L(s) = 1 | + (−0.743 − 0.669i)2-s + (0.809 − 0.587i)3-s + (0.104 + 0.994i)4-s + (−0.994 + 0.104i)5-s + (−0.994 − 0.104i)6-s + (−0.866 + 0.5i)7-s + (0.587 − 0.809i)8-s + (0.309 − 0.951i)9-s + (0.809 + 0.587i)10-s + (−0.413 + 0.459i)11-s + (0.669 + 0.743i)12-s + (1.20 − 1.08i)13-s + (0.978 + 0.207i)14-s + (−0.743 + 0.669i)15-s + (−0.978 + 0.207i)16-s + (−0.809 − 0.587i)17-s + ⋯ |
L(s) = 1 | + (−0.743 − 0.669i)2-s + (0.809 − 0.587i)3-s + (0.104 + 0.994i)4-s + (−0.994 + 0.104i)5-s + (−0.994 − 0.104i)6-s + (−0.866 + 0.5i)7-s + (0.587 − 0.809i)8-s + (0.309 − 0.951i)9-s + (0.809 + 0.587i)10-s + (−0.413 + 0.459i)11-s + (0.669 + 0.743i)12-s + (1.20 − 1.08i)13-s + (0.978 + 0.207i)14-s + (−0.743 + 0.669i)15-s + (−0.978 + 0.207i)16-s + (−0.809 − 0.587i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.851 + 0.523i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.851 + 0.523i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5887126009\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5887126009\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.743 + 0.669i)T \) |
| 3 | \( 1 + (-0.809 + 0.587i)T \) |
| 5 | \( 1 + (0.994 - 0.104i)T \) |
good | 7 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (0.413 - 0.459i)T + (-0.104 - 0.994i)T^{2} \) |
| 13 | \( 1 + (-1.20 + 1.08i)T + (0.104 - 0.994i)T^{2} \) |
| 17 | \( 1 + (0.809 + 0.587i)T + (0.309 + 0.951i)T^{2} \) |
| 19 | \( 1 + (0.809 + 0.587i)T + (0.309 + 0.951i)T^{2} \) |
| 23 | \( 1 + (-0.207 + 0.978i)T + (-0.913 - 0.406i)T^{2} \) |
| 29 | \( 1 + (-0.251 + 0.564i)T + (-0.669 - 0.743i)T^{2} \) |
| 31 | \( 1 + (-0.406 - 0.913i)T + (-0.669 + 0.743i)T^{2} \) |
| 37 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 41 | \( 1 + (1.08 + 1.20i)T + (-0.104 + 0.994i)T^{2} \) |
| 43 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 47 | \( 1 + (0.251 - 0.564i)T + (-0.669 - 0.743i)T^{2} \) |
| 53 | \( 1 + (0.951 + 1.30i)T + (-0.309 + 0.951i)T^{2} \) |
| 59 | \( 1 + (-0.104 + 0.994i)T^{2} \) |
| 61 | \( 1 + (0.743 + 0.669i)T + (0.104 + 0.994i)T^{2} \) |
| 67 | \( 1 + (-1.47 + 0.658i)T + (0.669 - 0.743i)T^{2} \) |
| 71 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 73 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 79 | \( 1 + (0.251 - 0.564i)T + (-0.669 - 0.743i)T^{2} \) |
| 83 | \( 1 + (0.0646 - 0.614i)T + (-0.978 - 0.207i)T^{2} \) |
| 89 | \( 1 + (-0.309 - 0.951i)T + (-0.809 + 0.587i)T^{2} \) |
| 97 | \( 1 + (0.669 + 0.743i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.863424082088983682809144353771, −8.506232029666333233916883038918, −7.889704196978169466386638721286, −6.86237847842204951730334455405, −6.49994868894441304259862104899, −4.73264488966425269157801326105, −3.61754481188853586988950060135, −3.03454148459537247483207469615, −2.19354483635704203801513653927, −0.50985980137464453530380470028,
1.61922432505441860853942633956, 3.17286063528004763782203761606, 4.00361320507803825237374295870, 4.72210176711896253924244599698, 6.10057884301191050481513746300, 6.73851104267984359919627495643, 7.65233953762706411129931400970, 8.374778000786076228579629624974, 8.785136106852429537099883424854, 9.589962371849454431827370334056