Properties

Label 7200.2.m.e.3599.4
Level $7200$
Weight $2$
Character 7200.3599
Analytic conductor $57.492$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7200,2,Mod(3599,7200)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7200, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7200.3599");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7200 = 2^{5} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7200.m (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(57.4922894553\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: 12.0.426337261060096.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4x^{9} - 3x^{8} + 4x^{7} + 8x^{6} + 8x^{5} - 12x^{4} - 32x^{3} + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{31}]\)
Coefficient ring index: \( 2^{16} \)
Twist minimal: no (minimal twist has level 360)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 3599.4
Root \(-0.760198 + 1.19252i\) of defining polynomial
Character \(\chi\) \(=\) 7200.3599
Dual form 7200.2.m.e.3599.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.41421 q^{7} +0.191427i q^{11} -2.63700 q^{13} -6.20522 q^{17} -1.52311 q^{19} -5.25240i q^{23} +0.270718 q^{29} +6.20522i q^{31} +7.61944 q^{37} +9.22508i q^{41} -12.7755i q^{43} -3.79383i q^{47} -5.00000 q^{49} +8.77551i q^{53} -10.4479i q^{59} +0.382853i q^{61} -1.72928i q^{67} +9.72928 q^{71} +5.45856i q^{73} -0.270718i q^{77} +14.3077i q^{79} +15.2389 q^{83} -3.56822i q^{89} +3.72928 q^{91} +7.31695i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 32 q^{19} + 24 q^{29} - 60 q^{49} + 96 q^{71} + 24 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/7200\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(901\) \(6401\) \(6751\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −1.41421 −0.534522 −0.267261 0.963624i \(-0.586119\pi\)
−0.267261 + 0.963624i \(0.586119\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0.191427i 0.0577173i 0.999584 + 0.0288587i \(0.00918727\pi\)
−0.999584 + 0.0288587i \(0.990813\pi\)
\(12\) 0 0
\(13\) −2.63700 −0.731372 −0.365686 0.930738i \(-0.619166\pi\)
−0.365686 + 0.930738i \(0.619166\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −6.20522 −1.50499 −0.752494 0.658599i \(-0.771149\pi\)
−0.752494 + 0.658599i \(0.771149\pi\)
\(18\) 0 0
\(19\) −1.52311 −0.349426 −0.174713 0.984619i \(-0.555900\pi\)
−0.174713 + 0.984619i \(0.555900\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) − 5.25240i − 1.09520i −0.836740 0.547600i \(-0.815542\pi\)
0.836740 0.547600i \(-0.184458\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0.270718 0.0502711 0.0251356 0.999684i \(-0.491998\pi\)
0.0251356 + 0.999684i \(0.491998\pi\)
\(30\) 0 0
\(31\) 6.20522i 1.11449i 0.830348 + 0.557245i \(0.188142\pi\)
−0.830348 + 0.557245i \(0.811858\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 7.61944 1.25263 0.626314 0.779571i \(-0.284563\pi\)
0.626314 + 0.779571i \(0.284563\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 9.22508i 1.44071i 0.693603 + 0.720357i \(0.256022\pi\)
−0.693603 + 0.720357i \(0.743978\pi\)
\(42\) 0 0
\(43\) − 12.7755i − 1.94825i −0.226016 0.974124i \(-0.572570\pi\)
0.226016 0.974124i \(-0.427430\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 3.79383i − 0.553387i −0.960958 0.276694i \(-0.910761\pi\)
0.960958 0.276694i \(-0.0892387\pi\)
\(48\) 0 0
\(49\) −5.00000 −0.714286
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 8.77551i 1.20541i 0.797964 + 0.602705i \(0.205910\pi\)
−0.797964 + 0.602705i \(0.794090\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) − 10.4479i − 1.36020i −0.733121 0.680098i \(-0.761937\pi\)
0.733121 0.680098i \(-0.238063\pi\)
\(60\) 0 0
\(61\) 0.382853i 0.0490194i 0.999700 + 0.0245097i \(0.00780245\pi\)
−0.999700 + 0.0245097i \(0.992198\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 1.72928i − 0.211265i −0.994405 0.105633i \(-0.966313\pi\)
0.994405 0.105633i \(-0.0336868\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 9.72928 1.15465 0.577327 0.816513i \(-0.304096\pi\)
0.577327 + 0.816513i \(0.304096\pi\)
\(72\) 0 0
\(73\) 5.45856i 0.638877i 0.947607 + 0.319438i \(0.103494\pi\)
−0.947607 + 0.319438i \(0.896506\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 0.270718i − 0.0308512i
\(78\) 0 0
\(79\) 14.3077i 1.60974i 0.593454 + 0.804868i \(0.297764\pi\)
−0.593454 + 0.804868i \(0.702236\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 15.2389 1.67268 0.836342 0.548208i \(-0.184690\pi\)
0.836342 + 0.548208i \(0.184690\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) − 3.56822i − 0.378231i −0.981955 0.189115i \(-0.939438\pi\)
0.981955 0.189115i \(-0.0605620\pi\)
\(90\) 0 0
\(91\) 3.72928 0.390935
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 7.31695i 0.742923i 0.928448 + 0.371462i \(0.121143\pi\)
−0.928448 + 0.371462i \(0.878857\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 15.5510 1.54738 0.773692 0.633562i \(-0.218408\pi\)
0.773692 + 0.633562i \(0.218408\pi\)
\(102\) 0 0
\(103\) 2.08863 0.205799 0.102899 0.994692i \(-0.467188\pi\)
0.102899 + 0.994692i \(0.467188\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −2.82843 −0.273434 −0.136717 0.990610i \(-0.543655\pi\)
−0.136717 + 0.990610i \(0.543655\pi\)
\(108\) 0 0
\(109\) − 5.27400i − 0.505158i −0.967576 0.252579i \(-0.918721\pi\)
0.967576 0.252579i \(-0.0812787\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −5.82237 −0.547722 −0.273861 0.961769i \(-0.588301\pi\)
−0.273861 + 0.961769i \(0.588301\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 8.77551 0.804450
\(120\) 0 0
\(121\) 10.9634 0.996669
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 20.5388 1.82252 0.911261 0.411829i \(-0.135110\pi\)
0.911261 + 0.411829i \(0.135110\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) − 13.5679i − 1.18543i −0.805413 0.592715i \(-0.798056\pi\)
0.805413 0.592715i \(-0.201944\pi\)
\(132\) 0 0
\(133\) 2.15401 0.186776
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −4.72563 −0.403738 −0.201869 0.979413i \(-0.564702\pi\)
−0.201869 + 0.979413i \(0.564702\pi\)
\(138\) 0 0
\(139\) 15.7572 1.33651 0.668254 0.743934i \(-0.267042\pi\)
0.668254 + 0.743934i \(0.267042\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) − 0.504792i − 0.0422129i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −7.72928 −0.633207 −0.316604 0.948558i \(-0.602543\pi\)
−0.316604 + 0.948558i \(0.602543\pi\)
\(150\) 0 0
\(151\) 22.2098i 1.80741i 0.428158 + 0.903704i \(0.359163\pi\)
−0.428158 + 0.903704i \(0.640837\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 8.00229 0.638652 0.319326 0.947645i \(-0.396543\pi\)
0.319326 + 0.947645i \(0.396543\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 7.42801i 0.585409i
\(162\) 0 0
\(163\) − 0.953771i − 0.0747051i −0.999302 0.0373526i \(-0.988108\pi\)
0.999302 0.0373526i \(-0.0118925\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 11.7572i − 0.909799i −0.890543 0.454899i \(-0.849675\pi\)
0.890543 0.454899i \(-0.150325\pi\)
\(168\) 0 0
\(169\) −6.04623 −0.465095
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) − 3.22449i − 0.245153i −0.992459 0.122577i \(-0.960884\pi\)
0.992459 0.122577i \(-0.0391157\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 12.6019i 0.941908i 0.882158 + 0.470954i \(0.156090\pi\)
−0.882158 + 0.470954i \(0.843910\pi\)
\(180\) 0 0
\(181\) 24.1070i 1.79186i 0.444195 + 0.895930i \(0.353490\pi\)
−0.444195 + 0.895930i \(0.646510\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) − 1.18785i − 0.0868639i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −10.9171 −0.789936 −0.394968 0.918695i \(-0.629244\pi\)
−0.394968 + 0.918695i \(0.629244\pi\)
\(192\) 0 0
\(193\) 15.3169i 1.10254i 0.834328 + 0.551269i \(0.185856\pi\)
−0.834328 + 0.551269i \(0.814144\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 17.0462i − 1.21449i −0.794513 0.607247i \(-0.792274\pi\)
0.794513 0.607247i \(-0.207726\pi\)
\(198\) 0 0
\(199\) − 4.72563i − 0.334991i −0.985873 0.167496i \(-0.946432\pi\)
0.985873 0.167496i \(-0.0535680\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −0.382853 −0.0268710
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) − 0.291565i − 0.0201680i
\(210\) 0 0
\(211\) −16.8401 −1.15932 −0.579659 0.814859i \(-0.696814\pi\)
−0.579659 + 0.814859i \(0.696814\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) − 8.77551i − 0.595720i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 16.3632 1.10071
\(222\) 0 0
\(223\) −22.3099 −1.49398 −0.746992 0.664833i \(-0.768503\pi\)
−0.746992 + 0.664833i \(0.768503\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 8.86813 0.588599 0.294299 0.955713i \(-0.404914\pi\)
0.294299 + 0.955713i \(0.404914\pi\)
\(228\) 0 0
\(229\) 21.2786i 1.40613i 0.711126 + 0.703064i \(0.248185\pi\)
−0.711126 + 0.703064i \(0.751815\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −15.0734 −0.987488 −0.493744 0.869607i \(-0.664372\pi\)
−0.493744 + 0.869607i \(0.664372\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 19.0462 1.23200 0.615999 0.787747i \(-0.288753\pi\)
0.615999 + 0.787747i \(0.288753\pi\)
\(240\) 0 0
\(241\) 18.5048 1.19200 0.595999 0.802985i \(-0.296756\pi\)
0.595999 + 0.802985i \(0.296756\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 4.01645 0.255561
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) − 16.8186i − 1.06158i −0.847503 0.530790i \(-0.821895\pi\)
0.847503 0.530790i \(-0.178105\pi\)
\(252\) 0 0
\(253\) 1.00545 0.0632120
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 9.79936 0.611267 0.305634 0.952149i \(-0.401132\pi\)
0.305634 + 0.952149i \(0.401132\pi\)
\(258\) 0 0
\(259\) −10.7755 −0.669558
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) − 5.79383i − 0.357263i −0.983916 0.178632i \(-0.942833\pi\)
0.983916 0.178632i \(-0.0571670\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 15.1878 0.926019 0.463010 0.886353i \(-0.346770\pi\)
0.463010 + 0.886353i \(0.346770\pi\)
\(270\) 0 0
\(271\) 10.1304i 0.615377i 0.951487 + 0.307689i \(0.0995555\pi\)
−0.951487 + 0.307689i \(0.900444\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 14.7559 0.886595 0.443298 0.896375i \(-0.353809\pi\)
0.443298 + 0.896375i \(0.353809\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) − 21.5442i − 1.28522i −0.766193 0.642611i \(-0.777851\pi\)
0.766193 0.642611i \(-0.222149\pi\)
\(282\) 0 0
\(283\) 18.2707i 1.08608i 0.839706 + 0.543041i \(0.182727\pi\)
−0.839706 + 0.543041i \(0.817273\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 13.0462i − 0.770095i
\(288\) 0 0
\(289\) 21.5048 1.26499
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 6.00000i 0.350524i 0.984522 + 0.175262i \(0.0560772\pi\)
−0.984522 + 0.175262i \(0.943923\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 13.8506i 0.800999i
\(300\) 0 0
\(301\) 18.0673i 1.04138i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) − 22.5048i − 1.28442i −0.766530 0.642208i \(-0.778018\pi\)
0.766530 0.642208i \(-0.221982\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 31.0462 1.76047 0.880235 0.474538i \(-0.157385\pi\)
0.880235 + 0.474538i \(0.157385\pi\)
\(312\) 0 0
\(313\) 2.23407i 0.126277i 0.998005 + 0.0631387i \(0.0201110\pi\)
−0.998005 + 0.0631387i \(0.979889\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 16.5048i − 0.927001i −0.886097 0.463501i \(-0.846593\pi\)
0.886097 0.463501i \(-0.153407\pi\)
\(318\) 0 0
\(319\) 0.0518227i 0.00290151i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 9.45126 0.525882
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 5.36529i 0.295798i
\(330\) 0 0
\(331\) 12.9817 0.713538 0.356769 0.934193i \(-0.383878\pi\)
0.356769 + 0.934193i \(0.383878\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) − 27.0096i − 1.47131i −0.677359 0.735653i \(-0.736875\pi\)
0.677359 0.735653i \(-0.263125\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −1.18785 −0.0643254
\(342\) 0 0
\(343\) 16.9706 0.916324
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 5.07372 0.272372 0.136186 0.990683i \(-0.456516\pi\)
0.136186 + 0.990683i \(0.456516\pi\)
\(348\) 0 0
\(349\) 20.1300i 1.07754i 0.842454 + 0.538768i \(0.181110\pi\)
−0.842454 + 0.538768i \(0.818890\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −14.3077 −0.761519 −0.380760 0.924674i \(-0.624337\pi\)
−0.380760 + 0.924674i \(0.624337\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −31.8217 −1.67949 −0.839744 0.542983i \(-0.817295\pi\)
−0.839744 + 0.542983i \(0.817295\pi\)
\(360\) 0 0
\(361\) −16.6801 −0.877901
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 22.9844 1.19977 0.599887 0.800085i \(-0.295212\pi\)
0.599887 + 0.800085i \(0.295212\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) − 12.4104i − 0.644318i
\(372\) 0 0
\(373\) 14.2423 0.737437 0.368718 0.929541i \(-0.379797\pi\)
0.368718 + 0.929541i \(0.379797\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −0.713884 −0.0367669
\(378\) 0 0
\(379\) −8.71096 −0.447452 −0.223726 0.974652i \(-0.571822\pi\)
−0.223726 + 0.974652i \(0.571822\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 18.7110i 0.956085i 0.878337 + 0.478043i \(0.158654\pi\)
−0.878337 + 0.478043i \(0.841346\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 27.0096 1.36944 0.684720 0.728806i \(-0.259924\pi\)
0.684720 + 0.728806i \(0.259924\pi\)
\(390\) 0 0
\(391\) 32.5923i 1.64826i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 25.3952 1.27455 0.637274 0.770638i \(-0.280062\pi\)
0.637274 + 0.770638i \(0.280062\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) − 6.01380i − 0.300315i −0.988662 0.150157i \(-0.952022\pi\)
0.988662 0.150157i \(-0.0479780\pi\)
\(402\) 0 0
\(403\) − 16.3632i − 0.815108i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 1.45856i 0.0722983i
\(408\) 0 0
\(409\) 19.5510 0.966736 0.483368 0.875417i \(-0.339413\pi\)
0.483368 + 0.875417i \(0.339413\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 14.7755i 0.727055i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) − 1.96258i − 0.0958784i −0.998850 0.0479392i \(-0.984735\pi\)
0.998850 0.0479392i \(-0.0152654\pi\)
\(420\) 0 0
\(421\) 4.30802i 0.209960i 0.994474 + 0.104980i \(0.0334778\pi\)
−0.994474 + 0.104980i \(0.966522\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) − 0.541436i − 0.0262019i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 11.8217 0.569433 0.284717 0.958612i \(-0.408101\pi\)
0.284717 + 0.958612i \(0.408101\pi\)
\(432\) 0 0
\(433\) − 9.45856i − 0.454550i −0.973831 0.227275i \(-0.927018\pi\)
0.973831 0.227275i \(-0.0729816\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 8.00000i 0.382692i
\(438\) 0 0
\(439\) − 16.0393i − 0.765516i −0.923849 0.382758i \(-0.874974\pi\)
0.923849 0.382758i \(-0.125026\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −25.0730 −1.19125 −0.595627 0.803261i \(-0.703096\pi\)
−0.595627 + 0.803261i \(0.703096\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 4.24264i 0.200223i 0.994976 + 0.100111i \(0.0319199\pi\)
−0.994976 + 0.100111i \(0.968080\pi\)
\(450\) 0 0
\(451\) −1.76593 −0.0831542
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 28.8680i 1.35039i 0.737641 + 0.675193i \(0.235940\pi\)
−0.737641 + 0.675193i \(0.764060\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 36.7389 1.71110 0.855550 0.517721i \(-0.173219\pi\)
0.855550 + 0.517721i \(0.173219\pi\)
\(462\) 0 0
\(463\) −16.6136 −0.772100 −0.386050 0.922478i \(-0.626161\pi\)
−0.386050 + 0.922478i \(0.626161\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 1.47959 0.0684673 0.0342336 0.999414i \(-0.489101\pi\)
0.0342336 + 0.999414i \(0.489101\pi\)
\(468\) 0 0
\(469\) 2.44557i 0.112926i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 2.44557 0.112448
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 2.81215 0.128491 0.0642453 0.997934i \(-0.479536\pi\)
0.0642453 + 0.997934i \(0.479536\pi\)
\(480\) 0 0
\(481\) −20.0925 −0.916137
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −16.9447 −0.767835 −0.383918 0.923367i \(-0.625425\pi\)
−0.383918 + 0.923367i \(0.625425\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 26.0696i 1.17650i 0.808678 + 0.588252i \(0.200184\pi\)
−0.808678 + 0.588252i \(0.799816\pi\)
\(492\) 0 0
\(493\) −1.67987 −0.0756574
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −13.7593 −0.617188
\(498\) 0 0
\(499\) 22.5327 1.00870 0.504351 0.863499i \(-0.331732\pi\)
0.504351 + 0.863499i \(0.331732\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 8.80342i 0.392525i 0.980551 + 0.196262i \(0.0628805\pi\)
−0.980551 + 0.196262i \(0.937120\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 20.6339 0.914581 0.457291 0.889317i \(-0.348820\pi\)
0.457291 + 0.889317i \(0.348820\pi\)
\(510\) 0 0
\(511\) − 7.71957i − 0.341494i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0.726241 0.0319400
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 8.55066i 0.374611i 0.982302 + 0.187306i \(0.0599755\pi\)
−0.982302 + 0.187306i \(0.940025\pi\)
\(522\) 0 0
\(523\) 33.0096i 1.44341i 0.692202 + 0.721704i \(0.256641\pi\)
−0.692202 + 0.721704i \(0.743359\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 38.5048i − 1.67730i
\(528\) 0 0
\(529\) −4.58767 −0.199464
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) − 24.3265i − 1.05370i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) − 0.957133i − 0.0412267i
\(540\) 0 0
\(541\) 27.6493i 1.18874i 0.804193 + 0.594369i \(0.202598\pi\)
−0.804193 + 0.594369i \(0.797402\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 9.85838i 0.421514i 0.977538 + 0.210757i \(0.0675929\pi\)
−0.977538 + 0.210757i \(0.932407\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −0.412335 −0.0175661
\(552\) 0 0
\(553\) − 20.2341i − 0.860440i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 2.68305i 0.113685i 0.998383 + 0.0568423i \(0.0181032\pi\)
−0.998383 + 0.0568423i \(0.981897\pi\)
\(558\) 0 0
\(559\) 33.6890i 1.42489i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 12.0794 0.509087 0.254543 0.967061i \(-0.418075\pi\)
0.254543 + 0.967061i \(0.418075\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) − 15.8479i − 0.664379i −0.943213 0.332190i \(-0.892213\pi\)
0.943213 0.332190i \(-0.107787\pi\)
\(570\) 0 0
\(571\) −1.11078 −0.0464847 −0.0232423 0.999730i \(-0.507399\pi\)
−0.0232423 + 0.999730i \(0.507399\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 14.7755i 0.615113i 0.951530 + 0.307556i \(0.0995112\pi\)
−0.951530 + 0.307556i \(0.900489\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −21.5510 −0.894087
\(582\) 0 0
\(583\) −1.67987 −0.0695730
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −13.5590 −0.559640 −0.279820 0.960052i \(-0.590275\pi\)
−0.279820 + 0.960052i \(0.590275\pi\)
\(588\) 0 0
\(589\) − 9.45126i − 0.389433i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 31.9921 1.31376 0.656879 0.753996i \(-0.271876\pi\)
0.656879 + 0.753996i \(0.271876\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 3.82174 0.156152 0.0780760 0.996947i \(-0.475122\pi\)
0.0780760 + 0.996947i \(0.475122\pi\)
\(600\) 0 0
\(601\) 31.6435 1.29076 0.645382 0.763860i \(-0.276698\pi\)
0.645382 + 0.763860i \(0.276698\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 34.7204 1.40926 0.704629 0.709576i \(-0.251114\pi\)
0.704629 + 0.709576i \(0.251114\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 10.0043i 0.404732i
\(612\) 0 0
\(613\) −26.3612 −1.06472 −0.532359 0.846519i \(-0.678694\pi\)
−0.532359 + 0.846519i \(0.678694\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 7.88509 0.317442 0.158721 0.987323i \(-0.449263\pi\)
0.158721 + 0.987323i \(0.449263\pi\)
\(618\) 0 0
\(619\) −38.9325 −1.56483 −0.782415 0.622757i \(-0.786012\pi\)
−0.782415 + 0.622757i \(0.786012\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 5.04623i 0.202173i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −47.2803 −1.88519
\(630\) 0 0
\(631\) 0.800468i 0.0318661i 0.999873 + 0.0159331i \(0.00507186\pi\)
−0.999873 + 0.0159331i \(0.994928\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 13.1850 0.522409
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) − 22.8931i − 0.904222i −0.891962 0.452111i \(-0.850671\pi\)
0.891962 0.452111i \(-0.149329\pi\)
\(642\) 0 0
\(643\) − 12.9538i − 0.510847i −0.966829 0.255423i \(-0.917785\pi\)
0.966829 0.255423i \(-0.0822149\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 15.6647i 0.615844i 0.951412 + 0.307922i \(0.0996336\pi\)
−0.951412 + 0.307922i \(0.900366\pi\)
\(648\) 0 0
\(649\) 2.00000 0.0785069
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) − 41.5144i − 1.62458i −0.583252 0.812292i \(-0.698220\pi\)
0.583252 0.812292i \(-0.301780\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) − 34.8859i − 1.35896i −0.733693 0.679481i \(-0.762205\pi\)
0.733693 0.679481i \(-0.237795\pi\)
\(660\) 0 0
\(661\) 19.7990i 0.770091i 0.922897 + 0.385046i \(0.125814\pi\)
−0.922897 + 0.385046i \(0.874186\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) − 1.42192i − 0.0550569i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −0.0732884 −0.00282927
\(672\) 0 0
\(673\) − 34.1849i − 1.31773i −0.752260 0.658866i \(-0.771036\pi\)
0.752260 0.658866i \(-0.228964\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 17.0462i − 0.655140i −0.944827 0.327570i \(-0.893770\pi\)
0.944827 0.327570i \(-0.106230\pi\)
\(678\) 0 0
\(679\) − 10.3477i − 0.397109i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −28.6671 −1.09692 −0.548459 0.836178i \(-0.684785\pi\)
−0.548459 + 0.836178i \(0.684785\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) − 23.1410i − 0.881603i
\(690\) 0 0
\(691\) 27.0741 1.02995 0.514974 0.857206i \(-0.327801\pi\)
0.514974 + 0.857206i \(0.327801\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) − 57.2437i − 2.16826i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −23.5510 −0.889510 −0.444755 0.895652i \(-0.646709\pi\)
−0.444755 + 0.895652i \(0.646709\pi\)
\(702\) 0 0
\(703\) −11.6053 −0.437701
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −21.9925 −0.827112
\(708\) 0 0
\(709\) − 7.85033i − 0.294825i −0.989075 0.147413i \(-0.952905\pi\)
0.989075 0.147413i \(-0.0470945\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 32.5923 1.22059
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 10.1416 0.378218 0.189109 0.981956i \(-0.439440\pi\)
0.189109 + 0.981956i \(0.439440\pi\)
\(720\) 0 0
\(721\) −2.95377 −0.110004
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 4.86524 0.180442 0.0902208 0.995922i \(-0.471243\pi\)
0.0902208 + 0.995922i \(0.471243\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 79.2749i 2.93209i
\(732\) 0 0
\(733\) −9.09903 −0.336080 −0.168040 0.985780i \(-0.553744\pi\)
−0.168040 + 0.985780i \(0.553744\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0.331031 0.0121937
\(738\) 0 0
\(739\) 12.5693 0.462371 0.231185 0.972910i \(-0.425740\pi\)
0.231185 + 0.972910i \(0.425740\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) − 23.6647i − 0.868175i −0.900871 0.434087i \(-0.857071\pi\)
0.900871 0.434087i \(-0.142929\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 4.00000 0.146157
\(750\) 0 0
\(751\) − 31.2782i − 1.14136i −0.821173 0.570679i \(-0.806680\pi\)
0.821173 0.570679i \(-0.193320\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −39.1150 −1.42166 −0.710829 0.703365i \(-0.751680\pi\)
−0.710829 + 0.703365i \(0.751680\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 2.76305i 0.100160i 0.998745 + 0.0500802i \(0.0159477\pi\)
−0.998745 + 0.0500802i \(0.984052\pi\)
\(762\) 0 0
\(763\) 7.45856i 0.270018i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 27.5510i 0.994810i
\(768\) 0 0
\(769\) −46.5606 −1.67902 −0.839509 0.543345i \(-0.817157\pi\)
−0.839509 + 0.543345i \(0.817157\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 29.5877i 1.06419i 0.846683 + 0.532097i \(0.178596\pi\)
−0.846683 + 0.532097i \(0.821404\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) − 14.0508i − 0.503424i
\(780\) 0 0
\(781\) 1.86244i 0.0666435i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 35.9267i 1.28065i 0.768105 + 0.640324i \(0.221200\pi\)
−0.768105 + 0.640324i \(0.778800\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 8.23407 0.292770
\(792\) 0 0
\(793\) − 1.00958i − 0.0358514i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 9.31695i − 0.330023i −0.986292 0.165012i \(-0.947234\pi\)
0.986292 0.165012i \(-0.0527662\pi\)
\(798\) 0 0
\(799\) 23.5416i 0.832841i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −1.04491 −0.0368742
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 34.9207i 1.22775i 0.789405 + 0.613873i \(0.210389\pi\)
−0.789405 + 0.613873i \(0.789611\pi\)
\(810\) 0 0
\(811\) 25.7938 0.905744 0.452872 0.891576i \(-0.350399\pi\)
0.452872 + 0.891576i \(0.350399\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 19.4586i 0.680769i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 31.1878 1.08846 0.544232 0.838935i \(-0.316821\pi\)
0.544232 + 0.838935i \(0.316821\pi\)
\(822\) 0 0
\(823\) 33.5718 1.17024 0.585120 0.810947i \(-0.301047\pi\)
0.585120 + 0.810947i \(0.301047\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −53.4362 −1.85816 −0.929079 0.369881i \(-0.879399\pi\)
−0.929079 + 0.369881i \(0.879399\pi\)
\(828\) 0 0
\(829\) 0.634952i 0.0220528i 0.999939 + 0.0110264i \(0.00350988\pi\)
−0.999939 + 0.0110264i \(0.996490\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 31.0261 1.07499
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 24.9046 0.859803 0.429901 0.902876i \(-0.358548\pi\)
0.429901 + 0.902876i \(0.358548\pi\)
\(840\) 0 0
\(841\) −28.9267 −0.997473
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −15.5045 −0.532742
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) − 40.0203i − 1.37188i
\(852\) 0 0
\(853\) 17.5448 0.600724 0.300362 0.953825i \(-0.402893\pi\)
0.300362 + 0.953825i \(0.402893\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −7.30196 −0.249430 −0.124715 0.992193i \(-0.539802\pi\)
−0.124715 + 0.992193i \(0.539802\pi\)
\(858\) 0 0
\(859\) 15.2890 0.521655 0.260828 0.965385i \(-0.416005\pi\)
0.260828 + 0.965385i \(0.416005\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 41.9787i 1.42897i 0.699649 + 0.714487i \(0.253340\pi\)
−0.699649 + 0.714487i \(0.746660\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −2.73887 −0.0929097
\(870\) 0 0
\(871\) 4.56012i 0.154514i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −38.4800 −1.29938 −0.649689 0.760200i \(-0.725101\pi\)
−0.649689 + 0.760200i \(0.725101\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) − 7.11053i − 0.239560i −0.992800 0.119780i \(-0.961781\pi\)
0.992800 0.119780i \(-0.0382189\pi\)
\(882\) 0 0
\(883\) − 26.5048i − 0.891957i −0.895044 0.445979i \(-0.852856\pi\)
0.895044 0.445979i \(-0.147144\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 39.3449i 1.32107i 0.750795 + 0.660535i \(0.229671\pi\)
−0.750795 + 0.660535i \(0.770329\pi\)
\(888\) 0 0
\(889\) −29.0462 −0.974179
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 5.77844i 0.193368i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 1.67987i 0.0560267i
\(900\) 0 0
\(901\) − 54.4540i − 1.81413i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 22.1974i 0.737054i 0.929617 + 0.368527i \(0.120138\pi\)
−0.929617 + 0.368527i \(0.879862\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 20.9538 0.694229 0.347115 0.937823i \(-0.387161\pi\)
0.347115 + 0.937823i \(0.387161\pi\)
\(912\) 0 0
\(913\) 2.91713i 0.0965428i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 19.1878i 0.633638i
\(918\) 0 0
\(919\) 7.88509i 0.260105i 0.991507 + 0.130053i \(0.0415146\pi\)
−0.991507 + 0.130053i \(0.958485\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −25.6561 −0.844481
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 6.35718i 0.208572i 0.994547 + 0.104286i \(0.0332558\pi\)
−0.994547 + 0.104286i \(0.966744\pi\)
\(930\) 0 0
\(931\) 7.61557 0.249590
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 35.0096i 1.14371i 0.820354 + 0.571857i \(0.193777\pi\)
−0.820354 + 0.571857i \(0.806223\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −28.5606 −0.931049 −0.465525 0.885035i \(-0.654134\pi\)
−0.465525 + 0.885035i \(0.654134\pi\)
\(942\) 0 0
\(943\) 48.4538 1.57787
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 20.7650 0.674771 0.337385 0.941367i \(-0.390457\pi\)
0.337385 + 0.941367i \(0.390457\pi\)
\(948\) 0 0
\(949\) − 14.3942i − 0.467257i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 38.4147 1.24437 0.622186 0.782869i \(-0.286245\pi\)
0.622186 + 0.782869i \(0.286245\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 6.68305 0.215807
\(960\) 0 0
\(961\) −7.50479 −0.242090
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 16.6013 0.533861 0.266930 0.963716i \(-0.413991\pi\)
0.266930 + 0.963716i \(0.413991\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 10.3171i 0.331092i 0.986202 + 0.165546i \(0.0529386\pi\)
−0.986202 + 0.165546i \(0.947061\pi\)
\(972\) 0 0
\(973\) −22.2840 −0.714393
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 32.0439 1.02518 0.512588 0.858635i \(-0.328687\pi\)
0.512588 + 0.858635i \(0.328687\pi\)
\(978\) 0 0
\(979\) 0.683053 0.0218305
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) − 24.8034i − 0.791106i −0.918443 0.395553i \(-0.870553\pi\)
0.918443 0.395553i \(-0.129447\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −67.1020 −2.13372
\(990\) 0 0
\(991\) − 15.7872i − 0.501498i −0.968052 0.250749i \(-0.919323\pi\)
0.968052 0.250749i \(-0.0806769\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 51.3823 1.62729 0.813647 0.581359i \(-0.197479\pi\)
0.813647 + 0.581359i \(0.197479\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7200.2.m.e.3599.4 12
3.2 odd 2 7200.2.m.d.3599.3 12
4.3 odd 2 1800.2.m.e.899.6 12
5.2 odd 4 7200.2.b.e.4751.2 6
5.3 odd 4 1440.2.b.d.431.5 6
5.4 even 2 inner 7200.2.m.e.3599.10 12
8.3 odd 2 7200.2.m.d.3599.10 12
8.5 even 2 1800.2.m.d.899.5 12
12.11 even 2 1800.2.m.d.899.7 12
15.2 even 4 7200.2.b.d.4751.2 6
15.8 even 4 1440.2.b.c.431.5 6
15.14 odd 2 7200.2.m.d.3599.9 12
20.3 even 4 360.2.b.d.251.6 yes 6
20.7 even 4 1800.2.b.d.251.1 6
20.19 odd 2 1800.2.m.e.899.7 12
24.5 odd 2 1800.2.m.e.899.8 12
24.11 even 2 inner 7200.2.m.e.3599.9 12
40.3 even 4 1440.2.b.c.431.2 6
40.13 odd 4 360.2.b.c.251.2 yes 6
40.19 odd 2 7200.2.m.d.3599.4 12
40.27 even 4 7200.2.b.d.4751.5 6
40.29 even 2 1800.2.m.d.899.8 12
40.37 odd 4 1800.2.b.e.251.5 6
60.23 odd 4 360.2.b.c.251.1 6
60.47 odd 4 1800.2.b.e.251.6 6
60.59 even 2 1800.2.m.d.899.6 12
120.29 odd 2 1800.2.m.e.899.5 12
120.53 even 4 360.2.b.d.251.5 yes 6
120.59 even 2 inner 7200.2.m.e.3599.3 12
120.77 even 4 1800.2.b.d.251.2 6
120.83 odd 4 1440.2.b.d.431.2 6
120.107 odd 4 7200.2.b.e.4751.5 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
360.2.b.c.251.1 6 60.23 odd 4
360.2.b.c.251.2 yes 6 40.13 odd 4
360.2.b.d.251.5 yes 6 120.53 even 4
360.2.b.d.251.6 yes 6 20.3 even 4
1440.2.b.c.431.2 6 40.3 even 4
1440.2.b.c.431.5 6 15.8 even 4
1440.2.b.d.431.2 6 120.83 odd 4
1440.2.b.d.431.5 6 5.3 odd 4
1800.2.b.d.251.1 6 20.7 even 4
1800.2.b.d.251.2 6 120.77 even 4
1800.2.b.e.251.5 6 40.37 odd 4
1800.2.b.e.251.6 6 60.47 odd 4
1800.2.m.d.899.5 12 8.5 even 2
1800.2.m.d.899.6 12 60.59 even 2
1800.2.m.d.899.7 12 12.11 even 2
1800.2.m.d.899.8 12 40.29 even 2
1800.2.m.e.899.5 12 120.29 odd 2
1800.2.m.e.899.6 12 4.3 odd 2
1800.2.m.e.899.7 12 20.19 odd 2
1800.2.m.e.899.8 12 24.5 odd 2
7200.2.b.d.4751.2 6 15.2 even 4
7200.2.b.d.4751.5 6 40.27 even 4
7200.2.b.e.4751.2 6 5.2 odd 4
7200.2.b.e.4751.5 6 120.107 odd 4
7200.2.m.d.3599.3 12 3.2 odd 2
7200.2.m.d.3599.4 12 40.19 odd 2
7200.2.m.d.3599.9 12 15.14 odd 2
7200.2.m.d.3599.10 12 8.3 odd 2
7200.2.m.e.3599.3 12 120.59 even 2 inner
7200.2.m.e.3599.4 12 1.1 even 1 trivial
7200.2.m.e.3599.9 12 24.11 even 2 inner
7200.2.m.e.3599.10 12 5.4 even 2 inner