L(s) = 1 | + (−0.743 − 0.669i)2-s + (0.809 − 0.587i)3-s + (0.104 + 0.994i)4-s + (−0.994 + 0.104i)5-s + (−0.994 − 0.104i)6-s + (−0.866 + 0.5i)7-s + (0.587 − 0.809i)8-s + (0.309 − 0.951i)9-s + (0.809 + 0.587i)10-s + (−0.413 + 0.459i)11-s + (0.669 + 0.743i)12-s + (1.20 − 1.08i)13-s + (0.978 + 0.207i)14-s + (−0.743 + 0.669i)15-s + (−0.978 + 0.207i)16-s + (−0.809 − 0.587i)17-s + ⋯ |
L(s) = 1 | + (−0.743 − 0.669i)2-s + (0.809 − 0.587i)3-s + (0.104 + 0.994i)4-s + (−0.994 + 0.104i)5-s + (−0.994 − 0.104i)6-s + (−0.866 + 0.5i)7-s + (0.587 − 0.809i)8-s + (0.309 − 0.951i)9-s + (0.809 + 0.587i)10-s + (−0.413 + 0.459i)11-s + (0.669 + 0.743i)12-s + (1.20 − 1.08i)13-s + (0.978 + 0.207i)14-s + (−0.743 + 0.669i)15-s + (−0.978 + 0.207i)16-s + (−0.809 − 0.587i)17-s + ⋯ |
Λ(s)=(=(1800s/2ΓC(s)L(s)(−0.851+0.523i)Λ(1−s)
Λ(s)=(=(1800s/2ΓC(s)L(s)(−0.851+0.523i)Λ(1−s)
Degree: |
2 |
Conductor: |
1800
= 23⋅32⋅52
|
Sign: |
−0.851+0.523i
|
Analytic conductor: |
0.898317 |
Root analytic conductor: |
0.947795 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1800(931,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1800, ( :0), −0.851+0.523i)
|
Particular Values
L(21) |
≈ |
0.5887126009 |
L(21) |
≈ |
0.5887126009 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.743+0.669i)T |
| 3 | 1+(−0.809+0.587i)T |
| 5 | 1+(0.994−0.104i)T |
good | 7 | 1+(0.866−0.5i)T+(0.5−0.866i)T2 |
| 11 | 1+(0.413−0.459i)T+(−0.104−0.994i)T2 |
| 13 | 1+(−1.20+1.08i)T+(0.104−0.994i)T2 |
| 17 | 1+(0.809+0.587i)T+(0.309+0.951i)T2 |
| 19 | 1+(0.809+0.587i)T+(0.309+0.951i)T2 |
| 23 | 1+(−0.207+0.978i)T+(−0.913−0.406i)T2 |
| 29 | 1+(−0.251+0.564i)T+(−0.669−0.743i)T2 |
| 31 | 1+(−0.406−0.913i)T+(−0.669+0.743i)T2 |
| 37 | 1+(0.809+0.587i)T2 |
| 41 | 1+(1.08+1.20i)T+(−0.104+0.994i)T2 |
| 43 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
| 47 | 1+(0.251−0.564i)T+(−0.669−0.743i)T2 |
| 53 | 1+(0.951+1.30i)T+(−0.309+0.951i)T2 |
| 59 | 1+(−0.104+0.994i)T2 |
| 61 | 1+(0.743+0.669i)T+(0.104+0.994i)T2 |
| 67 | 1+(−1.47+0.658i)T+(0.669−0.743i)T2 |
| 71 | 1+(−0.309+0.951i)T2 |
| 73 | 1+(−0.809+0.587i)T2 |
| 79 | 1+(0.251−0.564i)T+(−0.669−0.743i)T2 |
| 83 | 1+(0.0646−0.614i)T+(−0.978−0.207i)T2 |
| 89 | 1+(−0.309−0.951i)T+(−0.809+0.587i)T2 |
| 97 | 1+(0.669+0.743i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.863424082088983682809144353771, −8.506232029666333233916883038918, −7.889704196978169466386638721286, −6.86237847842204951730334455405, −6.49994868894441304259862104899, −4.73264488966425269157801326105, −3.61754481188853586988950060135, −3.03454148459537247483207469615, −2.19354483635704203801513653927, −0.50985980137464453530380470028,
1.61922432505441860853942633956, 3.17286063528004763782203761606, 4.00361320507803825237374295870, 4.72210176711896253924244599698, 6.10057884301191050481513746300, 6.73851104267984359919627495643, 7.65233953762706411129931400970, 8.374778000786076228579629624974, 8.785136106852429537099883424854, 9.589962371849454431827370334056