2ΓC(s)L(s)(−0.979−0.201i)Λ(1−s)
Degree: |
2 |
Conductor: |
1800
= 23⋅32⋅52
|
Sign: |
−0.979−0.201i
|
Analytic conductor: |
0.898317 |
Root analytic conductor: |
0.947795 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1800(571,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1800, ( :0), −0.979−0.201i)
|
Particular Values
L(21) |
≈ |
1.047661309 |
L(21) |
≈ |
1.047661309 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.207−0.978i)T |
| 3 | 1+(−0.809−0.587i)T |
| 5 | 1+(0.406+0.913i)T |
good | 7 | 1+(0.866−0.5i)T+(0.5−0.866i)T2 |
| 11 | 1+(−0.604+0.128i)T+(0.913−0.406i)T2 |
| 13 | 1+(0.336−1.58i)T+(−0.913−0.406i)T2 |
| 17 | 1+(0.809−0.587i)T+(0.309−0.951i)T2 |
| 19 | 1+(0.809−0.587i)T+(0.309−0.951i)T2 |
| 23 | 1+(0.743−0.669i)T+(0.104−0.994i)T2 |
| 29 | 1+(−0.614−0.0646i)T+(0.978+0.207i)T2 |
| 31 | 1+(−0.994+0.104i)T+(0.978−0.207i)T2 |
| 37 | 1+(0.809−0.587i)T2 |
| 41 | 1+(−1.58−0.336i)T+(0.913+0.406i)T2 |
| 43 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
| 47 | 1+(0.614+0.0646i)T+(0.978+0.207i)T2 |
| 53 | 1+(−0.951+1.30i)T+(−0.309−0.951i)T2 |
| 59 | 1+(0.913+0.406i)T2 |
| 61 | 1+(−0.207−0.978i)T+(−0.913+0.406i)T2 |
| 67 | 1+(0.169+1.60i)T+(−0.978+0.207i)T2 |
| 71 | 1+(−0.309−0.951i)T2 |
| 73 | 1+(−0.809−0.587i)T2 |
| 79 | 1+(0.614+0.0646i)T+(0.978+0.207i)T2 |
| 83 | 1+(−0.564−0.251i)T+(0.669+0.743i)T2 |
| 89 | 1+(−0.309+0.951i)T+(−0.809−0.587i)T2 |
| 97 | 1+(−0.978−0.207i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.503170520082510548853970251582, −8.810009667984859065319476163759, −8.524023452907433907597619345052, −7.57081672821671703803960974335, −6.59389886971813200037069872030, −5.93843669275691616154422410598, −4.70301509100674632861968531469, −4.20578577615222657163917852115, −3.51048013425426363447693155273, −2.02193224799647274025422948101,
0.65787479445534311836857715219, 2.45751851769454879973491021913, 2.86963483958751385997363460974, 3.78709737255910691061524252919, 4.53954607183980206653741083883, 6.13871269550395831840598914747, 6.67200840912887389296683816181, 7.62497057433924395507930582390, 8.377618318535007875934857708536, 9.213045177873701217670138299007