L(s) = 1 | + (−1.38 + 0.305i)2-s + (1.81 − 0.844i)4-s − 1.41i·7-s + (−2.24 + 1.71i)8-s + 0.191i·11-s − 2.63i·13-s + (0.432 + 1.95i)14-s + (2.57 − 3.06i)16-s + 6.20i·17-s − 1.52·19-s + (−0.0585 − 0.264i)22-s + 5.25·23-s + (0.806 + 3.64i)26-s + (−1.19 − 2.56i)28-s − 0.270·29-s + ⋯ |
L(s) = 1 | + (−0.976 + 0.216i)2-s + (0.906 − 0.422i)4-s − 0.534i·7-s + (−0.793 + 0.608i)8-s + 0.0577i·11-s − 0.731i·13-s + (0.115 + 0.521i)14-s + (0.643 − 0.765i)16-s + 1.50i·17-s − 0.349·19-s + (−0.0124 − 0.0563i)22-s + 1.09·23-s + (0.158 + 0.714i)26-s + (−0.225 − 0.484i)28-s − 0.0502·29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.954 + 0.297i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.954 + 0.297i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.058716574\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.058716574\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.38 - 0.305i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 7 | \( 1 + 1.41iT - 7T^{2} \) |
| 11 | \( 1 - 0.191iT - 11T^{2} \) |
| 13 | \( 1 + 2.63iT - 13T^{2} \) |
| 17 | \( 1 - 6.20iT - 17T^{2} \) |
| 19 | \( 1 + 1.52T + 19T^{2} \) |
| 23 | \( 1 - 5.25T + 23T^{2} \) |
| 29 | \( 1 + 0.270T + 29T^{2} \) |
| 31 | \( 1 - 6.20iT - 31T^{2} \) |
| 37 | \( 1 + 7.61iT - 37T^{2} \) |
| 41 | \( 1 + 9.22iT - 41T^{2} \) |
| 43 | \( 1 - 12.7T + 43T^{2} \) |
| 47 | \( 1 + 3.79T + 47T^{2} \) |
| 53 | \( 1 - 8.77T + 53T^{2} \) |
| 59 | \( 1 - 10.4iT - 59T^{2} \) |
| 61 | \( 1 + 0.382iT - 61T^{2} \) |
| 67 | \( 1 + 1.72T + 67T^{2} \) |
| 71 | \( 1 + 9.72T + 71T^{2} \) |
| 73 | \( 1 - 5.45T + 73T^{2} \) |
| 79 | \( 1 + 14.3iT - 79T^{2} \) |
| 83 | \( 1 + 15.2iT - 83T^{2} \) |
| 89 | \( 1 + 3.56iT - 89T^{2} \) |
| 97 | \( 1 + 7.31T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.906208235403378820946964114598, −8.714305705600110987858196407511, −7.54081616340834718696273838092, −7.20230832698193488416180677730, −6.10947526156611301792449766726, −5.49724362420598410412853268554, −4.20072494481432589299795844667, −3.12704117521793972498201720410, −1.93302806043394279273300634174, −0.73332656158974230656505223619,
0.913408531030874371717806414364, 2.28394101357306519360971580781, 2.98919996431091715463861459722, 4.27375885373632938695910722368, 5.36009155388023317818321265896, 6.38934339636538907592208870346, 7.04516604477080666824923618472, 7.85099736576917650745274683535, 8.681480567114023326118374284944, 9.372034202460861425007610273112