Properties

Label 1800.2.b.d.251.2
Level $1800$
Weight $2$
Character 1800.251
Analytic conductor $14.373$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1800,2,Mod(251,1800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1800.251");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1800 = 2^{3} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1800.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.3730723638\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.2580992.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + x^{4} + 2x^{2} - 8x + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 360)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 251.2
Root \(1.38078 - 0.305697i\) of defining polynomial
Character \(\chi\) \(=\) 1800.251
Dual form 1800.2.b.d.251.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.38078 + 0.305697i) q^{2} +(1.81310 - 0.844199i) q^{4} -1.41421i q^{7} +(-2.24542 + 1.71991i) q^{8} +0.191427i q^{11} -2.63700i q^{13} +(0.432320 + 1.95272i) q^{14} +(2.57466 - 3.06123i) q^{16} +6.20522i q^{17} -1.52311 q^{19} +(-0.0585185 - 0.264318i) q^{22} +5.25240 q^{23} +(0.806122 + 3.64111i) q^{26} +(-1.19388 - 2.56411i) q^{28} -0.270718 q^{29} +6.20522i q^{31} +(-2.61922 + 5.01395i) q^{32} +(-1.89692 - 8.56804i) q^{34} -7.61944i q^{37} +(2.10308 - 0.465611i) q^{38} -9.22508i q^{41} +12.7755 q^{43} +(0.161602 + 0.347076i) q^{44} +(-7.25240 + 1.60564i) q^{46} -3.79383 q^{47} +5.00000 q^{49} +(-2.22615 - 4.78114i) q^{52} +8.77551 q^{53} +(2.43232 + 3.17550i) q^{56} +(0.373802 - 0.0827577i) q^{58} +10.4479i q^{59} -0.382853i q^{61} +(-1.89692 - 8.56804i) q^{62} +(2.08382 - 7.72384i) q^{64} -1.72928 q^{67} +(5.23844 + 11.2507i) q^{68} -9.72928 q^{71} +5.45856 q^{73} +(2.32924 + 10.5208i) q^{74} +(-2.76156 + 1.28581i) q^{76} +0.270718 q^{77} -14.3077i q^{79} +(2.82008 + 12.7378i) q^{82} -15.2389i q^{83} +(-17.6402 + 3.90543i) q^{86} +(-0.329237 - 0.429833i) q^{88} -3.56822i q^{89} -3.72928 q^{91} +(9.52311 - 4.43407i) q^{92} +(5.23844 - 1.15976i) q^{94} -7.31695 q^{97} +(-6.90389 + 1.52848i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{2} + 2 q^{4} - 2 q^{8} - 6 q^{16} + 16 q^{19} + 20 q^{22} - 4 q^{23} + 20 q^{26} + 8 q^{28} - 12 q^{29} - 22 q^{32} - 4 q^{34} + 20 q^{38} + 16 q^{43} - 12 q^{44} - 8 q^{46} - 8 q^{47} + 30 q^{49}+ \cdots - 10 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1800\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(901\) \(1001\) \(1351\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.38078 + 0.305697i −0.976358 + 0.216160i
\(3\) 0 0
\(4\) 1.81310 0.844199i 0.906550 0.422099i
\(5\) 0 0
\(6\) 0 0
\(7\) 1.41421i 0.534522i −0.963624 0.267261i \(-0.913881\pi\)
0.963624 0.267261i \(-0.0861187\pi\)
\(8\) −2.24542 + 1.71991i −0.793876 + 0.608080i
\(9\) 0 0
\(10\) 0 0
\(11\) 0.191427i 0.0577173i 0.999584 + 0.0288587i \(0.00918727\pi\)
−0.999584 + 0.0288587i \(0.990813\pi\)
\(12\) 0 0
\(13\) 2.63700i 0.731372i −0.930738 0.365686i \(-0.880834\pi\)
0.930738 0.365686i \(-0.119166\pi\)
\(14\) 0.432320 + 1.95272i 0.115542 + 0.521885i
\(15\) 0 0
\(16\) 2.57466 3.06123i 0.643664 0.765308i
\(17\) 6.20522i 1.50499i 0.658599 + 0.752494i \(0.271149\pi\)
−0.658599 + 0.752494i \(0.728851\pi\)
\(18\) 0 0
\(19\) −1.52311 −0.349426 −0.174713 0.984619i \(-0.555900\pi\)
−0.174713 + 0.984619i \(0.555900\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −0.0585185 0.264318i −0.0124762 0.0563528i
\(23\) 5.25240 1.09520 0.547600 0.836740i \(-0.315542\pi\)
0.547600 + 0.836740i \(0.315542\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0.806122 + 3.64111i 0.158094 + 0.714081i
\(27\) 0 0
\(28\) −1.19388 2.56411i −0.225622 0.484571i
\(29\) −0.270718 −0.0502711 −0.0251356 0.999684i \(-0.508002\pi\)
−0.0251356 + 0.999684i \(0.508002\pi\)
\(30\) 0 0
\(31\) 6.20522i 1.11449i 0.830348 + 0.557245i \(0.188142\pi\)
−0.830348 + 0.557245i \(0.811858\pi\)
\(32\) −2.61922 + 5.01395i −0.463017 + 0.886349i
\(33\) 0 0
\(34\) −1.89692 8.56804i −0.325318 1.46941i
\(35\) 0 0
\(36\) 0 0
\(37\) 7.61944i 1.25263i −0.779571 0.626314i \(-0.784563\pi\)
0.779571 0.626314i \(-0.215437\pi\)
\(38\) 2.10308 0.465611i 0.341165 0.0755321i
\(39\) 0 0
\(40\) 0 0
\(41\) 9.22508i 1.44071i −0.693603 0.720357i \(-0.743978\pi\)
0.693603 0.720357i \(-0.256022\pi\)
\(42\) 0 0
\(43\) 12.7755 1.94825 0.974124 0.226016i \(-0.0725702\pi\)
0.974124 + 0.226016i \(0.0725702\pi\)
\(44\) 0.161602 + 0.347076i 0.0243625 + 0.0523236i
\(45\) 0 0
\(46\) −7.25240 + 1.60564i −1.06931 + 0.236739i
\(47\) −3.79383 −0.553387 −0.276694 0.960958i \(-0.589239\pi\)
−0.276694 + 0.960958i \(0.589239\pi\)
\(48\) 0 0
\(49\) 5.00000 0.714286
\(50\) 0 0
\(51\) 0 0
\(52\) −2.22615 4.78114i −0.308712 0.663025i
\(53\) 8.77551 1.20541 0.602705 0.797964i \(-0.294090\pi\)
0.602705 + 0.797964i \(0.294090\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 2.43232 + 3.17550i 0.325032 + 0.424344i
\(57\) 0 0
\(58\) 0.373802 0.0827577i 0.0490826 0.0108666i
\(59\) 10.4479i 1.36020i 0.733121 + 0.680098i \(0.238063\pi\)
−0.733121 + 0.680098i \(0.761937\pi\)
\(60\) 0 0
\(61\) 0.382853i 0.0490194i −0.999700 0.0245097i \(-0.992198\pi\)
0.999700 0.0245097i \(-0.00780245\pi\)
\(62\) −1.89692 8.56804i −0.240909 1.08814i
\(63\) 0 0
\(64\) 2.08382 7.72384i 0.260477 0.965480i
\(65\) 0 0
\(66\) 0 0
\(67\) −1.72928 −0.211265 −0.105633 0.994405i \(-0.533687\pi\)
−0.105633 + 0.994405i \(0.533687\pi\)
\(68\) 5.23844 + 11.2507i 0.635255 + 1.36435i
\(69\) 0 0
\(70\) 0 0
\(71\) −9.72928 −1.15465 −0.577327 0.816513i \(-0.695904\pi\)
−0.577327 + 0.816513i \(0.695904\pi\)
\(72\) 0 0
\(73\) 5.45856 0.638877 0.319438 0.947607i \(-0.396506\pi\)
0.319438 + 0.947607i \(0.396506\pi\)
\(74\) 2.32924 + 10.5208i 0.270768 + 1.22301i
\(75\) 0 0
\(76\) −2.76156 + 1.28581i −0.316772 + 0.147493i
\(77\) 0.270718 0.0308512
\(78\) 0 0
\(79\) 14.3077i 1.60974i −0.593454 0.804868i \(-0.702236\pi\)
0.593454 0.804868i \(-0.297764\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 2.82008 + 12.7378i 0.311425 + 1.40665i
\(83\) 15.2389i 1.67268i −0.548208 0.836342i \(-0.684690\pi\)
0.548208 0.836342i \(-0.315310\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −17.6402 + 3.90543i −1.90219 + 0.421134i
\(87\) 0 0
\(88\) −0.329237 0.429833i −0.0350968 0.0458204i
\(89\) 3.56822i 0.378231i −0.981955 0.189115i \(-0.939438\pi\)
0.981955 0.189115i \(-0.0605620\pi\)
\(90\) 0 0
\(91\) −3.72928 −0.390935
\(92\) 9.52311 4.43407i 0.992853 0.462283i
\(93\) 0 0
\(94\) 5.23844 1.15976i 0.540304 0.119620i
\(95\) 0 0
\(96\) 0 0
\(97\) −7.31695 −0.742923 −0.371462 0.928448i \(-0.621143\pi\)
−0.371462 + 0.928448i \(0.621143\pi\)
\(98\) −6.90389 + 1.52848i −0.697399 + 0.154400i
\(99\) 0 0
\(100\) 0 0
\(101\) 15.5510 1.54738 0.773692 0.633562i \(-0.218408\pi\)
0.773692 + 0.633562i \(0.218408\pi\)
\(102\) 0 0
\(103\) 2.08863i 0.205799i −0.994692 0.102899i \(-0.967188\pi\)
0.994692 0.102899i \(-0.0328120\pi\)
\(104\) 4.53540 + 5.92117i 0.444733 + 0.580619i
\(105\) 0 0
\(106\) −12.1170 + 2.68264i −1.17691 + 0.260561i
\(107\) 2.82843i 0.273434i −0.990610 0.136717i \(-0.956345\pi\)
0.990610 0.136717i \(-0.0436552\pi\)
\(108\) 0 0
\(109\) 5.27400i 0.505158i −0.967576 0.252579i \(-0.918721\pi\)
0.967576 0.252579i \(-0.0812787\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −4.32924 3.64111i −0.409074 0.344053i
\(113\) 5.82237i 0.547722i −0.961769 0.273861i \(-0.911699\pi\)
0.961769 0.273861i \(-0.0883009\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −0.490839 + 0.228540i −0.0455733 + 0.0212194i
\(117\) 0 0
\(118\) −3.19388 14.4262i −0.294020 1.32804i
\(119\) 8.77551 0.804450
\(120\) 0 0
\(121\) 10.9634 0.996669
\(122\) 0.117037 + 0.528636i 0.0105960 + 0.0478604i
\(123\) 0 0
\(124\) 5.23844 + 11.2507i 0.470426 + 1.01034i
\(125\) 0 0
\(126\) 0 0
\(127\) 20.5388i 1.82252i 0.411829 + 0.911261i \(0.364890\pi\)
−0.411829 + 0.911261i \(0.635110\pi\)
\(128\) −0.516138 + 11.3019i −0.0456206 + 0.998959i
\(129\) 0 0
\(130\) 0 0
\(131\) 13.5679i 1.18543i −0.805413 0.592715i \(-0.798056\pi\)
0.805413 0.592715i \(-0.201944\pi\)
\(132\) 0 0
\(133\) 2.15401i 0.186776i
\(134\) 2.38776 0.528636i 0.206271 0.0456672i
\(135\) 0 0
\(136\) −10.6724 13.9333i −0.915153 1.19477i
\(137\) 4.72563i 0.403738i 0.979413 + 0.201869i \(0.0647015\pi\)
−0.979413 + 0.201869i \(0.935298\pi\)
\(138\) 0 0
\(139\) 15.7572 1.33651 0.668254 0.743934i \(-0.267042\pi\)
0.668254 + 0.743934i \(0.267042\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 13.4340 2.97421i 1.12735 0.249590i
\(143\) 0.504792 0.0422129
\(144\) 0 0
\(145\) 0 0
\(146\) −7.53707 + 1.66866i −0.623772 + 0.138100i
\(147\) 0 0
\(148\) −6.43232 13.8148i −0.528733 1.13557i
\(149\) 7.72928 0.633207 0.316604 0.948558i \(-0.397457\pi\)
0.316604 + 0.948558i \(0.397457\pi\)
\(150\) 0 0
\(151\) 22.2098i 1.80741i 0.428158 + 0.903704i \(0.359163\pi\)
−0.428158 + 0.903704i \(0.640837\pi\)
\(152\) 3.42003 2.61962i 0.277401 0.212479i
\(153\) 0 0
\(154\) −0.373802 + 0.0827577i −0.0301218 + 0.00666880i
\(155\) 0 0
\(156\) 0 0
\(157\) 8.00229i 0.638652i −0.947645 0.319326i \(-0.896543\pi\)
0.947645 0.319326i \(-0.103457\pi\)
\(158\) 4.37380 + 19.7557i 0.347961 + 1.57168i
\(159\) 0 0
\(160\) 0 0
\(161\) 7.42801i 0.585409i
\(162\) 0 0
\(163\) 0.953771 0.0747051 0.0373526 0.999302i \(-0.488108\pi\)
0.0373526 + 0.999302i \(0.488108\pi\)
\(164\) −7.78780 16.7260i −0.608125 1.30608i
\(165\) 0 0
\(166\) 4.65847 + 21.0415i 0.361568 + 1.63314i
\(167\) −11.7572 −0.909799 −0.454899 0.890543i \(-0.650325\pi\)
−0.454899 + 0.890543i \(0.650325\pi\)
\(168\) 0 0
\(169\) 6.04623 0.465095
\(170\) 0 0
\(171\) 0 0
\(172\) 23.1633 10.7851i 1.76618 0.822354i
\(173\) −3.22449 −0.245153 −0.122577 0.992459i \(-0.539116\pi\)
−0.122577 + 0.992459i \(0.539116\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0.586002 + 0.492858i 0.0441715 + 0.0371506i
\(177\) 0 0
\(178\) 1.09079 + 4.92693i 0.0817585 + 0.369289i
\(179\) 12.6019i 0.941908i −0.882158 0.470954i \(-0.843910\pi\)
0.882158 0.470954i \(-0.156090\pi\)
\(180\) 0 0
\(181\) 24.1070i 1.79186i −0.444195 0.895930i \(-0.646510\pi\)
0.444195 0.895930i \(-0.353490\pi\)
\(182\) 5.14931 1.14003i 0.381692 0.0845046i
\(183\) 0 0
\(184\) −11.7938 + 9.03365i −0.869453 + 0.665970i
\(185\) 0 0
\(186\) 0 0
\(187\) −1.18785 −0.0868639
\(188\) −6.87859 + 3.20275i −0.501673 + 0.233585i
\(189\) 0 0
\(190\) 0 0
\(191\) 10.9171 0.789936 0.394968 0.918695i \(-0.370756\pi\)
0.394968 + 0.918695i \(0.370756\pi\)
\(192\) 0 0
\(193\) 15.3169 1.10254 0.551269 0.834328i \(-0.314144\pi\)
0.551269 + 0.834328i \(0.314144\pi\)
\(194\) 10.1031 2.23677i 0.725359 0.160590i
\(195\) 0 0
\(196\) 9.06550 4.22099i 0.647535 0.301500i
\(197\) 17.0462 1.21449 0.607247 0.794513i \(-0.292274\pi\)
0.607247 + 0.794513i \(0.292274\pi\)
\(198\) 0 0
\(199\) 4.72563i 0.334991i 0.985873 + 0.167496i \(0.0535680\pi\)
−0.985873 + 0.167496i \(0.946432\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −21.4725 + 4.75390i −1.51080 + 0.334483i
\(203\) 0.382853i 0.0268710i
\(204\) 0 0
\(205\) 0 0
\(206\) 0.638488 + 2.88394i 0.0444856 + 0.200933i
\(207\) 0 0
\(208\) −8.07247 6.78937i −0.559725 0.470758i
\(209\) 0.291565i 0.0201680i
\(210\) 0 0
\(211\) 16.8401 1.15932 0.579659 0.814859i \(-0.303186\pi\)
0.579659 + 0.814859i \(0.303186\pi\)
\(212\) 15.9109 7.40828i 1.09276 0.508803i
\(213\) 0 0
\(214\) 0.864641 + 3.90543i 0.0591056 + 0.266970i
\(215\) 0 0
\(216\) 0 0
\(217\) 8.77551 0.595720
\(218\) 1.61224 + 7.28223i 0.109195 + 0.493215i
\(219\) 0 0
\(220\) 0 0
\(221\) 16.3632 1.10071
\(222\) 0 0
\(223\) 22.3099i 1.49398i 0.664833 + 0.746992i \(0.268503\pi\)
−0.664833 + 0.746992i \(0.731497\pi\)
\(224\) 7.09079 + 3.70414i 0.473774 + 0.247493i
\(225\) 0 0
\(226\) 1.77988 + 8.03940i 0.118396 + 0.534773i
\(227\) 8.86813i 0.588599i 0.955713 + 0.294299i \(0.0950863\pi\)
−0.955713 + 0.294299i \(0.904914\pi\)
\(228\) 0 0
\(229\) 21.2786i 1.40613i 0.711126 + 0.703064i \(0.248185\pi\)
−0.711126 + 0.703064i \(0.751815\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0.607876 0.465611i 0.0399090 0.0305689i
\(233\) 15.0734i 0.987488i −0.869607 0.493744i \(-0.835628\pi\)
0.869607 0.493744i \(-0.164372\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 8.82008 + 18.9430i 0.574138 + 1.23309i
\(237\) 0 0
\(238\) −12.1170 + 2.68264i −0.785431 + 0.173890i
\(239\) 19.0462 1.23200 0.615999 0.787747i \(-0.288753\pi\)
0.615999 + 0.787747i \(0.288753\pi\)
\(240\) 0 0
\(241\) 18.5048 1.19200 0.595999 0.802985i \(-0.296756\pi\)
0.595999 + 0.802985i \(0.296756\pi\)
\(242\) −15.1380 + 3.35146i −0.973105 + 0.215440i
\(243\) 0 0
\(244\) −0.323204 0.694151i −0.0206910 0.0444385i
\(245\) 0 0
\(246\) 0 0
\(247\) 4.01645i 0.255561i
\(248\) −10.6724 13.9333i −0.677700 0.884767i
\(249\) 0 0
\(250\) 0 0
\(251\) 16.8186i 1.06158i −0.847503 0.530790i \(-0.821895\pi\)
0.847503 0.530790i \(-0.178105\pi\)
\(252\) 0 0
\(253\) 1.00545i 0.0632120i
\(254\) −6.27864 28.3595i −0.393957 1.77943i
\(255\) 0 0
\(256\) −2.74229 15.7632i −0.171393 0.985203i
\(257\) 9.79936i 0.611267i −0.952149 0.305634i \(-0.901132\pi\)
0.952149 0.305634i \(-0.0988682\pi\)
\(258\) 0 0
\(259\) −10.7755 −0.669558
\(260\) 0 0
\(261\) 0 0
\(262\) 4.14765 + 18.7342i 0.256243 + 1.15740i
\(263\) 5.79383 0.357263 0.178632 0.983916i \(-0.442833\pi\)
0.178632 + 0.983916i \(0.442833\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −0.658473 2.97421i −0.0403736 0.182360i
\(267\) 0 0
\(268\) −3.13536 + 1.45986i −0.191523 + 0.0891750i
\(269\) −15.1878 −0.926019 −0.463010 0.886353i \(-0.653230\pi\)
−0.463010 + 0.886353i \(0.653230\pi\)
\(270\) 0 0
\(271\) 10.1304i 0.615377i 0.951487 + 0.307689i \(0.0995555\pi\)
−0.951487 + 0.307689i \(0.900444\pi\)
\(272\) 18.9956 + 15.9763i 1.15178 + 0.968706i
\(273\) 0 0
\(274\) −1.44461 6.52505i −0.0872721 0.394193i
\(275\) 0 0
\(276\) 0 0
\(277\) 14.7559i 0.886595i −0.896375 0.443298i \(-0.853809\pi\)
0.896375 0.443298i \(-0.146191\pi\)
\(278\) −21.7572 + 4.81692i −1.30491 + 0.288900i
\(279\) 0 0
\(280\) 0 0
\(281\) 21.5442i 1.28522i 0.766193 + 0.642611i \(0.222149\pi\)
−0.766193 + 0.642611i \(0.777851\pi\)
\(282\) 0 0
\(283\) −18.2707 −1.08608 −0.543041 0.839706i \(-0.682727\pi\)
−0.543041 + 0.839706i \(0.682727\pi\)
\(284\) −17.6402 + 8.21345i −1.04675 + 0.487379i
\(285\) 0 0
\(286\) −0.697006 + 0.154313i −0.0412149 + 0.00912474i
\(287\) −13.0462 −0.770095
\(288\) 0 0
\(289\) −21.5048 −1.26499
\(290\) 0 0
\(291\) 0 0
\(292\) 9.89692 4.60811i 0.579173 0.269669i
\(293\) 6.00000 0.350524 0.175262 0.984522i \(-0.443923\pi\)
0.175262 + 0.984522i \(0.443923\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 13.1047 + 17.1088i 0.761698 + 0.994431i
\(297\) 0 0
\(298\) −10.6724 + 2.36282i −0.618237 + 0.136874i
\(299\) 13.8506i 0.800999i
\(300\) 0 0
\(301\) 18.0673i 1.04138i
\(302\) −6.78946 30.6668i −0.390690 1.76468i
\(303\) 0 0
\(304\) −3.92150 + 4.66261i −0.224913 + 0.267419i
\(305\) 0 0
\(306\) 0 0
\(307\) −22.5048 −1.28442 −0.642208 0.766530i \(-0.721982\pi\)
−0.642208 + 0.766530i \(0.721982\pi\)
\(308\) 0.490839 0.228540i 0.0279681 0.0130223i
\(309\) 0 0
\(310\) 0 0
\(311\) −31.0462 −1.76047 −0.880235 0.474538i \(-0.842615\pi\)
−0.880235 + 0.474538i \(0.842615\pi\)
\(312\) 0 0
\(313\) 2.23407 0.126277 0.0631387 0.998005i \(-0.479889\pi\)
0.0631387 + 0.998005i \(0.479889\pi\)
\(314\) 2.44627 + 11.0494i 0.138051 + 0.623553i
\(315\) 0 0
\(316\) −12.0785 25.9412i −0.679469 1.45931i
\(317\) 16.5048 0.927001 0.463501 0.886097i \(-0.346593\pi\)
0.463501 + 0.886097i \(0.346593\pi\)
\(318\) 0 0
\(319\) 0.0518227i 0.00290151i
\(320\) 0 0
\(321\) 0 0
\(322\) 2.27072 + 10.2564i 0.126542 + 0.571569i
\(323\) 9.45126i 0.525882i
\(324\) 0 0
\(325\) 0 0
\(326\) −1.31695 + 0.291565i −0.0729389 + 0.0161483i
\(327\) 0 0
\(328\) 15.8663 + 20.7142i 0.876070 + 1.14375i
\(329\) 5.36529i 0.295798i
\(330\) 0 0
\(331\) −12.9817 −0.713538 −0.356769 0.934193i \(-0.616122\pi\)
−0.356769 + 0.934193i \(0.616122\pi\)
\(332\) −12.8646 27.6296i −0.706039 1.51637i
\(333\) 0 0
\(334\) 16.2341 3.59413i 0.888289 0.196662i
\(335\) 0 0
\(336\) 0 0
\(337\) 27.0096 1.47131 0.735653 0.677359i \(-0.236875\pi\)
0.735653 + 0.677359i \(0.236875\pi\)
\(338\) −8.34850 + 1.84831i −0.454099 + 0.100535i
\(339\) 0 0
\(340\) 0 0
\(341\) −1.18785 −0.0643254
\(342\) 0 0
\(343\) 16.9706i 0.916324i
\(344\) −28.6864 + 21.9727i −1.54667 + 1.18469i
\(345\) 0 0
\(346\) 4.45231 0.985716i 0.239357 0.0529924i
\(347\) 5.07372i 0.272372i 0.990683 + 0.136186i \(0.0434844\pi\)
−0.990683 + 0.136186i \(0.956516\pi\)
\(348\) 0 0
\(349\) 20.1300i 1.07754i 0.842454 + 0.538768i \(0.181110\pi\)
−0.842454 + 0.538768i \(0.818890\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −0.959804 0.501389i −0.0511577 0.0267241i
\(353\) 14.3077i 0.761519i −0.924674 0.380760i \(-0.875663\pi\)
0.924674 0.380760i \(-0.124337\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −3.01229 6.46954i −0.159651 0.342885i
\(357\) 0 0
\(358\) 3.85235 + 17.4004i 0.203603 + 0.919640i
\(359\) −31.8217 −1.67949 −0.839744 0.542983i \(-0.817295\pi\)
−0.839744 + 0.542983i \(0.817295\pi\)
\(360\) 0 0
\(361\) −16.6801 −0.877901
\(362\) 7.36943 + 33.2864i 0.387329 + 1.74950i
\(363\) 0 0
\(364\) −6.76156 + 3.14826i −0.354402 + 0.165013i
\(365\) 0 0
\(366\) 0 0
\(367\) 22.9844i 1.19977i 0.800085 + 0.599887i \(0.204788\pi\)
−0.800085 + 0.599887i \(0.795212\pi\)
\(368\) 13.5231 16.0788i 0.704941 0.838166i
\(369\) 0 0
\(370\) 0 0
\(371\) 12.4104i 0.644318i
\(372\) 0 0
\(373\) 14.2423i 0.737437i 0.929541 + 0.368718i \(0.120203\pi\)
−0.929541 + 0.368718i \(0.879797\pi\)
\(374\) 1.64015 0.363120i 0.0848102 0.0187765i
\(375\) 0 0
\(376\) 8.51875 6.52505i 0.439321 0.336504i
\(377\) 0.713884i 0.0367669i
\(378\) 0 0
\(379\) −8.71096 −0.447452 −0.223726 0.974652i \(-0.571822\pi\)
−0.223726 + 0.974652i \(0.571822\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −15.0741 + 3.33733i −0.771260 + 0.170753i
\(383\) −18.7110 −0.956085 −0.478043 0.878337i \(-0.658654\pi\)
−0.478043 + 0.878337i \(0.658654\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −21.1493 + 4.68234i −1.07647 + 0.238325i
\(387\) 0 0
\(388\) −13.2663 + 6.17696i −0.673497 + 0.313588i
\(389\) −27.0096 −1.36944 −0.684720 0.728806i \(-0.740076\pi\)
−0.684720 + 0.728806i \(0.740076\pi\)
\(390\) 0 0
\(391\) 32.5923i 1.64826i
\(392\) −11.2271 + 8.59955i −0.567054 + 0.434343i
\(393\) 0 0
\(394\) −23.5371 + 5.21098i −1.18578 + 0.262525i
\(395\) 0 0
\(396\) 0 0
\(397\) 25.3952i 1.27455i −0.770638 0.637274i \(-0.780062\pi\)
0.770638 0.637274i \(-0.219938\pi\)
\(398\) −1.44461 6.52505i −0.0724118 0.327071i
\(399\) 0 0
\(400\) 0 0
\(401\) 6.01380i 0.300315i 0.988662 + 0.150157i \(0.0479780\pi\)
−0.988662 + 0.150157i \(0.952022\pi\)
\(402\) 0 0
\(403\) 16.3632 0.815108
\(404\) 28.1955 13.1282i 1.40278 0.653150i
\(405\) 0 0
\(406\) −0.117037 0.528636i −0.00580845 0.0262358i
\(407\) 1.45856 0.0722983
\(408\) 0 0
\(409\) −19.5510 −0.966736 −0.483368 0.875417i \(-0.660587\pi\)
−0.483368 + 0.875417i \(0.660587\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −1.76322 3.78690i −0.0868676 0.186567i
\(413\) 14.7755 0.727055
\(414\) 0 0
\(415\) 0 0
\(416\) 13.2218 + 6.90689i 0.648251 + 0.338638i
\(417\) 0 0
\(418\) 0.0891304 + 0.402586i 0.00435951 + 0.0196911i
\(419\) 1.96258i 0.0958784i 0.998850 + 0.0479392i \(0.0152654\pi\)
−0.998850 + 0.0479392i \(0.984735\pi\)
\(420\) 0 0
\(421\) 4.30802i 0.209960i −0.994474 0.104980i \(-0.966522\pi\)
0.994474 0.104980i \(-0.0334778\pi\)
\(422\) −23.2524 + 5.14795i −1.13191 + 0.250598i
\(423\) 0 0
\(424\) −19.7047 + 15.0931i −0.956945 + 0.732985i
\(425\) 0 0
\(426\) 0 0
\(427\) −0.541436 −0.0262019
\(428\) −2.38776 5.12822i −0.115417 0.247882i
\(429\) 0 0
\(430\) 0 0
\(431\) −11.8217 −0.569433 −0.284717 0.958612i \(-0.591899\pi\)
−0.284717 + 0.958612i \(0.591899\pi\)
\(432\) 0 0
\(433\) −9.45856 −0.454550 −0.227275 0.973831i \(-0.572982\pi\)
−0.227275 + 0.973831i \(0.572982\pi\)
\(434\) −12.1170 + 2.68264i −0.581636 + 0.128771i
\(435\) 0 0
\(436\) −4.45231 9.56229i −0.213227 0.457950i
\(437\) −8.00000 −0.382692
\(438\) 0 0
\(439\) 16.0393i 0.765516i 0.923849 + 0.382758i \(0.125026\pi\)
−0.923849 + 0.382758i \(0.874974\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −22.5939 + 5.00217i −1.07468 + 0.237929i
\(443\) 25.0730i 1.19125i 0.803261 + 0.595627i \(0.203096\pi\)
−0.803261 + 0.595627i \(0.796904\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −6.82008 30.8051i −0.322940 1.45866i
\(447\) 0 0
\(448\) −10.9232 2.94696i −0.516071 0.139231i
\(449\) 4.24264i 0.200223i 0.994976 + 0.100111i \(0.0319199\pi\)
−0.994976 + 0.100111i \(0.968080\pi\)
\(450\) 0 0
\(451\) 1.76593 0.0831542
\(452\) −4.91524 10.5565i −0.231193 0.496538i
\(453\) 0 0
\(454\) −2.71096 12.2449i −0.127232 0.574683i
\(455\) 0 0
\(456\) 0 0
\(457\) −28.8680 −1.35039 −0.675193 0.737641i \(-0.735940\pi\)
−0.675193 + 0.737641i \(0.735940\pi\)
\(458\) −6.50479 29.3810i −0.303949 1.37288i
\(459\) 0 0
\(460\) 0 0
\(461\) 36.7389 1.71110 0.855550 0.517721i \(-0.173219\pi\)
0.855550 + 0.517721i \(0.173219\pi\)
\(462\) 0 0
\(463\) 16.6136i 0.772100i 0.922478 + 0.386050i \(0.126161\pi\)
−0.922478 + 0.386050i \(0.873839\pi\)
\(464\) −0.697006 + 0.828731i −0.0323577 + 0.0384729i
\(465\) 0 0
\(466\) 4.60788 + 20.8130i 0.213456 + 0.964142i
\(467\) 1.47959i 0.0684673i 0.999414 + 0.0342336i \(0.0108990\pi\)
−0.999414 + 0.0342336i \(0.989101\pi\)
\(468\) 0 0
\(469\) 2.44557i 0.112926i
\(470\) 0 0
\(471\) 0 0
\(472\) −17.9694 23.4598i −0.827108 1.07983i
\(473\) 2.44557i 0.112448i
\(474\) 0 0
\(475\) 0 0
\(476\) 15.9109 7.40828i 0.729274 0.339558i
\(477\) 0 0
\(478\) −26.2986 + 5.82237i −1.20287 + 0.266309i
\(479\) 2.81215 0.128491 0.0642453 0.997934i \(-0.479536\pi\)
0.0642453 + 0.997934i \(0.479536\pi\)
\(480\) 0 0
\(481\) −20.0925 −0.916137
\(482\) −25.5510 + 5.65685i −1.16382 + 0.257663i
\(483\) 0 0
\(484\) 19.8776 9.25525i 0.903530 0.420693i
\(485\) 0 0
\(486\) 0 0
\(487\) 16.9447i 0.767835i −0.923367 0.383918i \(-0.874575\pi\)
0.923367 0.383918i \(-0.125425\pi\)
\(488\) 0.658473 + 0.859666i 0.0298077 + 0.0389153i
\(489\) 0 0
\(490\) 0 0
\(491\) 26.0696i 1.17650i 0.808678 + 0.588252i \(0.200184\pi\)
−0.808678 + 0.588252i \(0.799816\pi\)
\(492\) 0 0
\(493\) 1.67987i 0.0756574i
\(494\) −1.22782 5.54583i −0.0552421 0.249519i
\(495\) 0 0
\(496\) 18.9956 + 15.9763i 0.852929 + 0.717358i
\(497\) 13.7593i 0.617188i
\(498\) 0 0
\(499\) 22.5327 1.00870 0.504351 0.863499i \(-0.331732\pi\)
0.504351 + 0.863499i \(0.331732\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 5.14139 + 23.2228i 0.229472 + 1.03648i
\(503\) −8.80342 −0.392525 −0.196262 0.980551i \(-0.562880\pi\)
−0.196262 + 0.980551i \(0.562880\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −0.307362 1.38830i −0.0136639 0.0617176i
\(507\) 0 0
\(508\) 17.3388 + 37.2389i 0.769286 + 1.65221i
\(509\) −20.6339 −0.914581 −0.457291 0.889317i \(-0.651180\pi\)
−0.457291 + 0.889317i \(0.651180\pi\)
\(510\) 0 0
\(511\) 7.71957i 0.341494i
\(512\) 8.60527 + 20.9272i 0.380303 + 0.924862i
\(513\) 0 0
\(514\) 2.99563 + 13.5307i 0.132132 + 0.596815i
\(515\) 0 0
\(516\) 0 0
\(517\) 0.726241i 0.0319400i
\(518\) 14.8786 3.29404i 0.653728 0.144732i
\(519\) 0 0
\(520\) 0 0
\(521\) 8.55066i 0.374611i −0.982302 0.187306i \(-0.940025\pi\)
0.982302 0.187306i \(-0.0599755\pi\)
\(522\) 0 0
\(523\) −33.0096 −1.44341 −0.721704 0.692202i \(-0.756641\pi\)
−0.721704 + 0.692202i \(0.756641\pi\)
\(524\) −11.4540 24.5999i −0.500369 1.07465i
\(525\) 0 0
\(526\) −8.00000 + 1.77116i −0.348817 + 0.0772261i
\(527\) −38.5048 −1.67730
\(528\) 0 0
\(529\) 4.58767 0.199464
\(530\) 0 0
\(531\) 0 0
\(532\) 1.81841 + 3.90543i 0.0788382 + 0.169322i
\(533\) −24.3265 −1.05370
\(534\) 0 0
\(535\) 0 0
\(536\) 3.88296 2.97421i 0.167718 0.128466i
\(537\) 0 0
\(538\) 20.9711 4.64287i 0.904126 0.200169i
\(539\) 0.957133i 0.0412267i
\(540\) 0 0
\(541\) 27.6493i 1.18874i −0.804193 0.594369i \(-0.797402\pi\)
0.804193 0.594369i \(-0.202598\pi\)
\(542\) −3.09683 13.9878i −0.133020 0.600828i
\(543\) 0 0
\(544\) −31.1127 16.2529i −1.33394 0.696835i
\(545\) 0 0
\(546\) 0 0
\(547\) 9.85838 0.421514 0.210757 0.977538i \(-0.432407\pi\)
0.210757 + 0.977538i \(0.432407\pi\)
\(548\) 3.98937 + 8.56804i 0.170418 + 0.366008i
\(549\) 0 0
\(550\) 0 0
\(551\) 0.412335 0.0175661
\(552\) 0 0
\(553\) −20.2341 −0.860440
\(554\) 4.51082 + 20.3746i 0.191647 + 0.865634i
\(555\) 0 0
\(556\) 28.5693 13.3022i 1.21161 0.564139i
\(557\) −2.68305 −0.113685 −0.0568423 0.998383i \(-0.518103\pi\)
−0.0568423 + 0.998383i \(0.518103\pi\)
\(558\) 0 0
\(559\) 33.6890i 1.42489i
\(560\) 0 0
\(561\) 0 0
\(562\) −6.58600 29.7478i −0.277814 1.25484i
\(563\) 12.0794i 0.509087i −0.967061 0.254543i \(-0.918075\pi\)
0.967061 0.254543i \(-0.0819251\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 25.2278 5.58530i 1.06040 0.234768i
\(567\) 0 0
\(568\) 21.8463 16.7335i 0.916651 0.702122i
\(569\) 15.8479i 0.664379i −0.943213 0.332190i \(-0.892213\pi\)
0.943213 0.332190i \(-0.107787\pi\)
\(570\) 0 0
\(571\) 1.11078 0.0464847 0.0232423 0.999730i \(-0.492601\pi\)
0.0232423 + 0.999730i \(0.492601\pi\)
\(572\) 0.915238 0.426145i 0.0382680 0.0178180i
\(573\) 0 0
\(574\) 18.0140 3.98819i 0.751888 0.166464i
\(575\) 0 0
\(576\) 0 0
\(577\) −14.7755 −0.615113 −0.307556 0.951530i \(-0.599511\pi\)
−0.307556 + 0.951530i \(0.599511\pi\)
\(578\) 29.6934 6.57394i 1.23508 0.273440i
\(579\) 0 0
\(580\) 0 0
\(581\) −21.5510 −0.894087
\(582\) 0 0
\(583\) 1.67987i 0.0695730i
\(584\) −12.2568 + 9.38824i −0.507189 + 0.388488i
\(585\) 0 0
\(586\) −8.28467 + 1.83418i −0.342237 + 0.0757693i
\(587\) 13.5590i 0.559640i −0.960052 0.279820i \(-0.909725\pi\)
0.960052 0.279820i \(-0.0902748\pi\)
\(588\) 0 0
\(589\) 9.45126i 0.389433i
\(590\) 0 0
\(591\) 0 0
\(592\) −23.3249 19.6174i −0.958646 0.806271i
\(593\) 31.9921i 1.31376i 0.753996 + 0.656879i \(0.228124\pi\)
−0.753996 + 0.656879i \(0.771876\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 14.0140 6.52505i 0.574034 0.267277i
\(597\) 0 0
\(598\) 4.23407 + 19.1246i 0.173144 + 0.782062i
\(599\) 3.82174 0.156152 0.0780760 0.996947i \(-0.475122\pi\)
0.0780760 + 0.996947i \(0.475122\pi\)
\(600\) 0 0
\(601\) 31.6435 1.29076 0.645382 0.763860i \(-0.276698\pi\)
0.645382 + 0.763860i \(0.276698\pi\)
\(602\) 5.52311 + 24.9469i 0.225105 + 1.01676i
\(603\) 0 0
\(604\) 18.7495 + 40.2686i 0.762906 + 1.63850i
\(605\) 0 0
\(606\) 0 0
\(607\) 34.7204i 1.40926i 0.709576 + 0.704629i \(0.248886\pi\)
−0.709576 + 0.704629i \(0.751114\pi\)
\(608\) 3.98937 7.63682i 0.161790 0.309714i
\(609\) 0 0
\(610\) 0 0
\(611\) 10.0043i 0.404732i
\(612\) 0 0
\(613\) 26.3612i 1.06472i −0.846519 0.532359i \(-0.821306\pi\)
0.846519 0.532359i \(-0.178694\pi\)
\(614\) 31.0741 6.87964i 1.25405 0.277640i
\(615\) 0 0
\(616\) −0.607876 + 0.465611i −0.0244920 + 0.0187600i
\(617\) 7.88509i 0.317442i −0.987323 0.158721i \(-0.949263\pi\)
0.987323 0.158721i \(-0.0507370\pi\)
\(618\) 0 0
\(619\) −38.9325 −1.56483 −0.782415 0.622757i \(-0.786012\pi\)
−0.782415 + 0.622757i \(0.786012\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 42.8680 9.49073i 1.71885 0.380544i
\(623\) −5.04623 −0.202173
\(624\) 0 0
\(625\) 0 0
\(626\) −3.08476 + 0.682949i −0.123292 + 0.0272961i
\(627\) 0 0
\(628\) −6.75552 14.5089i −0.269575 0.578970i
\(629\) 47.2803 1.88519
\(630\) 0 0
\(631\) 0.800468i 0.0318661i 0.999873 + 0.0159331i \(0.00507186\pi\)
−0.999873 + 0.0159331i \(0.994928\pi\)
\(632\) 24.6079 + 32.1267i 0.978849 + 1.27793i
\(633\) 0 0
\(634\) −22.7895 + 5.04546i −0.905085 + 0.200381i
\(635\) 0 0
\(636\) 0 0
\(637\) 13.1850i 0.522409i
\(638\) 0.0158420 + 0.0715557i 0.000627192 + 0.00283292i
\(639\) 0 0
\(640\) 0 0
\(641\) 22.8931i 0.904222i 0.891962 + 0.452111i \(0.149329\pi\)
−0.891962 + 0.452111i \(0.850671\pi\)
\(642\) 0 0
\(643\) 12.9538 0.510847 0.255423 0.966829i \(-0.417785\pi\)
0.255423 + 0.966829i \(0.417785\pi\)
\(644\) −6.27072 13.4677i −0.247101 0.530702i
\(645\) 0 0
\(646\) 2.88922 + 13.0501i 0.113675 + 0.513449i
\(647\) 15.6647 0.615844 0.307922 0.951412i \(-0.400366\pi\)
0.307922 + 0.951412i \(0.400366\pi\)
\(648\) 0 0
\(649\) −2.00000 −0.0785069
\(650\) 0 0
\(651\) 0 0
\(652\) 1.72928 0.805173i 0.0677239 0.0315330i
\(653\) −41.5144 −1.62458 −0.812292 0.583252i \(-0.801780\pi\)
−0.812292 + 0.583252i \(0.801780\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −28.2401 23.7514i −1.10259 0.927336i
\(657\) 0 0
\(658\) −1.64015 7.40828i −0.0639398 0.288805i
\(659\) 34.8859i 1.35896i 0.733693 + 0.679481i \(0.237795\pi\)
−0.733693 + 0.679481i \(0.762205\pi\)
\(660\) 0 0
\(661\) 19.7990i 0.770091i −0.922897 0.385046i \(-0.874186\pi\)
0.922897 0.385046i \(-0.125814\pi\)
\(662\) 17.9248 3.96846i 0.696668 0.154238i
\(663\) 0 0
\(664\) 26.2095 + 34.2177i 1.01713 + 1.32790i
\(665\) 0 0
\(666\) 0 0
\(667\) −1.42192 −0.0550569
\(668\) −21.3169 + 9.92541i −0.824777 + 0.384025i
\(669\) 0 0
\(670\) 0 0
\(671\) 0.0732884 0.00282927
\(672\) 0 0
\(673\) −34.1849 −1.31773 −0.658866 0.752260i \(-0.728964\pi\)
−0.658866 + 0.752260i \(0.728964\pi\)
\(674\) −37.2943 + 8.25674i −1.43652 + 0.318038i
\(675\) 0 0
\(676\) 10.9624 5.10422i 0.421631 0.196316i
\(677\) 17.0462 0.655140 0.327570 0.944827i \(-0.393770\pi\)
0.327570 + 0.944827i \(0.393770\pi\)
\(678\) 0 0
\(679\) 10.3477i 0.397109i
\(680\) 0 0
\(681\) 0 0
\(682\) 1.64015 0.363120i 0.0628046 0.0139046i
\(683\) 28.6671i 1.09692i 0.836178 + 0.548459i \(0.184785\pi\)
−0.836178 + 0.548459i \(0.815215\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 5.18785 + 23.4326i 0.198073 + 0.894660i
\(687\) 0 0
\(688\) 32.8925 39.1088i 1.25402 1.49101i
\(689\) 23.1410i 0.881603i
\(690\) 0 0
\(691\) −27.0741 −1.02995 −0.514974 0.857206i \(-0.672199\pi\)
−0.514974 + 0.857206i \(0.672199\pi\)
\(692\) −5.84632 + 2.72211i −0.222244 + 0.103479i
\(693\) 0 0
\(694\) −1.55102 7.00569i −0.0588760 0.265932i
\(695\) 0 0
\(696\) 0 0
\(697\) 57.2437 2.16826
\(698\) −6.15368 27.7951i −0.232920 1.05206i
\(699\) 0 0
\(700\) 0 0
\(701\) −23.5510 −0.889510 −0.444755 0.895652i \(-0.646709\pi\)
−0.444755 + 0.895652i \(0.646709\pi\)
\(702\) 0 0
\(703\) 11.6053i 0.437701i
\(704\) 1.47855 + 0.398898i 0.0557249 + 0.0150340i
\(705\) 0 0
\(706\) 4.37380 + 19.7557i 0.164610 + 0.743516i
\(707\) 21.9925i 0.827112i
\(708\) 0 0
\(709\) 7.85033i 0.294825i −0.989075 0.147413i \(-0.952905\pi\)
0.989075 0.147413i \(-0.0470945\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 6.13702 + 8.01216i 0.229995 + 0.300268i
\(713\) 32.5923i 1.22059i
\(714\) 0 0
\(715\) 0 0
\(716\) −10.6385 22.8484i −0.397579 0.853886i
\(717\) 0 0
\(718\) 43.9388 9.72780i 1.63978 0.363038i
\(719\) 10.1416 0.378218 0.189109 0.981956i \(-0.439440\pi\)
0.189109 + 0.981956i \(0.439440\pi\)
\(720\) 0 0
\(721\) −2.95377 −0.110004
\(722\) 23.0316 5.09906i 0.857146 0.189767i
\(723\) 0 0
\(724\) −20.3511 43.7084i −0.756343 1.62441i
\(725\) 0 0
\(726\) 0 0
\(727\) 4.86524i 0.180442i 0.995922 + 0.0902208i \(0.0287573\pi\)
−0.995922 + 0.0902208i \(0.971243\pi\)
\(728\) 8.37380 6.41403i 0.310354 0.237720i
\(729\) 0 0
\(730\) 0 0
\(731\) 79.2749i 2.93209i
\(732\) 0 0
\(733\) 9.09903i 0.336080i −0.985780 0.168040i \(-0.946256\pi\)
0.985780 0.168040i \(-0.0537438\pi\)
\(734\) −7.02624 31.7363i −0.259343 1.17141i
\(735\) 0 0
\(736\) −13.7572 + 26.3352i −0.507097 + 0.970730i
\(737\) 0.331031i 0.0121937i
\(738\) 0 0
\(739\) 12.5693 0.462371 0.231185 0.972910i \(-0.425740\pi\)
0.231185 + 0.972910i \(0.425740\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 3.79383 + 17.1361i 0.139276 + 0.629085i
\(743\) 23.6647 0.868175 0.434087 0.900871i \(-0.357071\pi\)
0.434087 + 0.900871i \(0.357071\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −4.35382 19.6654i −0.159405 0.720002i
\(747\) 0 0
\(748\) −2.15368 + 1.00278i −0.0787464 + 0.0366652i
\(749\) −4.00000 −0.146157
\(750\) 0 0
\(751\) 31.2782i 1.14136i −0.821173 0.570679i \(-0.806680\pi\)
0.821173 0.570679i \(-0.193320\pi\)
\(752\) −9.76781 + 11.6138i −0.356196 + 0.423512i
\(753\) 0 0
\(754\) −0.218232 0.985716i −0.00794754 0.0358977i
\(755\) 0 0
\(756\) 0 0
\(757\) 39.1150i 1.42166i 0.703365 + 0.710829i \(0.251680\pi\)
−0.703365 + 0.710829i \(0.748320\pi\)
\(758\) 12.0279 2.66291i 0.436873 0.0967213i
\(759\) 0 0
\(760\) 0 0
\(761\) 2.76305i 0.100160i −0.998745 0.0500802i \(-0.984052\pi\)
0.998745 0.0500802i \(-0.0159477\pi\)
\(762\) 0 0
\(763\) −7.45856 −0.270018
\(764\) 19.7938 9.21623i 0.716116 0.333431i
\(765\) 0 0
\(766\) 25.8357 5.71988i 0.933482 0.206668i
\(767\) 27.5510 0.994810
\(768\) 0 0
\(769\) 46.5606 1.67902 0.839509 0.543345i \(-0.182843\pi\)
0.839509 + 0.543345i \(0.182843\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 27.7711 12.9306i 0.999505 0.465381i
\(773\) 29.5877 1.06419 0.532097 0.846683i \(-0.321404\pi\)
0.532097 + 0.846683i \(0.321404\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 16.4296 12.5845i 0.589789 0.451757i
\(777\) 0 0
\(778\) 37.2943 8.25674i 1.33706 0.296019i
\(779\) 14.0508i 0.503424i
\(780\) 0 0
\(781\) 1.86244i 0.0666435i
\(782\) −9.96336 45.0027i −0.356289 1.60929i
\(783\) 0 0
\(784\) 12.8733 15.3062i 0.459760 0.546649i
\(785\) 0 0
\(786\) 0 0
\(787\) 35.9267 1.28065 0.640324 0.768105i \(-0.278800\pi\)
0.640324 + 0.768105i \(0.278800\pi\)
\(788\) 30.9065 14.3904i 1.10100 0.512637i
\(789\) 0 0
\(790\) 0 0
\(791\) −8.23407 −0.292770
\(792\) 0 0
\(793\) −1.00958 −0.0358514
\(794\) 7.76322 + 35.0651i 0.275506 + 1.24441i
\(795\) 0 0
\(796\) 3.98937 + 8.56804i 0.141400 + 0.303686i
\(797\) 9.31695 0.330023 0.165012 0.986292i \(-0.447234\pi\)
0.165012 + 0.986292i \(0.447234\pi\)
\(798\) 0 0
\(799\) 23.5416i 0.832841i
\(800\) 0 0
\(801\) 0 0
\(802\) −1.83840 8.30372i −0.0649161 0.293215i
\(803\) 1.04491i 0.0368742i
\(804\) 0 0
\(805\) 0 0
\(806\) −22.5939 + 5.00217i −0.795837 + 0.176194i
\(807\) 0 0
\(808\) −34.9186 + 26.7464i −1.22843 + 0.940934i
\(809\) 34.9207i 1.22775i 0.789405 + 0.613873i \(0.210389\pi\)
−0.789405 + 0.613873i \(0.789611\pi\)
\(810\) 0 0
\(811\) −25.7938 −0.905744 −0.452872 0.891576i \(-0.649601\pi\)
−0.452872 + 0.891576i \(0.649601\pi\)
\(812\) 0.323204 + 0.694151i 0.0113423 + 0.0243599i
\(813\) 0 0
\(814\) −2.01395 + 0.445878i −0.0705890 + 0.0156280i
\(815\) 0 0
\(816\) 0 0
\(817\) −19.4586 −0.680769
\(818\) 26.9956 5.97668i 0.943880 0.208970i
\(819\) 0 0
\(820\) 0 0
\(821\) 31.1878 1.08846 0.544232 0.838935i \(-0.316821\pi\)
0.544232 + 0.838935i \(0.316821\pi\)
\(822\) 0 0
\(823\) 33.5718i 1.17024i −0.810947 0.585120i \(-0.801047\pi\)
0.810947 0.585120i \(-0.198953\pi\)
\(824\) 3.59226 + 4.68985i 0.125142 + 0.163379i
\(825\) 0 0
\(826\) −20.4017 + 4.51683i −0.709866 + 0.157160i
\(827\) 53.4362i 1.85816i −0.369881 0.929079i \(-0.620601\pi\)
0.369881 0.929079i \(-0.379399\pi\)
\(828\) 0 0
\(829\) 0.634952i 0.0220528i 0.999939 + 0.0110264i \(0.00350988\pi\)
−0.999939 + 0.0110264i \(0.996490\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −20.3678 5.49503i −0.706125 0.190506i
\(833\) 31.0261i 1.07499i
\(834\) 0 0
\(835\) 0 0
\(836\) −0.246139 0.528636i −0.00851288 0.0182833i
\(837\) 0 0
\(838\) −0.599955 2.70989i −0.0207251 0.0936117i
\(839\) 24.9046 0.859803 0.429901 0.902876i \(-0.358548\pi\)
0.429901 + 0.902876i \(0.358548\pi\)
\(840\) 0 0
\(841\) −28.9267 −0.997473
\(842\) 1.31695 + 5.94842i 0.0453850 + 0.204996i
\(843\) 0 0
\(844\) 30.5327 14.2164i 1.05098 0.489347i
\(845\) 0 0
\(846\) 0 0
\(847\) 15.5045i 0.532742i
\(848\) 22.5939 26.8639i 0.775878 0.922509i
\(849\) 0 0
\(850\) 0 0
\(851\) 40.0203i 1.37188i
\(852\) 0 0
\(853\) 17.5448i 0.600724i 0.953825 + 0.300362i \(0.0971075\pi\)
−0.953825 + 0.300362i \(0.902893\pi\)
\(854\) 0.747604 0.165515i 0.0255825 0.00566382i
\(855\) 0 0
\(856\) 4.86464 + 6.35101i 0.166270 + 0.217073i
\(857\) 7.30196i 0.249430i 0.992193 + 0.124715i \(0.0398017\pi\)
−0.992193 + 0.124715i \(0.960198\pi\)
\(858\) 0 0
\(859\) 15.2890 0.521655 0.260828 0.965385i \(-0.416005\pi\)
0.260828 + 0.965385i \(0.416005\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 16.3232 3.61387i 0.555971 0.123089i
\(863\) −41.9787 −1.42897 −0.714487 0.699649i \(-0.753340\pi\)
−0.714487 + 0.699649i \(0.753340\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 13.0602 2.89145i 0.443803 0.0982555i
\(867\) 0 0
\(868\) 15.9109 7.40828i 0.540050 0.251453i
\(869\) 2.73887 0.0929097
\(870\) 0 0
\(871\) 4.56012i 0.154514i
\(872\) 9.07081 + 11.8423i 0.307176 + 0.401032i
\(873\) 0 0
\(874\) 11.0462 2.44557i 0.373644 0.0827228i
\(875\) 0 0
\(876\) 0 0
\(877\) 38.4800i 1.29938i 0.760200 + 0.649689i \(0.225101\pi\)
−0.760200 + 0.649689i \(0.774899\pi\)
\(878\) −4.90317 22.1468i −0.165474 0.747418i
\(879\) 0 0
\(880\) 0 0
\(881\) 7.11053i 0.239560i 0.992800 + 0.119780i \(0.0382189\pi\)
−0.992800 + 0.119780i \(0.961781\pi\)
\(882\) 0 0
\(883\) 26.5048 0.891957 0.445979 0.895044i \(-0.352856\pi\)
0.445979 + 0.895044i \(0.352856\pi\)
\(884\) 29.6681 13.8138i 0.997845 0.464608i
\(885\) 0 0
\(886\) −7.66473 34.6202i −0.257502 1.16309i
\(887\) 39.3449 1.32107 0.660535 0.750795i \(-0.270329\pi\)
0.660535 + 0.750795i \(0.270329\pi\)
\(888\) 0 0
\(889\) 29.0462 0.974179
\(890\) 0 0
\(891\) 0 0
\(892\) 18.8340 + 40.4501i 0.630610 + 1.35437i
\(893\) 5.77844 0.193368
\(894\) 0 0
\(895\) 0 0
\(896\) 15.9833 + 0.729929i 0.533966 + 0.0243852i
\(897\) 0 0
\(898\) −1.29696 5.85815i −0.0432802 0.195489i
\(899\) 1.67987i 0.0560267i
\(900\) 0 0
\(901\) 54.4540i 1.81413i
\(902\) −2.43835 + 0.539838i −0.0811883 + 0.0179746i
\(903\) 0 0
\(904\) 10.0140 + 13.0737i 0.333059 + 0.434824i
\(905\) 0 0
\(906\) 0 0
\(907\) 22.1974 0.737054 0.368527 0.929617i \(-0.379862\pi\)
0.368527 + 0.929617i \(0.379862\pi\)
\(908\) 7.48647 + 16.0788i 0.248447 + 0.533594i
\(909\) 0 0
\(910\) 0 0
\(911\) −20.9538 −0.694229 −0.347115 0.937823i \(-0.612839\pi\)
−0.347115 + 0.937823i \(0.612839\pi\)
\(912\) 0 0
\(913\) 2.91713 0.0965428
\(914\) 39.8603 8.82484i 1.31846 0.291900i
\(915\) 0 0
\(916\) 17.9634 + 38.5802i 0.593526 + 1.27472i
\(917\) −19.1878 −0.633638
\(918\) 0 0
\(919\) 7.88509i 0.260105i −0.991507 0.130053i \(-0.958485\pi\)
0.991507 0.130053i \(-0.0415146\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −50.7282 + 11.2310i −1.67065 + 0.369872i
\(923\) 25.6561i 0.844481i
\(924\) 0 0
\(925\) 0 0
\(926\) −5.07873 22.9397i −0.166897 0.753846i
\(927\) 0 0
\(928\) 0.709071 1.35737i 0.0232764 0.0445578i
\(929\) 6.35718i 0.208572i 0.994547 + 0.104286i \(0.0332558\pi\)
−0.994547 + 0.104286i \(0.966744\pi\)
\(930\) 0 0
\(931\) −7.61557 −0.249590
\(932\) −12.7249 27.3295i −0.416818 0.895207i
\(933\) 0 0
\(934\) −0.452306 2.04299i −0.0147999 0.0668486i
\(935\) 0 0
\(936\) 0 0
\(937\) −35.0096 −1.14371 −0.571857 0.820354i \(-0.693777\pi\)
−0.571857 + 0.820354i \(0.693777\pi\)
\(938\) −0.747604 3.37680i −0.0244101 0.110256i
\(939\) 0 0
\(940\) 0 0
\(941\) −28.5606 −0.931049 −0.465525 0.885035i \(-0.654134\pi\)
−0.465525 + 0.885035i \(0.654134\pi\)
\(942\) 0 0
\(943\) 48.4538i 1.57787i
\(944\) 31.9833 + 26.8997i 1.04097 + 0.875509i
\(945\) 0 0
\(946\) −0.747604 3.37680i −0.0243067 0.109789i
\(947\) 20.7650i 0.674771i 0.941367 + 0.337385i \(0.109543\pi\)
−0.941367 + 0.337385i \(0.890457\pi\)
\(948\) 0 0
\(949\) 14.3942i 0.467257i
\(950\) 0 0
\(951\) 0 0
\(952\) −19.7047 + 15.0931i −0.638633 + 0.489170i
\(953\) 38.4147i 1.24437i 0.782869 + 0.622186i \(0.213755\pi\)
−0.782869 + 0.622186i \(0.786245\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 34.5327 16.0788i 1.11687 0.520026i
\(957\) 0 0
\(958\) −3.88296 + 0.859666i −0.125453 + 0.0277746i
\(959\) 6.68305 0.215807
\(960\) 0 0
\(961\) −7.50479 −0.242090
\(962\) 27.7432 6.14220i 0.894478 0.198032i
\(963\) 0 0
\(964\) 33.5510 15.6217i 1.08061 0.503142i
\(965\) 0 0
\(966\) 0 0
\(967\) 16.6013i 0.533861i 0.963716 + 0.266930i \(0.0860094\pi\)
−0.963716 + 0.266930i \(0.913991\pi\)
\(968\) −24.6173 + 18.8560i −0.791231 + 0.606054i
\(969\) 0 0
\(970\) 0 0
\(971\) 10.3171i 0.331092i 0.986202 + 0.165546i \(0.0529386\pi\)
−0.986202 + 0.165546i \(0.947061\pi\)
\(972\) 0 0
\(973\) 22.2840i 0.714393i
\(974\) 5.17992 + 23.3968i 0.165975 + 0.749682i
\(975\) 0 0
\(976\) −1.17200 0.985716i −0.0375149 0.0315520i
\(977\) 32.0439i 1.02518i −0.858635 0.512588i \(-0.828687\pi\)
0.858635 0.512588i \(-0.171313\pi\)
\(978\) 0 0
\(979\) 0.683053 0.0218305
\(980\) 0 0
\(981\) 0 0
\(982\) −7.96939 35.9963i −0.254313 1.14869i
\(983\) 24.8034 0.791106 0.395553 0.918443i \(-0.370553\pi\)
0.395553 + 0.918443i \(0.370553\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0.513530 + 2.31952i 0.0163541 + 0.0738687i
\(987\) 0 0
\(988\) 3.39069 + 7.28223i 0.107872 + 0.231679i
\(989\) 67.1020 2.13372
\(990\) 0 0
\(991\) 15.7872i 0.501498i −0.968052 0.250749i \(-0.919323\pi\)
0.968052 0.250749i \(-0.0806769\pi\)
\(992\) −31.1127 16.2529i −0.987828 0.516029i
\(993\) 0 0
\(994\) −4.20617 18.9985i −0.133412 0.602597i
\(995\) 0 0
\(996\) 0 0
\(997\) 51.3823i 1.62729i −0.581359 0.813647i \(-0.697479\pi\)
0.581359 0.813647i \(-0.302521\pi\)
\(998\) −31.1127 + 6.88817i −0.984854 + 0.218041i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1800.2.b.d.251.2 6
3.2 odd 2 1800.2.b.e.251.5 6
4.3 odd 2 7200.2.b.e.4751.5 6
5.2 odd 4 1800.2.m.e.899.5 12
5.3 odd 4 1800.2.m.e.899.8 12
5.4 even 2 360.2.b.d.251.5 yes 6
8.3 odd 2 1800.2.b.e.251.6 6
8.5 even 2 7200.2.b.d.4751.2 6
12.11 even 2 7200.2.b.d.4751.5 6
15.2 even 4 1800.2.m.d.899.8 12
15.8 even 4 1800.2.m.d.899.5 12
15.14 odd 2 360.2.b.c.251.2 yes 6
20.3 even 4 7200.2.m.e.3599.9 12
20.7 even 4 7200.2.m.e.3599.3 12
20.19 odd 2 1440.2.b.d.431.2 6
24.5 odd 2 7200.2.b.e.4751.2 6
24.11 even 2 inner 1800.2.b.d.251.1 6
40.3 even 4 1800.2.m.d.899.7 12
40.13 odd 4 7200.2.m.d.3599.3 12
40.19 odd 2 360.2.b.c.251.1 6
40.27 even 4 1800.2.m.d.899.6 12
40.29 even 2 1440.2.b.c.431.5 6
40.37 odd 4 7200.2.m.d.3599.9 12
60.23 odd 4 7200.2.m.d.3599.10 12
60.47 odd 4 7200.2.m.d.3599.4 12
60.59 even 2 1440.2.b.c.431.2 6
120.29 odd 2 1440.2.b.d.431.5 6
120.53 even 4 7200.2.m.e.3599.4 12
120.59 even 2 360.2.b.d.251.6 yes 6
120.77 even 4 7200.2.m.e.3599.10 12
120.83 odd 4 1800.2.m.e.899.6 12
120.107 odd 4 1800.2.m.e.899.7 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
360.2.b.c.251.1 6 40.19 odd 2
360.2.b.c.251.2 yes 6 15.14 odd 2
360.2.b.d.251.5 yes 6 5.4 even 2
360.2.b.d.251.6 yes 6 120.59 even 2
1440.2.b.c.431.2 6 60.59 even 2
1440.2.b.c.431.5 6 40.29 even 2
1440.2.b.d.431.2 6 20.19 odd 2
1440.2.b.d.431.5 6 120.29 odd 2
1800.2.b.d.251.1 6 24.11 even 2 inner
1800.2.b.d.251.2 6 1.1 even 1 trivial
1800.2.b.e.251.5 6 3.2 odd 2
1800.2.b.e.251.6 6 8.3 odd 2
1800.2.m.d.899.5 12 15.8 even 4
1800.2.m.d.899.6 12 40.27 even 4
1800.2.m.d.899.7 12 40.3 even 4
1800.2.m.d.899.8 12 15.2 even 4
1800.2.m.e.899.5 12 5.2 odd 4
1800.2.m.e.899.6 12 120.83 odd 4
1800.2.m.e.899.7 12 120.107 odd 4
1800.2.m.e.899.8 12 5.3 odd 4
7200.2.b.d.4751.2 6 8.5 even 2
7200.2.b.d.4751.5 6 12.11 even 2
7200.2.b.e.4751.2 6 24.5 odd 2
7200.2.b.e.4751.5 6 4.3 odd 2
7200.2.m.d.3599.3 12 40.13 odd 4
7200.2.m.d.3599.4 12 60.47 odd 4
7200.2.m.d.3599.9 12 40.37 odd 4
7200.2.m.d.3599.10 12 60.23 odd 4
7200.2.m.e.3599.3 12 20.7 even 4
7200.2.m.e.3599.4 12 120.53 even 4
7200.2.m.e.3599.9 12 20.3 even 4
7200.2.m.e.3599.10 12 120.77 even 4