Properties

Label 1800.2.m.e.899.8
Level $1800$
Weight $2$
Character 1800.899
Analytic conductor $14.373$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1800,2,Mod(899,1800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1800.899");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1800 = 2^{3} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1800.m (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.3730723638\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: 12.0.426337261060096.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4x^{9} - 3x^{8} + 4x^{7} + 8x^{6} + 8x^{5} - 12x^{4} - 32x^{3} + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{7} \)
Twist minimal: no (minimal twist has level 360)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 899.8
Root \(-0.760198 + 1.19252i\) of defining polynomial
Character \(\chi\) \(=\) 1800.899
Dual form 1800.2.m.e.899.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.305697 + 1.38078i) q^{2} +(-1.81310 + 0.844199i) q^{4} -1.41421 q^{7} +(-1.71991 - 2.24542i) q^{8} +0.191427i q^{11} +2.63700 q^{13} +(-0.432320 - 1.95272i) q^{14} +(2.57466 - 3.06123i) q^{16} +6.20522 q^{17} +1.52311 q^{19} +(-0.264318 + 0.0585185i) q^{22} +5.25240i q^{23} +(0.806122 + 3.64111i) q^{26} +(2.56411 - 1.19388i) q^{28} +0.270718 q^{29} +6.20522i q^{31} +(5.01395 + 2.61922i) q^{32} +(1.89692 + 8.56804i) q^{34} -7.61944 q^{37} +(0.465611 + 2.10308i) q^{38} -9.22508i q^{41} +12.7755i q^{43} +(-0.161602 - 0.347076i) q^{44} +(-7.25240 + 1.60564i) q^{46} +3.79383i q^{47} -5.00000 q^{49} +(-4.78114 + 2.22615i) q^{52} +8.77551i q^{53} +(2.43232 + 3.17550i) q^{56} +(0.0827577 + 0.373802i) q^{58} -10.4479i q^{59} -0.382853i q^{61} +(-8.56804 + 1.89692i) q^{62} +(-2.08382 + 7.72384i) q^{64} +1.72928i q^{67} +(-11.2507 + 5.23844i) q^{68} -9.72928 q^{71} +5.45856i q^{73} +(-2.32924 - 10.5208i) q^{74} +(-2.76156 + 1.28581i) q^{76} -0.270718i q^{77} +14.3077i q^{79} +(12.7378 - 2.82008i) q^{82} +15.2389 q^{83} +(-17.6402 + 3.90543i) q^{86} +(0.429833 - 0.329237i) q^{88} +3.56822i q^{89} -3.72928 q^{91} +(-4.43407 - 9.52311i) q^{92} +(-5.23844 + 1.15976i) q^{94} +7.31695i q^{97} +(-1.52848 - 6.90389i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 4 q^{4} - 12 q^{16} - 32 q^{19} + 40 q^{26} + 24 q^{29} + 8 q^{34} + 24 q^{44} - 16 q^{46} - 60 q^{49} + 24 q^{56} - 28 q^{64} - 96 q^{71} - 8 q^{74} - 8 q^{76} - 80 q^{86} - 24 q^{91} - 88 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1800\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(901\) \(1001\) \(1351\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.305697 + 1.38078i 0.216160 + 0.976358i
\(3\) 0 0
\(4\) −1.81310 + 0.844199i −0.906550 + 0.422099i
\(5\) 0 0
\(6\) 0 0
\(7\) −1.41421 −0.534522 −0.267261 0.963624i \(-0.586119\pi\)
−0.267261 + 0.963624i \(0.586119\pi\)
\(8\) −1.71991 2.24542i −0.608080 0.793876i
\(9\) 0 0
\(10\) 0 0
\(11\) 0.191427i 0.0577173i 0.999584 + 0.0288587i \(0.00918727\pi\)
−0.999584 + 0.0288587i \(0.990813\pi\)
\(12\) 0 0
\(13\) 2.63700 0.731372 0.365686 0.930738i \(-0.380834\pi\)
0.365686 + 0.930738i \(0.380834\pi\)
\(14\) −0.432320 1.95272i −0.115542 0.521885i
\(15\) 0 0
\(16\) 2.57466 3.06123i 0.643664 0.765308i
\(17\) 6.20522 1.50499 0.752494 0.658599i \(-0.228851\pi\)
0.752494 + 0.658599i \(0.228851\pi\)
\(18\) 0 0
\(19\) 1.52311 0.349426 0.174713 0.984619i \(-0.444100\pi\)
0.174713 + 0.984619i \(0.444100\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −0.264318 + 0.0585185i −0.0563528 + 0.0124762i
\(23\) 5.25240i 1.09520i 0.836740 + 0.547600i \(0.184458\pi\)
−0.836740 + 0.547600i \(0.815542\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0.806122 + 3.64111i 0.158094 + 0.714081i
\(27\) 0 0
\(28\) 2.56411 1.19388i 0.484571 0.225622i
\(29\) 0.270718 0.0502711 0.0251356 0.999684i \(-0.491998\pi\)
0.0251356 + 0.999684i \(0.491998\pi\)
\(30\) 0 0
\(31\) 6.20522i 1.11449i 0.830348 + 0.557245i \(0.188142\pi\)
−0.830348 + 0.557245i \(0.811858\pi\)
\(32\) 5.01395 + 2.61922i 0.886349 + 0.463017i
\(33\) 0 0
\(34\) 1.89692 + 8.56804i 0.325318 + 1.46941i
\(35\) 0 0
\(36\) 0 0
\(37\) −7.61944 −1.25263 −0.626314 0.779571i \(-0.715437\pi\)
−0.626314 + 0.779571i \(0.715437\pi\)
\(38\) 0.465611 + 2.10308i 0.0755321 + 0.341165i
\(39\) 0 0
\(40\) 0 0
\(41\) 9.22508i 1.44071i −0.693603 0.720357i \(-0.743978\pi\)
0.693603 0.720357i \(-0.256022\pi\)
\(42\) 0 0
\(43\) 12.7755i 1.94825i 0.226016 + 0.974124i \(0.427430\pi\)
−0.226016 + 0.974124i \(0.572570\pi\)
\(44\) −0.161602 0.347076i −0.0243625 0.0523236i
\(45\) 0 0
\(46\) −7.25240 + 1.60564i −1.06931 + 0.236739i
\(47\) 3.79383i 0.553387i 0.960958 + 0.276694i \(0.0892387\pi\)
−0.960958 + 0.276694i \(0.910761\pi\)
\(48\) 0 0
\(49\) −5.00000 −0.714286
\(50\) 0 0
\(51\) 0 0
\(52\) −4.78114 + 2.22615i −0.663025 + 0.308712i
\(53\) 8.77551i 1.20541i 0.797964 + 0.602705i \(0.205910\pi\)
−0.797964 + 0.602705i \(0.794090\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 2.43232 + 3.17550i 0.325032 + 0.424344i
\(57\) 0 0
\(58\) 0.0827577 + 0.373802i 0.0108666 + 0.0490826i
\(59\) 10.4479i 1.36020i −0.733121 0.680098i \(-0.761937\pi\)
0.733121 0.680098i \(-0.238063\pi\)
\(60\) 0 0
\(61\) 0.382853i 0.0490194i −0.999700 0.0245097i \(-0.992198\pi\)
0.999700 0.0245097i \(-0.00780245\pi\)
\(62\) −8.56804 + 1.89692i −1.08814 + 0.240909i
\(63\) 0 0
\(64\) −2.08382 + 7.72384i −0.260477 + 0.965480i
\(65\) 0 0
\(66\) 0 0
\(67\) 1.72928i 0.211265i 0.994405 + 0.105633i \(0.0336868\pi\)
−0.994405 + 0.105633i \(0.966313\pi\)
\(68\) −11.2507 + 5.23844i −1.36435 + 0.635255i
\(69\) 0 0
\(70\) 0 0
\(71\) −9.72928 −1.15465 −0.577327 0.816513i \(-0.695904\pi\)
−0.577327 + 0.816513i \(0.695904\pi\)
\(72\) 0 0
\(73\) 5.45856i 0.638877i 0.947607 + 0.319438i \(0.103494\pi\)
−0.947607 + 0.319438i \(0.896506\pi\)
\(74\) −2.32924 10.5208i −0.270768 1.22301i
\(75\) 0 0
\(76\) −2.76156 + 1.28581i −0.316772 + 0.147493i
\(77\) 0.270718i 0.0308512i
\(78\) 0 0
\(79\) 14.3077i 1.60974i 0.593454 + 0.804868i \(0.297764\pi\)
−0.593454 + 0.804868i \(0.702236\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 12.7378 2.82008i 1.40665 0.311425i
\(83\) 15.2389 1.67268 0.836342 0.548208i \(-0.184690\pi\)
0.836342 + 0.548208i \(0.184690\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −17.6402 + 3.90543i −1.90219 + 0.421134i
\(87\) 0 0
\(88\) 0.429833 0.329237i 0.0458204 0.0350968i
\(89\) 3.56822i 0.378231i 0.981955 + 0.189115i \(0.0605620\pi\)
−0.981955 + 0.189115i \(0.939438\pi\)
\(90\) 0 0
\(91\) −3.72928 −0.390935
\(92\) −4.43407 9.52311i −0.462283 0.992853i
\(93\) 0 0
\(94\) −5.23844 + 1.15976i −0.540304 + 0.119620i
\(95\) 0 0
\(96\) 0 0
\(97\) 7.31695i 0.742923i 0.928448 + 0.371462i \(0.121143\pi\)
−0.928448 + 0.371462i \(0.878857\pi\)
\(98\) −1.52848 6.90389i −0.154400 0.697399i
\(99\) 0 0
\(100\) 0 0
\(101\) 15.5510 1.54738 0.773692 0.633562i \(-0.218408\pi\)
0.773692 + 0.633562i \(0.218408\pi\)
\(102\) 0 0
\(103\) 2.08863 0.205799 0.102899 0.994692i \(-0.467188\pi\)
0.102899 + 0.994692i \(0.467188\pi\)
\(104\) −4.53540 5.92117i −0.444733 0.580619i
\(105\) 0 0
\(106\) −12.1170 + 2.68264i −1.17691 + 0.260561i
\(107\) −2.82843 −0.273434 −0.136717 0.990610i \(-0.543655\pi\)
−0.136717 + 0.990610i \(0.543655\pi\)
\(108\) 0 0
\(109\) 5.27400i 0.505158i 0.967576 + 0.252579i \(0.0812787\pi\)
−0.967576 + 0.252579i \(0.918721\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −3.64111 + 4.32924i −0.344053 + 0.409074i
\(113\) 5.82237 0.547722 0.273861 0.961769i \(-0.411699\pi\)
0.273861 + 0.961769i \(0.411699\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −0.490839 + 0.228540i −0.0455733 + 0.0212194i
\(117\) 0 0
\(118\) 14.4262 3.19388i 1.32804 0.294020i
\(119\) −8.77551 −0.804450
\(120\) 0 0
\(121\) 10.9634 0.996669
\(122\) 0.528636 0.117037i 0.0478604 0.0105960i
\(123\) 0 0
\(124\) −5.23844 11.2507i −0.470426 1.01034i
\(125\) 0 0
\(126\) 0 0
\(127\) 20.5388 1.82252 0.911261 0.411829i \(-0.135110\pi\)
0.911261 + 0.411829i \(0.135110\pi\)
\(128\) −11.3019 0.516138i −0.998959 0.0456206i
\(129\) 0 0
\(130\) 0 0
\(131\) 13.5679i 1.18543i −0.805413 0.592715i \(-0.798056\pi\)
0.805413 0.592715i \(-0.201944\pi\)
\(132\) 0 0
\(133\) −2.15401 −0.186776
\(134\) −2.38776 + 0.528636i −0.206271 + 0.0456672i
\(135\) 0 0
\(136\) −10.6724 13.9333i −0.915153 1.19477i
\(137\) 4.72563 0.403738 0.201869 0.979413i \(-0.435298\pi\)
0.201869 + 0.979413i \(0.435298\pi\)
\(138\) 0 0
\(139\) −15.7572 −1.33651 −0.668254 0.743934i \(-0.732958\pi\)
−0.668254 + 0.743934i \(0.732958\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −2.97421 13.4340i −0.249590 1.12735i
\(143\) 0.504792i 0.0422129i
\(144\) 0 0
\(145\) 0 0
\(146\) −7.53707 + 1.66866i −0.623772 + 0.138100i
\(147\) 0 0
\(148\) 13.8148 6.43232i 1.13557 0.528733i
\(149\) −7.72928 −0.633207 −0.316604 0.948558i \(-0.602543\pi\)
−0.316604 + 0.948558i \(0.602543\pi\)
\(150\) 0 0
\(151\) 22.2098i 1.80741i 0.428158 + 0.903704i \(0.359163\pi\)
−0.428158 + 0.903704i \(0.640837\pi\)
\(152\) −2.61962 3.42003i −0.212479 0.277401i
\(153\) 0 0
\(154\) 0.373802 0.0827577i 0.0301218 0.00666880i
\(155\) 0 0
\(156\) 0 0
\(157\) −8.00229 −0.638652 −0.319326 0.947645i \(-0.603457\pi\)
−0.319326 + 0.947645i \(0.603457\pi\)
\(158\) −19.7557 + 4.37380i −1.57168 + 0.347961i
\(159\) 0 0
\(160\) 0 0
\(161\) 7.42801i 0.585409i
\(162\) 0 0
\(163\) 0.953771i 0.0747051i 0.999302 + 0.0373526i \(0.0118925\pi\)
−0.999302 + 0.0373526i \(0.988108\pi\)
\(164\) 7.78780 + 16.7260i 0.608125 + 1.30608i
\(165\) 0 0
\(166\) 4.65847 + 21.0415i 0.361568 + 1.63314i
\(167\) 11.7572i 0.909799i 0.890543 + 0.454899i \(0.150325\pi\)
−0.890543 + 0.454899i \(0.849675\pi\)
\(168\) 0 0
\(169\) −6.04623 −0.465095
\(170\) 0 0
\(171\) 0 0
\(172\) −10.7851 23.1633i −0.822354 1.76618i
\(173\) 3.22449i 0.245153i −0.992459 0.122577i \(-0.960884\pi\)
0.992459 0.122577i \(-0.0391157\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0.586002 + 0.492858i 0.0441715 + 0.0371506i
\(177\) 0 0
\(178\) −4.92693 + 1.09079i −0.369289 + 0.0817585i
\(179\) 12.6019i 0.941908i 0.882158 + 0.470954i \(0.156090\pi\)
−0.882158 + 0.470954i \(0.843910\pi\)
\(180\) 0 0
\(181\) 24.1070i 1.79186i −0.444195 0.895930i \(-0.646510\pi\)
0.444195 0.895930i \(-0.353490\pi\)
\(182\) −1.14003 5.14931i −0.0845046 0.381692i
\(183\) 0 0
\(184\) 11.7938 9.03365i 0.869453 0.665970i
\(185\) 0 0
\(186\) 0 0
\(187\) 1.18785i 0.0868639i
\(188\) −3.20275 6.87859i −0.233585 0.501673i
\(189\) 0 0
\(190\) 0 0
\(191\) 10.9171 0.789936 0.394968 0.918695i \(-0.370756\pi\)
0.394968 + 0.918695i \(0.370756\pi\)
\(192\) 0 0
\(193\) 15.3169i 1.10254i 0.834328 + 0.551269i \(0.185856\pi\)
−0.834328 + 0.551269i \(0.814144\pi\)
\(194\) −10.1031 + 2.23677i −0.725359 + 0.160590i
\(195\) 0 0
\(196\) 9.06550 4.22099i 0.647535 0.301500i
\(197\) 17.0462i 1.21449i −0.794513 0.607247i \(-0.792274\pi\)
0.794513 0.607247i \(-0.207726\pi\)
\(198\) 0 0
\(199\) 4.72563i 0.334991i −0.985873 0.167496i \(-0.946432\pi\)
0.985873 0.167496i \(-0.0535680\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 4.75390 + 21.4725i 0.334483 + 1.51080i
\(203\) −0.382853 −0.0268710
\(204\) 0 0
\(205\) 0 0
\(206\) 0.638488 + 2.88394i 0.0444856 + 0.200933i
\(207\) 0 0
\(208\) 6.78937 8.07247i 0.470758 0.559725i
\(209\) 0.291565i 0.0201680i
\(210\) 0 0
\(211\) 16.8401 1.15932 0.579659 0.814859i \(-0.303186\pi\)
0.579659 + 0.814859i \(0.303186\pi\)
\(212\) −7.40828 15.9109i −0.508803 1.09276i
\(213\) 0 0
\(214\) −0.864641 3.90543i −0.0591056 0.266970i
\(215\) 0 0
\(216\) 0 0
\(217\) 8.77551i 0.595720i
\(218\) −7.28223 + 1.61224i −0.493215 + 0.109195i
\(219\) 0 0
\(220\) 0 0
\(221\) 16.3632 1.10071
\(222\) 0 0
\(223\) −22.3099 −1.49398 −0.746992 0.664833i \(-0.768503\pi\)
−0.746992 + 0.664833i \(0.768503\pi\)
\(224\) −7.09079 3.70414i −0.473774 0.247493i
\(225\) 0 0
\(226\) 1.77988 + 8.03940i 0.118396 + 0.534773i
\(227\) 8.86813 0.588599 0.294299 0.955713i \(-0.404914\pi\)
0.294299 + 0.955713i \(0.404914\pi\)
\(228\) 0 0
\(229\) 21.2786i 1.40613i −0.711126 0.703064i \(-0.751815\pi\)
0.711126 0.703064i \(-0.248185\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −0.465611 0.607876i −0.0305689 0.0399090i
\(233\) 15.0734 0.987488 0.493744 0.869607i \(-0.335628\pi\)
0.493744 + 0.869607i \(0.335628\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 8.82008 + 18.9430i 0.574138 + 1.23309i
\(237\) 0 0
\(238\) −2.68264 12.1170i −0.173890 0.785431i
\(239\) −19.0462 −1.23200 −0.615999 0.787747i \(-0.711247\pi\)
−0.615999 + 0.787747i \(0.711247\pi\)
\(240\) 0 0
\(241\) 18.5048 1.19200 0.595999 0.802985i \(-0.296756\pi\)
0.595999 + 0.802985i \(0.296756\pi\)
\(242\) 3.35146 + 15.1380i 0.215440 + 0.973105i
\(243\) 0 0
\(244\) 0.323204 + 0.694151i 0.0206910 + 0.0444385i
\(245\) 0 0
\(246\) 0 0
\(247\) 4.01645 0.255561
\(248\) 13.9333 10.6724i 0.884767 0.677700i
\(249\) 0 0
\(250\) 0 0
\(251\) 16.8186i 1.06158i −0.847503 0.530790i \(-0.821895\pi\)
0.847503 0.530790i \(-0.178105\pi\)
\(252\) 0 0
\(253\) −1.00545 −0.0632120
\(254\) 6.27864 + 28.3595i 0.393957 + 1.77943i
\(255\) 0 0
\(256\) −2.74229 15.7632i −0.171393 0.985203i
\(257\) −9.79936 −0.611267 −0.305634 0.952149i \(-0.598868\pi\)
−0.305634 + 0.952149i \(0.598868\pi\)
\(258\) 0 0
\(259\) 10.7755 0.669558
\(260\) 0 0
\(261\) 0 0
\(262\) 18.7342 4.14765i 1.15740 0.256243i
\(263\) 5.79383i 0.357263i 0.983916 + 0.178632i \(0.0571670\pi\)
−0.983916 + 0.178632i \(0.942833\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −0.658473 2.97421i −0.0403736 0.182360i
\(267\) 0 0
\(268\) −1.45986 3.13536i −0.0891750 0.191523i
\(269\) 15.1878 0.926019 0.463010 0.886353i \(-0.346770\pi\)
0.463010 + 0.886353i \(0.346770\pi\)
\(270\) 0 0
\(271\) 10.1304i 0.615377i 0.951487 + 0.307689i \(0.0995555\pi\)
−0.951487 + 0.307689i \(0.900444\pi\)
\(272\) 15.9763 18.9956i 0.968706 1.15178i
\(273\) 0 0
\(274\) 1.44461 + 6.52505i 0.0872721 + 0.394193i
\(275\) 0 0
\(276\) 0 0
\(277\) −14.7559 −0.886595 −0.443298 0.896375i \(-0.646191\pi\)
−0.443298 + 0.896375i \(0.646191\pi\)
\(278\) −4.81692 21.7572i −0.288900 1.30491i
\(279\) 0 0
\(280\) 0 0
\(281\) 21.5442i 1.28522i 0.766193 + 0.642611i \(0.222149\pi\)
−0.766193 + 0.642611i \(0.777851\pi\)
\(282\) 0 0
\(283\) 18.2707i 1.08608i −0.839706 0.543041i \(-0.817273\pi\)
0.839706 0.543041i \(-0.182727\pi\)
\(284\) 17.6402 8.21345i 1.04675 0.487379i
\(285\) 0 0
\(286\) −0.697006 + 0.154313i −0.0412149 + 0.00912474i
\(287\) 13.0462i 0.770095i
\(288\) 0 0
\(289\) 21.5048 1.26499
\(290\) 0 0
\(291\) 0 0
\(292\) −4.60811 9.89692i −0.269669 0.579173i
\(293\) 6.00000i 0.350524i 0.984522 + 0.175262i \(0.0560772\pi\)
−0.984522 + 0.175262i \(0.943923\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 13.1047 + 17.1088i 0.761698 + 0.994431i
\(297\) 0 0
\(298\) −2.36282 10.6724i −0.136874 0.618237i
\(299\) 13.8506i 0.800999i
\(300\) 0 0
\(301\) 18.0673i 1.04138i
\(302\) −30.6668 + 6.78946i −1.76468 + 0.390690i
\(303\) 0 0
\(304\) 3.92150 4.66261i 0.224913 0.267419i
\(305\) 0 0
\(306\) 0 0
\(307\) 22.5048i 1.28442i 0.766530 + 0.642208i \(0.221982\pi\)
−0.766530 + 0.642208i \(0.778018\pi\)
\(308\) 0.228540 + 0.490839i 0.0130223 + 0.0279681i
\(309\) 0 0
\(310\) 0 0
\(311\) −31.0462 −1.76047 −0.880235 0.474538i \(-0.842615\pi\)
−0.880235 + 0.474538i \(0.842615\pi\)
\(312\) 0 0
\(313\) 2.23407i 0.126277i 0.998005 + 0.0631387i \(0.0201110\pi\)
−0.998005 + 0.0631387i \(0.979889\pi\)
\(314\) −2.44627 11.0494i −0.138051 0.623553i
\(315\) 0 0
\(316\) −12.0785 25.9412i −0.679469 1.45931i
\(317\) 16.5048i 0.927001i −0.886097 0.463501i \(-0.846593\pi\)
0.886097 0.463501i \(-0.153407\pi\)
\(318\) 0 0
\(319\) 0.0518227i 0.00290151i
\(320\) 0 0
\(321\) 0 0
\(322\) 10.2564 2.27072i 0.571569 0.126542i
\(323\) 9.45126 0.525882
\(324\) 0 0
\(325\) 0 0
\(326\) −1.31695 + 0.291565i −0.0729389 + 0.0161483i
\(327\) 0 0
\(328\) −20.7142 + 15.8663i −1.14375 + 0.876070i
\(329\) 5.36529i 0.295798i
\(330\) 0 0
\(331\) −12.9817 −0.713538 −0.356769 0.934193i \(-0.616122\pi\)
−0.356769 + 0.934193i \(0.616122\pi\)
\(332\) −27.6296 + 12.8646i −1.51637 + 0.706039i
\(333\) 0 0
\(334\) −16.2341 + 3.59413i −0.888289 + 0.196662i
\(335\) 0 0
\(336\) 0 0
\(337\) 27.0096i 1.47131i −0.677359 0.735653i \(-0.736875\pi\)
0.677359 0.735653i \(-0.263125\pi\)
\(338\) −1.84831 8.34850i −0.100535 0.454099i
\(339\) 0 0
\(340\) 0 0
\(341\) −1.18785 −0.0643254
\(342\) 0 0
\(343\) 16.9706 0.916324
\(344\) 28.6864 21.9727i 1.54667 1.18469i
\(345\) 0 0
\(346\) 4.45231 0.985716i 0.239357 0.0529924i
\(347\) 5.07372 0.272372 0.136186 0.990683i \(-0.456516\pi\)
0.136186 + 0.990683i \(0.456516\pi\)
\(348\) 0 0
\(349\) 20.1300i 1.07754i −0.842454 0.538768i \(-0.818890\pi\)
0.842454 0.538768i \(-0.181110\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −0.501389 + 0.959804i −0.0267241 + 0.0511577i
\(353\) 14.3077 0.761519 0.380760 0.924674i \(-0.375663\pi\)
0.380760 + 0.924674i \(0.375663\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −3.01229 6.46954i −0.159651 0.342885i
\(357\) 0 0
\(358\) −17.4004 + 3.85235i −0.919640 + 0.203603i
\(359\) 31.8217 1.67949 0.839744 0.542983i \(-0.182705\pi\)
0.839744 + 0.542983i \(0.182705\pi\)
\(360\) 0 0
\(361\) −16.6801 −0.877901
\(362\) 33.2864 7.36943i 1.74950 0.387329i
\(363\) 0 0
\(364\) 6.76156 3.14826i 0.354402 0.165013i
\(365\) 0 0
\(366\) 0 0
\(367\) 22.9844 1.19977 0.599887 0.800085i \(-0.295212\pi\)
0.599887 + 0.800085i \(0.295212\pi\)
\(368\) 16.0788 + 13.5231i 0.838166 + 0.704941i
\(369\) 0 0
\(370\) 0 0
\(371\) 12.4104i 0.644318i
\(372\) 0 0
\(373\) −14.2423 −0.737437 −0.368718 0.929541i \(-0.620203\pi\)
−0.368718 + 0.929541i \(0.620203\pi\)
\(374\) −1.64015 + 0.363120i −0.0848102 + 0.0187765i
\(375\) 0 0
\(376\) 8.51875 6.52505i 0.439321 0.336504i
\(377\) 0.713884 0.0367669
\(378\) 0 0
\(379\) 8.71096 0.447452 0.223726 0.974652i \(-0.428178\pi\)
0.223726 + 0.974652i \(0.428178\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 3.33733 + 15.0741i 0.170753 + 0.771260i
\(383\) 18.7110i 0.956085i −0.878337 0.478043i \(-0.841346\pi\)
0.878337 0.478043i \(-0.158654\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −21.1493 + 4.68234i −1.07647 + 0.238325i
\(387\) 0 0
\(388\) −6.17696 13.2663i −0.313588 0.673497i
\(389\) 27.0096 1.36944 0.684720 0.728806i \(-0.259924\pi\)
0.684720 + 0.728806i \(0.259924\pi\)
\(390\) 0 0
\(391\) 32.5923i 1.64826i
\(392\) 8.59955 + 11.2271i 0.434343 + 0.567054i
\(393\) 0 0
\(394\) 23.5371 5.21098i 1.18578 0.262525i
\(395\) 0 0
\(396\) 0 0
\(397\) −25.3952 −1.27455 −0.637274 0.770638i \(-0.719938\pi\)
−0.637274 + 0.770638i \(0.719938\pi\)
\(398\) 6.52505 1.44461i 0.327071 0.0724118i
\(399\) 0 0
\(400\) 0 0
\(401\) 6.01380i 0.300315i 0.988662 + 0.150157i \(0.0479780\pi\)
−0.988662 + 0.150157i \(0.952022\pi\)
\(402\) 0 0
\(403\) 16.3632i 0.815108i
\(404\) −28.1955 + 13.1282i −1.40278 + 0.653150i
\(405\) 0 0
\(406\) −0.117037 0.528636i −0.00580845 0.0262358i
\(407\) 1.45856i 0.0722983i
\(408\) 0 0
\(409\) 19.5510 0.966736 0.483368 0.875417i \(-0.339413\pi\)
0.483368 + 0.875417i \(0.339413\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −3.78690 + 1.76322i −0.186567 + 0.0868676i
\(413\) 14.7755i 0.727055i
\(414\) 0 0
\(415\) 0 0
\(416\) 13.2218 + 6.90689i 0.648251 + 0.338638i
\(417\) 0 0
\(418\) −0.402586 + 0.0891304i −0.0196911 + 0.00435951i
\(419\) 1.96258i 0.0958784i −0.998850 0.0479392i \(-0.984735\pi\)
0.998850 0.0479392i \(-0.0152654\pi\)
\(420\) 0 0
\(421\) 4.30802i 0.209960i −0.994474 0.104980i \(-0.966522\pi\)
0.994474 0.104980i \(-0.0334778\pi\)
\(422\) 5.14795 + 23.2524i 0.250598 + 1.13191i
\(423\) 0 0
\(424\) 19.7047 15.0931i 0.956945 0.732985i
\(425\) 0 0
\(426\) 0 0
\(427\) 0.541436i 0.0262019i
\(428\) 5.12822 2.38776i 0.247882 0.115417i
\(429\) 0 0
\(430\) 0 0
\(431\) −11.8217 −0.569433 −0.284717 0.958612i \(-0.591899\pi\)
−0.284717 + 0.958612i \(0.591899\pi\)
\(432\) 0 0
\(433\) 9.45856i 0.454550i −0.973831 0.227275i \(-0.927018\pi\)
0.973831 0.227275i \(-0.0729816\pi\)
\(434\) 12.1170 2.68264i 0.581636 0.128771i
\(435\) 0 0
\(436\) −4.45231 9.56229i −0.213227 0.457950i
\(437\) 8.00000i 0.382692i
\(438\) 0 0
\(439\) 16.0393i 0.765516i −0.923849 0.382758i \(-0.874974\pi\)
0.923849 0.382758i \(-0.125026\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 5.00217 + 22.5939i 0.237929 + 1.07468i
\(443\) −25.0730 −1.19125 −0.595627 0.803261i \(-0.703096\pi\)
−0.595627 + 0.803261i \(0.703096\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −6.82008 30.8051i −0.322940 1.45866i
\(447\) 0 0
\(448\) 2.94696 10.9232i 0.139231 0.516071i
\(449\) 4.24264i 0.200223i −0.994976 0.100111i \(-0.968080\pi\)
0.994976 0.100111i \(-0.0319199\pi\)
\(450\) 0 0
\(451\) 1.76593 0.0831542
\(452\) −10.5565 + 4.91524i −0.496538 + 0.231193i
\(453\) 0 0
\(454\) 2.71096 + 12.2449i 0.127232 + 0.574683i
\(455\) 0 0
\(456\) 0 0
\(457\) 28.8680i 1.35039i 0.737641 + 0.675193i \(0.235940\pi\)
−0.737641 + 0.675193i \(0.764060\pi\)
\(458\) 29.3810 6.50479i 1.37288 0.303949i
\(459\) 0 0
\(460\) 0 0
\(461\) 36.7389 1.71110 0.855550 0.517721i \(-0.173219\pi\)
0.855550 + 0.517721i \(0.173219\pi\)
\(462\) 0 0
\(463\) −16.6136 −0.772100 −0.386050 0.922478i \(-0.626161\pi\)
−0.386050 + 0.922478i \(0.626161\pi\)
\(464\) 0.697006 0.828731i 0.0323577 0.0384729i
\(465\) 0 0
\(466\) 4.60788 + 20.8130i 0.213456 + 0.964142i
\(467\) 1.47959 0.0684673 0.0342336 0.999414i \(-0.489101\pi\)
0.0342336 + 0.999414i \(0.489101\pi\)
\(468\) 0 0
\(469\) 2.44557i 0.112926i
\(470\) 0 0
\(471\) 0 0
\(472\) −23.4598 + 17.9694i −1.07983 + 0.827108i
\(473\) −2.44557 −0.112448
\(474\) 0 0
\(475\) 0 0
\(476\) 15.9109 7.40828i 0.729274 0.339558i
\(477\) 0 0
\(478\) −5.82237 26.2986i −0.266309 1.20287i
\(479\) −2.81215 −0.128491 −0.0642453 0.997934i \(-0.520464\pi\)
−0.0642453 + 0.997934i \(0.520464\pi\)
\(480\) 0 0
\(481\) −20.0925 −0.916137
\(482\) 5.65685 + 25.5510i 0.257663 + 1.16382i
\(483\) 0 0
\(484\) −19.8776 + 9.25525i −0.903530 + 0.420693i
\(485\) 0 0
\(486\) 0 0
\(487\) −16.9447 −0.767835 −0.383918 0.923367i \(-0.625425\pi\)
−0.383918 + 0.923367i \(0.625425\pi\)
\(488\) −0.859666 + 0.658473i −0.0389153 + 0.0298077i
\(489\) 0 0
\(490\) 0 0
\(491\) 26.0696i 1.17650i 0.808678 + 0.588252i \(0.200184\pi\)
−0.808678 + 0.588252i \(0.799816\pi\)
\(492\) 0 0
\(493\) 1.67987 0.0756574
\(494\) 1.22782 + 5.54583i 0.0552421 + 0.249519i
\(495\) 0 0
\(496\) 18.9956 + 15.9763i 0.852929 + 0.717358i
\(497\) 13.7593 0.617188
\(498\) 0 0
\(499\) −22.5327 −1.00870 −0.504351 0.863499i \(-0.668268\pi\)
−0.504351 + 0.863499i \(0.668268\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 23.2228 5.14139i 1.03648 0.229472i
\(503\) 8.80342i 0.392525i −0.980551 0.196262i \(-0.937120\pi\)
0.980551 0.196262i \(-0.0628805\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −0.307362 1.38830i −0.0136639 0.0617176i
\(507\) 0 0
\(508\) −37.2389 + 17.3388i −1.65221 + 0.769286i
\(509\) 20.6339 0.914581 0.457291 0.889317i \(-0.348820\pi\)
0.457291 + 0.889317i \(0.348820\pi\)
\(510\) 0 0
\(511\) 7.71957i 0.341494i
\(512\) 20.9272 8.60527i 0.924862 0.380303i
\(513\) 0 0
\(514\) −2.99563 13.5307i −0.132132 0.596815i
\(515\) 0 0
\(516\) 0 0
\(517\) −0.726241 −0.0319400
\(518\) 3.29404 + 14.8786i 0.144732 + 0.653728i
\(519\) 0 0
\(520\) 0 0
\(521\) 8.55066i 0.374611i −0.982302 0.187306i \(-0.940025\pi\)
0.982302 0.187306i \(-0.0599755\pi\)
\(522\) 0 0
\(523\) 33.0096i 1.44341i −0.692202 0.721704i \(-0.743359\pi\)
0.692202 0.721704i \(-0.256641\pi\)
\(524\) 11.4540 + 24.5999i 0.500369 + 1.07465i
\(525\) 0 0
\(526\) −8.00000 + 1.77116i −0.348817 + 0.0772261i
\(527\) 38.5048i 1.67730i
\(528\) 0 0
\(529\) −4.58767 −0.199464
\(530\) 0 0
\(531\) 0 0
\(532\) 3.90543 1.81841i 0.169322 0.0788382i
\(533\) 24.3265i 1.05370i
\(534\) 0 0
\(535\) 0 0
\(536\) 3.88296 2.97421i 0.167718 0.128466i
\(537\) 0 0
\(538\) 4.64287 + 20.9711i 0.200169 + 0.904126i
\(539\) 0.957133i 0.0412267i
\(540\) 0 0
\(541\) 27.6493i 1.18874i −0.804193 0.594369i \(-0.797402\pi\)
0.804193 0.594369i \(-0.202598\pi\)
\(542\) −13.9878 + 3.09683i −0.600828 + 0.133020i
\(543\) 0 0
\(544\) 31.1127 + 16.2529i 1.33394 + 0.696835i
\(545\) 0 0
\(546\) 0 0
\(547\) 9.85838i 0.421514i −0.977538 0.210757i \(-0.932407\pi\)
0.977538 0.210757i \(-0.0675929\pi\)
\(548\) −8.56804 + 3.98937i −0.366008 + 0.170418i
\(549\) 0 0
\(550\) 0 0
\(551\) 0.412335 0.0175661
\(552\) 0 0
\(553\) 20.2341i 0.860440i
\(554\) −4.51082 20.3746i −0.191647 0.865634i
\(555\) 0 0
\(556\) 28.5693 13.3022i 1.21161 0.564139i
\(557\) 2.68305i 0.113685i 0.998383 + 0.0568423i \(0.0181032\pi\)
−0.998383 + 0.0568423i \(0.981897\pi\)
\(558\) 0 0
\(559\) 33.6890i 1.42489i
\(560\) 0 0
\(561\) 0 0
\(562\) −29.7478 + 6.58600i −1.25484 + 0.277814i
\(563\) 12.0794 0.509087 0.254543 0.967061i \(-0.418075\pi\)
0.254543 + 0.967061i \(0.418075\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 25.2278 5.58530i 1.06040 0.234768i
\(567\) 0 0
\(568\) 16.7335 + 21.8463i 0.702122 + 0.916651i
\(569\) 15.8479i 0.664379i 0.943213 + 0.332190i \(0.107787\pi\)
−0.943213 + 0.332190i \(0.892213\pi\)
\(570\) 0 0
\(571\) 1.11078 0.0464847 0.0232423 0.999730i \(-0.492601\pi\)
0.0232423 + 0.999730i \(0.492601\pi\)
\(572\) −0.426145 0.915238i −0.0178180 0.0382680i
\(573\) 0 0
\(574\) −18.0140 + 3.98819i −0.751888 + 0.166464i
\(575\) 0 0
\(576\) 0 0
\(577\) 14.7755i 0.615113i 0.951530 + 0.307556i \(0.0995112\pi\)
−0.951530 + 0.307556i \(0.900489\pi\)
\(578\) 6.57394 + 29.6934i 0.273440 + 1.23508i
\(579\) 0 0
\(580\) 0 0
\(581\) −21.5510 −0.894087
\(582\) 0 0
\(583\) −1.67987 −0.0695730
\(584\) 12.2568 9.38824i 0.507189 0.388488i
\(585\) 0 0
\(586\) −8.28467 + 1.83418i −0.342237 + 0.0757693i
\(587\) −13.5590 −0.559640 −0.279820 0.960052i \(-0.590275\pi\)
−0.279820 + 0.960052i \(0.590275\pi\)
\(588\) 0 0
\(589\) 9.45126i 0.389433i
\(590\) 0 0
\(591\) 0 0
\(592\) −19.6174 + 23.3249i −0.806271 + 0.958646i
\(593\) −31.9921 −1.31376 −0.656879 0.753996i \(-0.728124\pi\)
−0.656879 + 0.753996i \(0.728124\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 14.0140 6.52505i 0.574034 0.267277i
\(597\) 0 0
\(598\) −19.1246 + 4.23407i −0.782062 + 0.173144i
\(599\) −3.82174 −0.156152 −0.0780760 0.996947i \(-0.524878\pi\)
−0.0780760 + 0.996947i \(0.524878\pi\)
\(600\) 0 0
\(601\) 31.6435 1.29076 0.645382 0.763860i \(-0.276698\pi\)
0.645382 + 0.763860i \(0.276698\pi\)
\(602\) 24.9469 5.52311i 1.01676 0.225105i
\(603\) 0 0
\(604\) −18.7495 40.2686i −0.762906 1.63850i
\(605\) 0 0
\(606\) 0 0
\(607\) 34.7204 1.40926 0.704629 0.709576i \(-0.251114\pi\)
0.704629 + 0.709576i \(0.251114\pi\)
\(608\) 7.63682 + 3.98937i 0.309714 + 0.161790i
\(609\) 0 0
\(610\) 0 0
\(611\) 10.0043i 0.404732i
\(612\) 0 0
\(613\) 26.3612 1.06472 0.532359 0.846519i \(-0.321306\pi\)
0.532359 + 0.846519i \(0.321306\pi\)
\(614\) −31.0741 + 6.87964i −1.25405 + 0.277640i
\(615\) 0 0
\(616\) −0.607876 + 0.465611i −0.0244920 + 0.0187600i
\(617\) −7.88509 −0.317442 −0.158721 0.987323i \(-0.550737\pi\)
−0.158721 + 0.987323i \(0.550737\pi\)
\(618\) 0 0
\(619\) 38.9325 1.56483 0.782415 0.622757i \(-0.213988\pi\)
0.782415 + 0.622757i \(0.213988\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −9.49073 42.8680i −0.380544 1.71885i
\(623\) 5.04623i 0.202173i
\(624\) 0 0
\(625\) 0 0
\(626\) −3.08476 + 0.682949i −0.123292 + 0.0272961i
\(627\) 0 0
\(628\) 14.5089 6.75552i 0.578970 0.269575i
\(629\) −47.2803 −1.88519
\(630\) 0 0
\(631\) 0.800468i 0.0318661i 0.999873 + 0.0159331i \(0.00507186\pi\)
−0.999873 + 0.0159331i \(0.994928\pi\)
\(632\) 32.1267 24.6079i 1.27793 0.978849i
\(633\) 0 0
\(634\) 22.7895 5.04546i 0.905085 0.200381i
\(635\) 0 0
\(636\) 0 0
\(637\) −13.1850 −0.522409
\(638\) −0.0715557 + 0.0158420i −0.00283292 + 0.000627192i
\(639\) 0 0
\(640\) 0 0
\(641\) 22.8931i 0.904222i 0.891962 + 0.452111i \(0.149329\pi\)
−0.891962 + 0.452111i \(0.850671\pi\)
\(642\) 0 0
\(643\) 12.9538i 0.510847i 0.966829 + 0.255423i \(0.0822149\pi\)
−0.966829 + 0.255423i \(0.917785\pi\)
\(644\) 6.27072 + 13.4677i 0.247101 + 0.530702i
\(645\) 0 0
\(646\) 2.88922 + 13.0501i 0.113675 + 0.513449i
\(647\) 15.6647i 0.615844i −0.951412 0.307922i \(-0.900366\pi\)
0.951412 0.307922i \(-0.0996336\pi\)
\(648\) 0 0
\(649\) 2.00000 0.0785069
\(650\) 0 0
\(651\) 0 0
\(652\) −0.805173 1.72928i −0.0315330 0.0677239i
\(653\) 41.5144i 1.62458i −0.583252 0.812292i \(-0.698220\pi\)
0.583252 0.812292i \(-0.301780\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −28.2401 23.7514i −1.10259 0.927336i
\(657\) 0 0
\(658\) 7.40828 1.64015i 0.288805 0.0639398i
\(659\) 34.8859i 1.35896i −0.733693 0.679481i \(-0.762205\pi\)
0.733693 0.679481i \(-0.237795\pi\)
\(660\) 0 0
\(661\) 19.7990i 0.770091i −0.922897 0.385046i \(-0.874186\pi\)
0.922897 0.385046i \(-0.125814\pi\)
\(662\) −3.96846 17.9248i −0.154238 0.696668i
\(663\) 0 0
\(664\) −26.2095 34.2177i −1.01713 1.32790i
\(665\) 0 0
\(666\) 0 0
\(667\) 1.42192i 0.0550569i
\(668\) −9.92541 21.3169i −0.384025 0.824777i
\(669\) 0 0
\(670\) 0 0
\(671\) 0.0732884 0.00282927
\(672\) 0 0
\(673\) 34.1849i 1.31773i −0.752260 0.658866i \(-0.771036\pi\)
0.752260 0.658866i \(-0.228964\pi\)
\(674\) 37.2943 8.25674i 1.43652 0.318038i
\(675\) 0 0
\(676\) 10.9624 5.10422i 0.421631 0.196316i
\(677\) 17.0462i 0.655140i −0.944827 0.327570i \(-0.893770\pi\)
0.944827 0.327570i \(-0.106230\pi\)
\(678\) 0 0
\(679\) 10.3477i 0.397109i
\(680\) 0 0
\(681\) 0 0
\(682\) −0.363120 1.64015i −0.0139046 0.0628046i
\(683\) −28.6671 −1.09692 −0.548459 0.836178i \(-0.684785\pi\)
−0.548459 + 0.836178i \(0.684785\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 5.18785 + 23.4326i 0.198073 + 0.894660i
\(687\) 0 0
\(688\) 39.1088 + 32.8925i 1.49101 + 1.25402i
\(689\) 23.1410i 0.881603i
\(690\) 0 0
\(691\) −27.0741 −1.02995 −0.514974 0.857206i \(-0.672199\pi\)
−0.514974 + 0.857206i \(0.672199\pi\)
\(692\) 2.72211 + 5.84632i 0.103479 + 0.222244i
\(693\) 0 0
\(694\) 1.55102 + 7.00569i 0.0588760 + 0.265932i
\(695\) 0 0
\(696\) 0 0
\(697\) 57.2437i 2.16826i
\(698\) 27.7951 6.15368i 1.05206 0.232920i
\(699\) 0 0
\(700\) 0 0
\(701\) −23.5510 −0.889510 −0.444755 0.895652i \(-0.646709\pi\)
−0.444755 + 0.895652i \(0.646709\pi\)
\(702\) 0 0
\(703\) −11.6053 −0.437701
\(704\) −1.47855 0.398898i −0.0557249 0.0150340i
\(705\) 0 0
\(706\) 4.37380 + 19.7557i 0.164610 + 0.743516i
\(707\) −21.9925 −0.827112
\(708\) 0 0
\(709\) 7.85033i 0.294825i 0.989075 + 0.147413i \(0.0470945\pi\)
−0.989075 + 0.147413i \(0.952905\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 8.01216 6.13702i 0.300268 0.229995i
\(713\) −32.5923 −1.22059
\(714\) 0 0
\(715\) 0 0
\(716\) −10.6385 22.8484i −0.397579 0.853886i
\(717\) 0 0
\(718\) 9.72780 + 43.9388i 0.363038 + 1.63978i
\(719\) −10.1416 −0.378218 −0.189109 0.981956i \(-0.560560\pi\)
−0.189109 + 0.981956i \(0.560560\pi\)
\(720\) 0 0
\(721\) −2.95377 −0.110004
\(722\) −5.09906 23.0316i −0.189767 0.857146i
\(723\) 0 0
\(724\) 20.3511 + 43.7084i 0.756343 + 1.62441i
\(725\) 0 0
\(726\) 0 0
\(727\) 4.86524 0.180442 0.0902208 0.995922i \(-0.471243\pi\)
0.0902208 + 0.995922i \(0.471243\pi\)
\(728\) 6.41403 + 8.37380i 0.237720 + 0.310354i
\(729\) 0 0
\(730\) 0 0
\(731\) 79.2749i 2.93209i
\(732\) 0 0
\(733\) 9.09903 0.336080 0.168040 0.985780i \(-0.446256\pi\)
0.168040 + 0.985780i \(0.446256\pi\)
\(734\) 7.02624 + 31.7363i 0.259343 + 1.17141i
\(735\) 0 0
\(736\) −13.7572 + 26.3352i −0.507097 + 0.970730i
\(737\) −0.331031 −0.0121937
\(738\) 0 0
\(739\) −12.5693 −0.462371 −0.231185 0.972910i \(-0.574260\pi\)
−0.231185 + 0.972910i \(0.574260\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 17.1361 3.79383i 0.629085 0.139276i
\(743\) 23.6647i 0.868175i 0.900871 + 0.434087i \(0.142929\pi\)
−0.900871 + 0.434087i \(0.857071\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −4.35382 19.6654i −0.159405 0.720002i
\(747\) 0 0
\(748\) −1.00278 2.15368i −0.0366652 0.0787464i
\(749\) 4.00000 0.146157
\(750\) 0 0
\(751\) 31.2782i 1.14136i −0.821173 0.570679i \(-0.806680\pi\)
0.821173 0.570679i \(-0.193320\pi\)
\(752\) 11.6138 + 9.76781i 0.423512 + 0.356196i
\(753\) 0 0
\(754\) 0.218232 + 0.985716i 0.00794754 + 0.0358977i
\(755\) 0 0
\(756\) 0 0
\(757\) 39.1150 1.42166 0.710829 0.703365i \(-0.248320\pi\)
0.710829 + 0.703365i \(0.248320\pi\)
\(758\) 2.66291 + 12.0279i 0.0967213 + 0.436873i
\(759\) 0 0
\(760\) 0 0
\(761\) 2.76305i 0.100160i −0.998745 0.0500802i \(-0.984052\pi\)
0.998745 0.0500802i \(-0.0159477\pi\)
\(762\) 0 0
\(763\) 7.45856i 0.270018i
\(764\) −19.7938 + 9.21623i −0.716116 + 0.333431i
\(765\) 0 0
\(766\) 25.8357 5.71988i 0.933482 0.206668i
\(767\) 27.5510i 0.994810i
\(768\) 0 0
\(769\) −46.5606 −1.67902 −0.839509 0.543345i \(-0.817157\pi\)
−0.839509 + 0.543345i \(0.817157\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −12.9306 27.7711i −0.465381 0.999505i
\(773\) 29.5877i 1.06419i 0.846683 + 0.532097i \(0.178596\pi\)
−0.846683 + 0.532097i \(0.821404\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 16.4296 12.5845i 0.589789 0.451757i
\(777\) 0 0
\(778\) 8.25674 + 37.2943i 0.296019 + 1.33706i
\(779\) 14.0508i 0.503424i
\(780\) 0 0
\(781\) 1.86244i 0.0666435i
\(782\) −45.0027 + 9.96336i −1.60929 + 0.356289i
\(783\) 0 0
\(784\) −12.8733 + 15.3062i −0.459760 + 0.546649i
\(785\) 0 0
\(786\) 0 0
\(787\) 35.9267i 1.28065i −0.768105 0.640324i \(-0.778800\pi\)
0.768105 0.640324i \(-0.221200\pi\)
\(788\) 14.3904 + 30.9065i 0.512637 + 1.10100i
\(789\) 0 0
\(790\) 0 0
\(791\) −8.23407 −0.292770
\(792\) 0 0
\(793\) 1.00958i 0.0358514i
\(794\) −7.76322 35.0651i −0.275506 1.24441i
\(795\) 0 0
\(796\) 3.98937 + 8.56804i 0.141400 + 0.303686i
\(797\) 9.31695i 0.330023i −0.986292 0.165012i \(-0.947234\pi\)
0.986292 0.165012i \(-0.0527662\pi\)
\(798\) 0 0
\(799\) 23.5416i 0.832841i
\(800\) 0 0
\(801\) 0 0
\(802\) −8.30372 + 1.83840i −0.293215 + 0.0649161i
\(803\) −1.04491 −0.0368742
\(804\) 0 0
\(805\) 0 0
\(806\) −22.5939 + 5.00217i −0.795837 + 0.176194i
\(807\) 0 0
\(808\) −26.7464 34.9186i −0.940934 1.22843i
\(809\) 34.9207i 1.22775i −0.789405 0.613873i \(-0.789611\pi\)
0.789405 0.613873i \(-0.210389\pi\)
\(810\) 0 0
\(811\) −25.7938 −0.905744 −0.452872 0.891576i \(-0.649601\pi\)
−0.452872 + 0.891576i \(0.649601\pi\)
\(812\) 0.694151 0.323204i 0.0243599 0.0113423i
\(813\) 0 0
\(814\) 2.01395 0.445878i 0.0705890 0.0156280i
\(815\) 0 0
\(816\) 0 0
\(817\) 19.4586i 0.680769i
\(818\) 5.97668 + 26.9956i 0.208970 + 0.943880i
\(819\) 0 0
\(820\) 0 0
\(821\) 31.1878 1.08846 0.544232 0.838935i \(-0.316821\pi\)
0.544232 + 0.838935i \(0.316821\pi\)
\(822\) 0 0
\(823\) 33.5718 1.17024 0.585120 0.810947i \(-0.301047\pi\)
0.585120 + 0.810947i \(0.301047\pi\)
\(824\) −3.59226 4.68985i −0.125142 0.163379i
\(825\) 0 0
\(826\) −20.4017 + 4.51683i −0.709866 + 0.157160i
\(827\) −53.4362 −1.85816 −0.929079 0.369881i \(-0.879399\pi\)
−0.929079 + 0.369881i \(0.879399\pi\)
\(828\) 0 0
\(829\) 0.634952i 0.0220528i −0.999939 0.0110264i \(-0.996490\pi\)
0.999939 0.0110264i \(-0.00350988\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −5.49503 + 20.3678i −0.190506 + 0.706125i
\(833\) −31.0261 −1.07499
\(834\) 0 0
\(835\) 0 0
\(836\) −0.246139 0.528636i −0.00851288 0.0182833i
\(837\) 0 0
\(838\) 2.70989 0.599955i 0.0936117 0.0207251i
\(839\) −24.9046 −0.859803 −0.429901 0.902876i \(-0.641452\pi\)
−0.429901 + 0.902876i \(0.641452\pi\)
\(840\) 0 0
\(841\) −28.9267 −0.997473
\(842\) 5.94842 1.31695i 0.204996 0.0453850i
\(843\) 0 0
\(844\) −30.5327 + 14.2164i −1.05098 + 0.489347i
\(845\) 0 0
\(846\) 0 0
\(847\) −15.5045 −0.532742
\(848\) 26.8639 + 22.5939i 0.922509 + 0.775878i
\(849\) 0 0
\(850\) 0 0
\(851\) 40.0203i 1.37188i
\(852\) 0 0
\(853\) −17.5448 −0.600724 −0.300362 0.953825i \(-0.597107\pi\)
−0.300362 + 0.953825i \(0.597107\pi\)
\(854\) −0.747604 + 0.165515i −0.0255825 + 0.00566382i
\(855\) 0 0
\(856\) 4.86464 + 6.35101i 0.166270 + 0.217073i
\(857\) 7.30196 0.249430 0.124715 0.992193i \(-0.460198\pi\)
0.124715 + 0.992193i \(0.460198\pi\)
\(858\) 0 0
\(859\) −15.2890 −0.521655 −0.260828 0.965385i \(-0.583995\pi\)
−0.260828 + 0.965385i \(0.583995\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −3.61387 16.3232i −0.123089 0.555971i
\(863\) 41.9787i 1.42897i −0.699649 0.714487i \(-0.746660\pi\)
0.699649 0.714487i \(-0.253340\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 13.0602 2.89145i 0.443803 0.0982555i
\(867\) 0 0
\(868\) 7.40828 + 15.9109i 0.251453 + 0.540050i
\(869\) −2.73887 −0.0929097
\(870\) 0 0
\(871\) 4.56012i 0.154514i
\(872\) 11.8423 9.07081i 0.401032 0.307176i
\(873\) 0 0
\(874\) −11.0462 + 2.44557i −0.373644 + 0.0827228i
\(875\) 0 0
\(876\) 0 0
\(877\) 38.4800 1.29938 0.649689 0.760200i \(-0.274899\pi\)
0.649689 + 0.760200i \(0.274899\pi\)
\(878\) 22.1468 4.90317i 0.747418 0.165474i
\(879\) 0 0
\(880\) 0 0
\(881\) 7.11053i 0.239560i 0.992800 + 0.119780i \(0.0382189\pi\)
−0.992800 + 0.119780i \(0.961781\pi\)
\(882\) 0 0
\(883\) 26.5048i 0.891957i 0.895044 + 0.445979i \(0.147144\pi\)
−0.895044 + 0.445979i \(0.852856\pi\)
\(884\) −29.6681 + 13.8138i −0.997845 + 0.464608i
\(885\) 0 0
\(886\) −7.66473 34.6202i −0.257502 1.16309i
\(887\) 39.3449i 1.32107i −0.750795 0.660535i \(-0.770329\pi\)
0.750795 0.660535i \(-0.229671\pi\)
\(888\) 0 0
\(889\) −29.0462 −0.974179
\(890\) 0 0
\(891\) 0 0
\(892\) 40.4501 18.8340i 1.35437 0.630610i
\(893\) 5.77844i 0.193368i
\(894\) 0 0
\(895\) 0 0
\(896\) 15.9833 + 0.729929i 0.533966 + 0.0243852i
\(897\) 0 0
\(898\) 5.85815 1.29696i 0.195489 0.0432802i
\(899\) 1.67987i 0.0560267i
\(900\) 0 0
\(901\) 54.4540i 1.81413i
\(902\) 0.539838 + 2.43835i 0.0179746 + 0.0811883i
\(903\) 0 0
\(904\) −10.0140 13.0737i −0.333059 0.434824i
\(905\) 0 0
\(906\) 0 0
\(907\) 22.1974i 0.737054i −0.929617 0.368527i \(-0.879862\pi\)
0.929617 0.368527i \(-0.120138\pi\)
\(908\) −16.0788 + 7.48647i −0.533594 + 0.248447i
\(909\) 0 0
\(910\) 0 0
\(911\) −20.9538 −0.694229 −0.347115 0.937823i \(-0.612839\pi\)
−0.347115 + 0.937823i \(0.612839\pi\)
\(912\) 0 0
\(913\) 2.91713i 0.0965428i
\(914\) −39.8603 + 8.82484i −1.31846 + 0.291900i
\(915\) 0 0
\(916\) 17.9634 + 38.5802i 0.593526 + 1.27472i
\(917\) 19.1878i 0.633638i
\(918\) 0 0
\(919\) 7.88509i 0.260105i 0.991507 + 0.130053i \(0.0415146\pi\)
−0.991507 + 0.130053i \(0.958485\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 11.2310 + 50.7282i 0.369872 + 1.67065i
\(923\) −25.6561 −0.844481
\(924\) 0 0
\(925\) 0 0
\(926\) −5.07873 22.9397i −0.166897 0.753846i
\(927\) 0 0
\(928\) 1.35737 + 0.709071i 0.0445578 + 0.0232764i
\(929\) 6.35718i 0.208572i −0.994547 0.104286i \(-0.966744\pi\)
0.994547 0.104286i \(-0.0332558\pi\)
\(930\) 0 0
\(931\) −7.61557 −0.249590
\(932\) −27.3295 + 12.7249i −0.895207 + 0.416818i
\(933\) 0 0
\(934\) 0.452306 + 2.04299i 0.0147999 + 0.0668486i
\(935\) 0 0
\(936\) 0 0
\(937\) 35.0096i 1.14371i 0.820354 + 0.571857i \(0.193777\pi\)
−0.820354 + 0.571857i \(0.806223\pi\)
\(938\) 3.37680 0.747604i 0.110256 0.0244101i
\(939\) 0 0
\(940\) 0 0
\(941\) −28.5606 −0.931049 −0.465525 0.885035i \(-0.654134\pi\)
−0.465525 + 0.885035i \(0.654134\pi\)
\(942\) 0 0
\(943\) 48.4538 1.57787
\(944\) −31.9833 26.8997i −1.04097 0.875509i
\(945\) 0 0
\(946\) −0.747604 3.37680i −0.0243067 0.109789i
\(947\) 20.7650 0.674771 0.337385 0.941367i \(-0.390457\pi\)
0.337385 + 0.941367i \(0.390457\pi\)
\(948\) 0 0
\(949\) 14.3942i 0.467257i
\(950\) 0 0
\(951\) 0 0
\(952\) 15.0931 + 19.7047i 0.489170 + 0.638633i
\(953\) −38.4147 −1.24437 −0.622186 0.782869i \(-0.713755\pi\)
−0.622186 + 0.782869i \(0.713755\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 34.5327 16.0788i 1.11687 0.520026i
\(957\) 0 0
\(958\) −0.859666 3.88296i −0.0277746 0.125453i
\(959\) −6.68305 −0.215807
\(960\) 0 0
\(961\) −7.50479 −0.242090
\(962\) −6.14220 27.7432i −0.198032 0.894478i
\(963\) 0 0
\(964\) −33.5510 + 15.6217i −1.08061 + 0.503142i
\(965\) 0 0
\(966\) 0 0
\(967\) 16.6013 0.533861 0.266930 0.963716i \(-0.413991\pi\)
0.266930 + 0.963716i \(0.413991\pi\)
\(968\) −18.8560 24.6173i −0.606054 0.791231i
\(969\) 0 0
\(970\) 0 0
\(971\) 10.3171i 0.331092i 0.986202 + 0.165546i \(0.0529386\pi\)
−0.986202 + 0.165546i \(0.947061\pi\)
\(972\) 0 0
\(973\) 22.2840 0.714393
\(974\) −5.17992 23.3968i −0.165975 0.749682i
\(975\) 0 0
\(976\) −1.17200 0.985716i −0.0375149 0.0315520i
\(977\) −32.0439 −1.02518 −0.512588 0.858635i \(-0.671313\pi\)
−0.512588 + 0.858635i \(0.671313\pi\)
\(978\) 0 0
\(979\) −0.683053 −0.0218305
\(980\) 0 0
\(981\) 0 0
\(982\) −35.9963 + 7.96939i −1.14869 + 0.254313i
\(983\) 24.8034i 0.791106i 0.918443 + 0.395553i \(0.129447\pi\)
−0.918443 + 0.395553i \(0.870553\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0.513530 + 2.31952i 0.0163541 + 0.0738687i
\(987\) 0 0
\(988\) −7.28223 + 3.39069i −0.231679 + 0.107872i
\(989\) −67.1020 −2.13372
\(990\) 0 0
\(991\) 15.7872i 0.501498i −0.968052 0.250749i \(-0.919323\pi\)
0.968052 0.250749i \(-0.0806769\pi\)
\(992\) −16.2529 + 31.1127i −0.516029 + 0.987828i
\(993\) 0 0
\(994\) 4.20617 + 18.9985i 0.133412 + 0.602597i
\(995\) 0 0
\(996\) 0 0
\(997\) −51.3823 −1.62729 −0.813647 0.581359i \(-0.802521\pi\)
−0.813647 + 0.581359i \(0.802521\pi\)
\(998\) −6.88817 31.1127i −0.218041 0.984854i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1800.2.m.e.899.8 12
3.2 odd 2 1800.2.m.d.899.5 12
4.3 odd 2 7200.2.m.e.3599.9 12
5.2 odd 4 1800.2.b.d.251.2 6
5.3 odd 4 360.2.b.d.251.5 yes 6
5.4 even 2 inner 1800.2.m.e.899.5 12
8.3 odd 2 1800.2.m.d.899.7 12
8.5 even 2 7200.2.m.d.3599.3 12
12.11 even 2 7200.2.m.d.3599.10 12
15.2 even 4 1800.2.b.e.251.5 6
15.8 even 4 360.2.b.c.251.2 yes 6
15.14 odd 2 1800.2.m.d.899.8 12
20.3 even 4 1440.2.b.d.431.2 6
20.7 even 4 7200.2.b.e.4751.5 6
20.19 odd 2 7200.2.m.e.3599.3 12
24.5 odd 2 7200.2.m.e.3599.4 12
24.11 even 2 inner 1800.2.m.e.899.6 12
40.3 even 4 360.2.b.c.251.1 6
40.13 odd 4 1440.2.b.c.431.5 6
40.19 odd 2 1800.2.m.d.899.6 12
40.27 even 4 1800.2.b.e.251.6 6
40.29 even 2 7200.2.m.d.3599.9 12
40.37 odd 4 7200.2.b.d.4751.2 6
60.23 odd 4 1440.2.b.c.431.2 6
60.47 odd 4 7200.2.b.d.4751.5 6
60.59 even 2 7200.2.m.d.3599.4 12
120.29 odd 2 7200.2.m.e.3599.10 12
120.53 even 4 1440.2.b.d.431.5 6
120.59 even 2 inner 1800.2.m.e.899.7 12
120.77 even 4 7200.2.b.e.4751.2 6
120.83 odd 4 360.2.b.d.251.6 yes 6
120.107 odd 4 1800.2.b.d.251.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
360.2.b.c.251.1 6 40.3 even 4
360.2.b.c.251.2 yes 6 15.8 even 4
360.2.b.d.251.5 yes 6 5.3 odd 4
360.2.b.d.251.6 yes 6 120.83 odd 4
1440.2.b.c.431.2 6 60.23 odd 4
1440.2.b.c.431.5 6 40.13 odd 4
1440.2.b.d.431.2 6 20.3 even 4
1440.2.b.d.431.5 6 120.53 even 4
1800.2.b.d.251.1 6 120.107 odd 4
1800.2.b.d.251.2 6 5.2 odd 4
1800.2.b.e.251.5 6 15.2 even 4
1800.2.b.e.251.6 6 40.27 even 4
1800.2.m.d.899.5 12 3.2 odd 2
1800.2.m.d.899.6 12 40.19 odd 2
1800.2.m.d.899.7 12 8.3 odd 2
1800.2.m.d.899.8 12 15.14 odd 2
1800.2.m.e.899.5 12 5.4 even 2 inner
1800.2.m.e.899.6 12 24.11 even 2 inner
1800.2.m.e.899.7 12 120.59 even 2 inner
1800.2.m.e.899.8 12 1.1 even 1 trivial
7200.2.b.d.4751.2 6 40.37 odd 4
7200.2.b.d.4751.5 6 60.47 odd 4
7200.2.b.e.4751.2 6 120.77 even 4
7200.2.b.e.4751.5 6 20.7 even 4
7200.2.m.d.3599.3 12 8.5 even 2
7200.2.m.d.3599.4 12 60.59 even 2
7200.2.m.d.3599.9 12 40.29 even 2
7200.2.m.d.3599.10 12 12.11 even 2
7200.2.m.e.3599.3 12 20.19 odd 2
7200.2.m.e.3599.4 12 24.5 odd 2
7200.2.m.e.3599.9 12 4.3 odd 2
7200.2.m.e.3599.10 12 120.29 odd 2