Properties

Label 2-1800-24.11-c1-0-37
Degree 22
Conductor 18001800
Sign 0.954+0.297i0.954 + 0.297i
Analytic cond. 14.373014.3730
Root an. cond. 3.791183.79118
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.38 + 0.305i)2-s + (1.81 − 0.844i)4-s − 1.41i·7-s + (−2.24 + 1.71i)8-s + 0.191i·11-s − 2.63i·13-s + (0.432 + 1.95i)14-s + (2.57 − 3.06i)16-s + 6.20i·17-s − 1.52·19-s + (−0.0585 − 0.264i)22-s + 5.25·23-s + (0.806 + 3.64i)26-s + (−1.19 − 2.56i)28-s − 0.270·29-s + ⋯
L(s)  = 1  + (−0.976 + 0.216i)2-s + (0.906 − 0.422i)4-s − 0.534i·7-s + (−0.793 + 0.608i)8-s + 0.0577i·11-s − 0.731i·13-s + (0.115 + 0.521i)14-s + (0.643 − 0.765i)16-s + 1.50i·17-s − 0.349·19-s + (−0.0124 − 0.0563i)22-s + 1.09·23-s + (0.158 + 0.714i)26-s + (−0.225 − 0.484i)28-s − 0.0502·29-s + ⋯

Functional equation

Λ(s)=(1800s/2ΓC(s)L(s)=((0.954+0.297i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 1800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.954 + 0.297i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(1800s/2ΓC(s+1/2)L(s)=((0.954+0.297i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 1800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.954 + 0.297i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 18001800    =    2332522^{3} \cdot 3^{2} \cdot 5^{2}
Sign: 0.954+0.297i0.954 + 0.297i
Analytic conductor: 14.373014.3730
Root analytic conductor: 3.791183.79118
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ1800(251,)\chi_{1800} (251, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 1800, ( :1/2), 0.954+0.297i)(2,\ 1800,\ (\ :1/2),\ 0.954 + 0.297i)

Particular Values

L(1)L(1) \approx 1.0587165741.058716574
L(12)L(\frac12) \approx 1.0587165741.058716574
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+(1.380.305i)T 1 + (1.38 - 0.305i)T
3 1 1
5 1 1
good7 1+1.41iT7T2 1 + 1.41iT - 7T^{2}
11 10.191iT11T2 1 - 0.191iT - 11T^{2}
13 1+2.63iT13T2 1 + 2.63iT - 13T^{2}
17 16.20iT17T2 1 - 6.20iT - 17T^{2}
19 1+1.52T+19T2 1 + 1.52T + 19T^{2}
23 15.25T+23T2 1 - 5.25T + 23T^{2}
29 1+0.270T+29T2 1 + 0.270T + 29T^{2}
31 16.20iT31T2 1 - 6.20iT - 31T^{2}
37 1+7.61iT37T2 1 + 7.61iT - 37T^{2}
41 1+9.22iT41T2 1 + 9.22iT - 41T^{2}
43 112.7T+43T2 1 - 12.7T + 43T^{2}
47 1+3.79T+47T2 1 + 3.79T + 47T^{2}
53 18.77T+53T2 1 - 8.77T + 53T^{2}
59 110.4iT59T2 1 - 10.4iT - 59T^{2}
61 1+0.382iT61T2 1 + 0.382iT - 61T^{2}
67 1+1.72T+67T2 1 + 1.72T + 67T^{2}
71 1+9.72T+71T2 1 + 9.72T + 71T^{2}
73 15.45T+73T2 1 - 5.45T + 73T^{2}
79 1+14.3iT79T2 1 + 14.3iT - 79T^{2}
83 1+15.2iT83T2 1 + 15.2iT - 83T^{2}
89 1+3.56iT89T2 1 + 3.56iT - 89T^{2}
97 1+7.31T+97T2 1 + 7.31T + 97T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−8.906208235403378820946964114598, −8.714305705600110987858196407511, −7.54081616340834718696273838092, −7.20230832698193488416180677730, −6.10947526156611301792449766726, −5.49724362420598410412853268554, −4.20072494481432589299795844667, −3.12704117521793972498201720410, −1.93302806043394279273300634174, −0.73332656158974230656505223619, 0.913408531030874371717806414364, 2.28394101357306519360971580781, 2.98919996431091715463861459722, 4.27375885373632938695910722368, 5.36009155388023317818321265896, 6.38934339636538907592208870346, 7.04516604477080666824923618472, 7.85099736576917650745274683535, 8.681480567114023326118374284944, 9.372034202460861425007610273112

Graph of the ZZ-function along the critical line