Properties

Label 1800.1.dg.a
Level $1800$
Weight $1$
Character orbit 1800.dg
Analytic conductor $0.898$
Analytic rank $0$
Dimension $16$
Projective image $A_{5}$
CM/RM no
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1800,1,Mod(211,1800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1800, base_ring=CyclotomicField(30))
 
chi = DirichletCharacter(H, H._module([15, 15, 10, 24]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1800.211");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1800 = 2^{3} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1800.dg (of order \(30\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.898317022739\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(2\) over \(\Q(\zeta_{30})\)
Coefficient field: \(\Q(\zeta_{60})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + x^{14} - x^{10} - x^{8} - x^{6} + x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(A_{5}\)
Projective field: Galois closure of 5.1.2025000000.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + \zeta_{60}^{29} q^{2} + \zeta_{60}^{18} q^{3} - \zeta_{60}^{28} q^{4} + \zeta_{60}^{13} q^{5} - \zeta_{60}^{17} q^{6} + \zeta_{60}^{5} q^{7} + \zeta_{60}^{27} q^{8} - \zeta_{60}^{6} q^{9} - \zeta_{60}^{12} q^{10} + \cdots + (\zeta_{60}^{26} + \zeta_{60}^{14}) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 4 q^{3} - 2 q^{4} - 4 q^{9} + 4 q^{10} + 6 q^{11} + 2 q^{12} - 2 q^{14} + 2 q^{16} - 4 q^{17} - 4 q^{19} - 2 q^{25} - 8 q^{26} + 4 q^{27} + 16 q^{30} + 4 q^{33} + 4 q^{35} - 2 q^{36} - 8 q^{40} + 4 q^{41}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1800\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(901\) \(1001\) \(1351\)
\(\chi(n)\) \(-\zeta_{60}^{18}\) \(-1\) \(-\zeta_{60}^{10}\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
211.1
0.406737 + 0.913545i
−0.406737 0.913545i
0.207912 + 0.978148i
−0.207912 0.978148i
0.207912 0.978148i
−0.207912 + 0.978148i
0.406737 0.913545i
−0.406737 + 0.913545i
0.743145 0.669131i
−0.743145 + 0.669131i
0.994522 0.104528i
−0.994522 + 0.104528i
0.994522 + 0.104528i
−0.994522 0.104528i
0.743145 + 0.669131i
−0.743145 0.669131i
−0.406737 + 0.913545i −0.309017 + 0.951057i −0.669131 0.743145i −0.743145 + 0.669131i −0.743145 0.669131i 0.866025 0.500000i 0.951057 0.309017i −0.809017 0.587785i −0.309017 0.951057i
211.2 0.406737 0.913545i −0.309017 + 0.951057i −0.669131 0.743145i 0.743145 0.669131i 0.743145 + 0.669131i −0.866025 + 0.500000i −0.951057 + 0.309017i −0.809017 0.587785i −0.309017 0.951057i
331.1 −0.207912 + 0.978148i 0.809017 0.587785i −0.913545 0.406737i 0.406737 0.913545i 0.406737 + 0.913545i 0.866025 + 0.500000i 0.587785 0.809017i 0.309017 0.951057i 0.809017 + 0.587785i
331.2 0.207912 0.978148i 0.809017 0.587785i −0.913545 0.406737i −0.406737 + 0.913545i −0.406737 0.913545i −0.866025 0.500000i −0.587785 + 0.809017i 0.309017 0.951057i 0.809017 + 0.587785i
571.1 −0.207912 0.978148i 0.809017 + 0.587785i −0.913545 + 0.406737i 0.406737 + 0.913545i 0.406737 0.913545i 0.866025 0.500000i 0.587785 + 0.809017i 0.309017 + 0.951057i 0.809017 0.587785i
571.2 0.207912 + 0.978148i 0.809017 + 0.587785i −0.913545 + 0.406737i −0.406737 0.913545i −0.406737 + 0.913545i −0.866025 + 0.500000i −0.587785 0.809017i 0.309017 + 0.951057i 0.809017 0.587785i
691.1 −0.406737 0.913545i −0.309017 0.951057i −0.669131 + 0.743145i −0.743145 0.669131i −0.743145 + 0.669131i 0.866025 + 0.500000i 0.951057 + 0.309017i −0.809017 + 0.587785i −0.309017 + 0.951057i
691.2 0.406737 + 0.913545i −0.309017 0.951057i −0.669131 + 0.743145i 0.743145 + 0.669131i 0.743145 0.669131i −0.866025 0.500000i −0.951057 0.309017i −0.809017 + 0.587785i −0.309017 + 0.951057i
931.1 −0.743145 0.669131i 0.809017 0.587785i 0.104528 + 0.994522i −0.994522 + 0.104528i −0.994522 0.104528i −0.866025 + 0.500000i 0.587785 0.809017i 0.309017 0.951057i 0.809017 + 0.587785i
931.2 0.743145 + 0.669131i 0.809017 0.587785i 0.104528 + 0.994522i 0.994522 0.104528i 0.994522 + 0.104528i 0.866025 0.500000i −0.587785 + 0.809017i 0.309017 0.951057i 0.809017 + 0.587785i
1291.1 −0.994522 0.104528i −0.309017 0.951057i 0.978148 + 0.207912i 0.207912 0.978148i 0.207912 + 0.978148i 0.866025 0.500000i −0.951057 0.309017i −0.809017 + 0.587785i −0.309017 + 0.951057i
1291.2 0.994522 + 0.104528i −0.309017 0.951057i 0.978148 + 0.207912i −0.207912 + 0.978148i −0.207912 0.978148i −0.866025 + 0.500000i 0.951057 + 0.309017i −0.809017 + 0.587785i −0.309017 + 0.951057i
1411.1 −0.994522 + 0.104528i −0.309017 + 0.951057i 0.978148 0.207912i 0.207912 + 0.978148i 0.207912 0.978148i 0.866025 + 0.500000i −0.951057 + 0.309017i −0.809017 0.587785i −0.309017 0.951057i
1411.2 0.994522 0.104528i −0.309017 + 0.951057i 0.978148 0.207912i −0.207912 0.978148i −0.207912 + 0.978148i −0.866025 0.500000i 0.951057 0.309017i −0.809017 0.587785i −0.309017 0.951057i
1771.1 −0.743145 + 0.669131i 0.809017 + 0.587785i 0.104528 0.994522i −0.994522 0.104528i −0.994522 + 0.104528i −0.866025 0.500000i 0.587785 + 0.809017i 0.309017 + 0.951057i 0.809017 0.587785i
1771.2 0.743145 0.669131i 0.809017 + 0.587785i 0.104528 0.994522i 0.994522 + 0.104528i 0.994522 0.104528i 0.866025 + 0.500000i −0.587785 0.809017i 0.309017 + 0.951057i 0.809017 0.587785i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 211.2
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.d odd 2 1 inner
9.c even 3 1 inner
25.d even 5 1 inner
72.p odd 6 1 inner
200.n odd 10 1 inner
225.q even 15 1 inner
1800.dg odd 30 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1800.1.dg.a 16
8.d odd 2 1 inner 1800.1.dg.a 16
9.c even 3 1 inner 1800.1.dg.a 16
25.d even 5 1 inner 1800.1.dg.a 16
72.p odd 6 1 inner 1800.1.dg.a 16
200.n odd 10 1 inner 1800.1.dg.a 16
225.q even 15 1 inner 1800.1.dg.a 16
1800.dg odd 30 1 inner 1800.1.dg.a 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1800.1.dg.a 16 1.a even 1 1 trivial
1800.1.dg.a 16 8.d odd 2 1 inner
1800.1.dg.a 16 9.c even 3 1 inner
1800.1.dg.a 16 25.d even 5 1 inner
1800.1.dg.a 16 72.p odd 6 1 inner
1800.1.dg.a 16 200.n odd 10 1 inner
1800.1.dg.a 16 225.q even 15 1 inner
1800.1.dg.a 16 1800.dg odd 30 1 inner

Hecke kernels

This newform subspace is the entire newspace \(S_{1}^{\mathrm{new}}(1800, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{16} + T^{14} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( (T^{4} - T^{3} + T^{2} + \cdots + 1)^{4} \) Copy content Toggle raw display
$5$ \( T^{16} + T^{14} + \cdots + 1 \) Copy content Toggle raw display
$7$ \( (T^{4} - T^{2} + 1)^{4} \) Copy content Toggle raw display
$11$ \( (T^{8} - 3 T^{7} + 5 T^{6} + \cdots + 1)^{2} \) Copy content Toggle raw display
$13$ \( T^{16} + 4 T^{14} + \cdots + 1 \) Copy content Toggle raw display
$17$ \( (T^{4} + T^{3} + T^{2} + \cdots + 1)^{4} \) Copy content Toggle raw display
$19$ \( (T^{4} + T^{3} + T^{2} + \cdots + 1)^{4} \) Copy content Toggle raw display
$23$ \( T^{16} + T^{14} + \cdots + 1 \) Copy content Toggle raw display
$29$ \( T^{16} + 4 T^{14} + \cdots + 1 \) Copy content Toggle raw display
$31$ \( T^{16} + T^{14} + \cdots + 1 \) Copy content Toggle raw display
$37$ \( T^{16} \) Copy content Toggle raw display
$41$ \( (T^{8} - 2 T^{7} - 2 T^{5} + \cdots + 1)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} + T + 1)^{8} \) Copy content Toggle raw display
$47$ \( T^{16} + 4 T^{14} + \cdots + 1 \) Copy content Toggle raw display
$53$ \( (T^{8} + T^{6} + 6 T^{4} + \cdots + 1)^{2} \) Copy content Toggle raw display
$59$ \( T^{16} \) Copy content Toggle raw display
$61$ \( T^{16} + T^{14} + \cdots + 1 \) Copy content Toggle raw display
$67$ \( (T^{8} - 3 T^{7} + 5 T^{6} + \cdots + 1)^{2} \) Copy content Toggle raw display
$71$ \( T^{16} \) Copy content Toggle raw display
$73$ \( T^{16} \) Copy content Toggle raw display
$79$ \( T^{16} + 4 T^{14} + \cdots + 1 \) Copy content Toggle raw display
$83$ \( (T^{8} - 2 T^{7} - 2 T^{5} + \cdots + 1)^{2} \) Copy content Toggle raw display
$89$ \( (T^{4} + T^{3} + T^{2} + \cdots + 1)^{4} \) Copy content Toggle raw display
$97$ \( T^{16} \) Copy content Toggle raw display
show more
show less