Properties

Label 7200.2.b.d.4751.2
Level $7200$
Weight $2$
Character 7200.4751
Analytic conductor $57.492$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7200,2,Mod(4751,7200)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7200, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7200.4751");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7200 = 2^{5} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7200.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(57.4922894553\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.2580992.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + x^{4} + 2x^{2} - 8x + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 360)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 4751.2
Root \(1.38078 - 0.305697i\) of defining polynomial
Character \(\chi\) \(=\) 7200.4751
Dual form 7200.2.b.d.4751.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.41421i q^{7} -0.191427i q^{11} +2.63700i q^{13} +6.20522i q^{17} +1.52311 q^{19} +5.25240 q^{23} +0.270718 q^{29} +6.20522i q^{31} +7.61944i q^{37} -9.22508i q^{41} -12.7755 q^{43} -3.79383 q^{47} +5.00000 q^{49} -8.77551 q^{53} -10.4479i q^{59} +0.382853i q^{61} +1.72928 q^{67} -9.72928 q^{71} +5.45856 q^{73} -0.270718 q^{77} -14.3077i q^{79} +15.2389i q^{83} -3.56822i q^{89} +3.72928 q^{91} -7.31695 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 16 q^{19} - 4 q^{23} + 12 q^{29} - 16 q^{43} - 8 q^{47} + 30 q^{49} + 8 q^{53} - 48 q^{71} + 12 q^{73} - 12 q^{77} + 12 q^{91} - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/7200\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(901\) \(6401\) \(6751\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) − 1.41421i − 0.534522i −0.963624 0.267261i \(-0.913881\pi\)
0.963624 0.267261i \(-0.0861187\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) − 0.191427i − 0.0577173i −0.999584 0.0288587i \(-0.990813\pi\)
0.999584 0.0288587i \(-0.00918727\pi\)
\(12\) 0 0
\(13\) 2.63700i 0.731372i 0.930738 + 0.365686i \(0.119166\pi\)
−0.930738 + 0.365686i \(0.880834\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 6.20522i 1.50499i 0.658599 + 0.752494i \(0.271149\pi\)
−0.658599 + 0.752494i \(0.728851\pi\)
\(18\) 0 0
\(19\) 1.52311 0.349426 0.174713 0.984619i \(-0.444100\pi\)
0.174713 + 0.984619i \(0.444100\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 5.25240 1.09520 0.547600 0.836740i \(-0.315542\pi\)
0.547600 + 0.836740i \(0.315542\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0.270718 0.0502711 0.0251356 0.999684i \(-0.491998\pi\)
0.0251356 + 0.999684i \(0.491998\pi\)
\(30\) 0 0
\(31\) 6.20522i 1.11449i 0.830348 + 0.557245i \(0.188142\pi\)
−0.830348 + 0.557245i \(0.811858\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 7.61944i 1.25263i 0.779571 + 0.626314i \(0.215437\pi\)
−0.779571 + 0.626314i \(0.784563\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) − 9.22508i − 1.44071i −0.693603 0.720357i \(-0.743978\pi\)
0.693603 0.720357i \(-0.256022\pi\)
\(42\) 0 0
\(43\) −12.7755 −1.94825 −0.974124 0.226016i \(-0.927430\pi\)
−0.974124 + 0.226016i \(0.927430\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −3.79383 −0.553387 −0.276694 0.960958i \(-0.589239\pi\)
−0.276694 + 0.960958i \(0.589239\pi\)
\(48\) 0 0
\(49\) 5.00000 0.714286
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −8.77551 −1.20541 −0.602705 0.797964i \(-0.705910\pi\)
−0.602705 + 0.797964i \(0.705910\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) − 10.4479i − 1.36020i −0.733121 0.680098i \(-0.761937\pi\)
0.733121 0.680098i \(-0.238063\pi\)
\(60\) 0 0
\(61\) 0.382853i 0.0490194i 0.999700 + 0.0245097i \(0.00780245\pi\)
−0.999700 + 0.0245097i \(0.992198\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 1.72928 0.211265 0.105633 0.994405i \(-0.466313\pi\)
0.105633 + 0.994405i \(0.466313\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −9.72928 −1.15465 −0.577327 0.816513i \(-0.695904\pi\)
−0.577327 + 0.816513i \(0.695904\pi\)
\(72\) 0 0
\(73\) 5.45856 0.638877 0.319438 0.947607i \(-0.396506\pi\)
0.319438 + 0.947607i \(0.396506\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −0.270718 −0.0308512
\(78\) 0 0
\(79\) − 14.3077i − 1.60974i −0.593454 0.804868i \(-0.702236\pi\)
0.593454 0.804868i \(-0.297764\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 15.2389i 1.67268i 0.548208 + 0.836342i \(0.315310\pi\)
−0.548208 + 0.836342i \(0.684690\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) − 3.56822i − 0.378231i −0.981955 0.189115i \(-0.939438\pi\)
0.981955 0.189115i \(-0.0605620\pi\)
\(90\) 0 0
\(91\) 3.72928 0.390935
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −7.31695 −0.742923 −0.371462 0.928448i \(-0.621143\pi\)
−0.371462 + 0.928448i \(0.621143\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −15.5510 −1.54738 −0.773692 0.633562i \(-0.781592\pi\)
−0.773692 + 0.633562i \(0.781592\pi\)
\(102\) 0 0
\(103\) − 2.08863i − 0.205799i −0.994692 0.102899i \(-0.967188\pi\)
0.994692 0.102899i \(-0.0328120\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 2.82843i 0.273434i 0.990610 + 0.136717i \(0.0436552\pi\)
−0.990610 + 0.136717i \(0.956345\pi\)
\(108\) 0 0
\(109\) 5.27400i 0.505158i 0.967576 + 0.252579i \(0.0812787\pi\)
−0.967576 + 0.252579i \(0.918721\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) − 5.82237i − 0.547722i −0.961769 0.273861i \(-0.911699\pi\)
0.961769 0.273861i \(-0.0883009\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 8.77551 0.804450
\(120\) 0 0
\(121\) 10.9634 0.996669
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 20.5388i 1.82252i 0.411829 + 0.911261i \(0.364890\pi\)
−0.411829 + 0.911261i \(0.635110\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 13.5679i 1.18543i 0.805413 + 0.592715i \(0.201944\pi\)
−0.805413 + 0.592715i \(0.798056\pi\)
\(132\) 0 0
\(133\) − 2.15401i − 0.186776i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 4.72563i 0.403738i 0.979413 + 0.201869i \(0.0647015\pi\)
−0.979413 + 0.201869i \(0.935298\pi\)
\(138\) 0 0
\(139\) −15.7572 −1.33651 −0.668254 0.743934i \(-0.732958\pi\)
−0.668254 + 0.743934i \(0.732958\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0.504792 0.0422129
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −7.72928 −0.633207 −0.316604 0.948558i \(-0.602543\pi\)
−0.316604 + 0.948558i \(0.602543\pi\)
\(150\) 0 0
\(151\) 22.2098i 1.80741i 0.428158 + 0.903704i \(0.359163\pi\)
−0.428158 + 0.903704i \(0.640837\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 8.00229i 0.638652i 0.947645 + 0.319326i \(0.103457\pi\)
−0.947645 + 0.319326i \(0.896543\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) − 7.42801i − 0.585409i
\(162\) 0 0
\(163\) −0.953771 −0.0747051 −0.0373526 0.999302i \(-0.511892\pi\)
−0.0373526 + 0.999302i \(0.511892\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −11.7572 −0.909799 −0.454899 0.890543i \(-0.650325\pi\)
−0.454899 + 0.890543i \(0.650325\pi\)
\(168\) 0 0
\(169\) 6.04623 0.465095
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 3.22449 0.245153 0.122577 0.992459i \(-0.460884\pi\)
0.122577 + 0.992459i \(0.460884\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 12.6019i 0.941908i 0.882158 + 0.470954i \(0.156090\pi\)
−0.882158 + 0.470954i \(0.843910\pi\)
\(180\) 0 0
\(181\) 24.1070i 1.79186i 0.444195 + 0.895930i \(0.353490\pi\)
−0.444195 + 0.895930i \(0.646510\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 1.18785 0.0868639
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 10.9171 0.789936 0.394968 0.918695i \(-0.370756\pi\)
0.394968 + 0.918695i \(0.370756\pi\)
\(192\) 0 0
\(193\) 15.3169 1.10254 0.551269 0.834328i \(-0.314144\pi\)
0.551269 + 0.834328i \(0.314144\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −17.0462 −1.21449 −0.607247 0.794513i \(-0.707726\pi\)
−0.607247 + 0.794513i \(0.707726\pi\)
\(198\) 0 0
\(199\) 4.72563i 0.334991i 0.985873 + 0.167496i \(0.0535680\pi\)
−0.985873 + 0.167496i \(0.946432\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) − 0.382853i − 0.0268710i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) − 0.291565i − 0.0201680i
\(210\) 0 0
\(211\) −16.8401 −1.15932 −0.579659 0.814859i \(-0.696814\pi\)
−0.579659 + 0.814859i \(0.696814\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 8.77551 0.595720
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −16.3632 −1.10071
\(222\) 0 0
\(223\) 22.3099i 1.49398i 0.664833 + 0.746992i \(0.268503\pi\)
−0.664833 + 0.746992i \(0.731497\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 8.86813i − 0.588599i −0.955713 0.294299i \(-0.904914\pi\)
0.955713 0.294299i \(-0.0950863\pi\)
\(228\) 0 0
\(229\) − 21.2786i − 1.40613i −0.711126 0.703064i \(-0.751815\pi\)
0.711126 0.703064i \(-0.248185\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) − 15.0734i − 0.987488i −0.869607 0.493744i \(-0.835628\pi\)
0.869607 0.493744i \(-0.164372\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 19.0462 1.23200 0.615999 0.787747i \(-0.288753\pi\)
0.615999 + 0.787747i \(0.288753\pi\)
\(240\) 0 0
\(241\) 18.5048 1.19200 0.595999 0.802985i \(-0.296756\pi\)
0.595999 + 0.802985i \(0.296756\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 4.01645i 0.255561i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 16.8186i 1.06158i 0.847503 + 0.530790i \(0.178105\pi\)
−0.847503 + 0.530790i \(0.821895\pi\)
\(252\) 0 0
\(253\) − 1.00545i − 0.0632120i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 9.79936i − 0.611267i −0.952149 0.305634i \(-0.901132\pi\)
0.952149 0.305634i \(-0.0988682\pi\)
\(258\) 0 0
\(259\) 10.7755 0.669558
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 5.79383 0.357263 0.178632 0.983916i \(-0.442833\pi\)
0.178632 + 0.983916i \(0.442833\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 15.1878 0.926019 0.463010 0.886353i \(-0.346770\pi\)
0.463010 + 0.886353i \(0.346770\pi\)
\(270\) 0 0
\(271\) 10.1304i 0.615377i 0.951487 + 0.307689i \(0.0995555\pi\)
−0.951487 + 0.307689i \(0.900444\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 14.7559i 0.886595i 0.896375 + 0.443298i \(0.146191\pi\)
−0.896375 + 0.443298i \(0.853809\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 21.5442i 1.28522i 0.766193 + 0.642611i \(0.222149\pi\)
−0.766193 + 0.642611i \(0.777851\pi\)
\(282\) 0 0
\(283\) 18.2707 1.08608 0.543041 0.839706i \(-0.317273\pi\)
0.543041 + 0.839706i \(0.317273\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −13.0462 −0.770095
\(288\) 0 0
\(289\) −21.5048 −1.26499
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −6.00000 −0.350524 −0.175262 0.984522i \(-0.556077\pi\)
−0.175262 + 0.984522i \(0.556077\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 13.8506i 0.800999i
\(300\) 0 0
\(301\) 18.0673i 1.04138i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 22.5048 1.28442 0.642208 0.766530i \(-0.278018\pi\)
0.642208 + 0.766530i \(0.278018\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −31.0462 −1.76047 −0.880235 0.474538i \(-0.842615\pi\)
−0.880235 + 0.474538i \(0.842615\pi\)
\(312\) 0 0
\(313\) 2.23407 0.126277 0.0631387 0.998005i \(-0.479889\pi\)
0.0631387 + 0.998005i \(0.479889\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −16.5048 −0.927001 −0.463501 0.886097i \(-0.653407\pi\)
−0.463501 + 0.886097i \(0.653407\pi\)
\(318\) 0 0
\(319\) − 0.0518227i − 0.00290151i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 9.45126i 0.525882i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 5.36529i 0.295798i
\(330\) 0 0
\(331\) 12.9817 0.713538 0.356769 0.934193i \(-0.383878\pi\)
0.356769 + 0.934193i \(0.383878\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 27.0096 1.47131 0.735653 0.677359i \(-0.236875\pi\)
0.735653 + 0.677359i \(0.236875\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 1.18785 0.0643254
\(342\) 0 0
\(343\) − 16.9706i − 0.916324i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 5.07372i − 0.272372i −0.990683 0.136186i \(-0.956516\pi\)
0.990683 0.136186i \(-0.0434844\pi\)
\(348\) 0 0
\(349\) − 20.1300i − 1.07754i −0.842454 0.538768i \(-0.818890\pi\)
0.842454 0.538768i \(-0.181110\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) − 14.3077i − 0.761519i −0.924674 0.380760i \(-0.875663\pi\)
0.924674 0.380760i \(-0.124337\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −31.8217 −1.67949 −0.839744 0.542983i \(-0.817295\pi\)
−0.839744 + 0.542983i \(0.817295\pi\)
\(360\) 0 0
\(361\) −16.6801 −0.877901
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 22.9844i 1.19977i 0.800085 + 0.599887i \(0.204788\pi\)
−0.800085 + 0.599887i \(0.795212\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 12.4104i 0.644318i
\(372\) 0 0
\(373\) − 14.2423i − 0.737437i −0.929541 0.368718i \(-0.879797\pi\)
0.929541 0.368718i \(-0.120203\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0.713884i 0.0367669i
\(378\) 0 0
\(379\) 8.71096 0.447452 0.223726 0.974652i \(-0.428178\pi\)
0.223726 + 0.974652i \(0.428178\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −18.7110 −0.956085 −0.478043 0.878337i \(-0.658654\pi\)
−0.478043 + 0.878337i \(0.658654\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 27.0096 1.36944 0.684720 0.728806i \(-0.259924\pi\)
0.684720 + 0.728806i \(0.259924\pi\)
\(390\) 0 0
\(391\) 32.5923i 1.64826i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 25.3952i 1.27455i 0.770638 + 0.637274i \(0.219938\pi\)
−0.770638 + 0.637274i \(0.780062\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 6.01380i 0.300315i 0.988662 + 0.150157i \(0.0479780\pi\)
−0.988662 + 0.150157i \(0.952022\pi\)
\(402\) 0 0
\(403\) −16.3632 −0.815108
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 1.45856 0.0722983
\(408\) 0 0
\(409\) −19.5510 −0.966736 −0.483368 0.875417i \(-0.660587\pi\)
−0.483368 + 0.875417i \(0.660587\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −14.7755 −0.727055
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) − 1.96258i − 0.0958784i −0.998850 0.0479392i \(-0.984735\pi\)
0.998850 0.0479392i \(-0.0152654\pi\)
\(420\) 0 0
\(421\) 4.30802i 0.209960i 0.994474 + 0.104980i \(0.0334778\pi\)
−0.994474 + 0.104980i \(0.966522\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0.541436 0.0262019
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −11.8217 −0.569433 −0.284717 0.958612i \(-0.591899\pi\)
−0.284717 + 0.958612i \(0.591899\pi\)
\(432\) 0 0
\(433\) −9.45856 −0.454550 −0.227275 0.973831i \(-0.572982\pi\)
−0.227275 + 0.973831i \(0.572982\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 8.00000 0.382692
\(438\) 0 0
\(439\) 16.0393i 0.765516i 0.923849 + 0.382758i \(0.125026\pi\)
−0.923849 + 0.382758i \(0.874974\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) − 25.0730i − 1.19125i −0.803261 0.595627i \(-0.796904\pi\)
0.803261 0.595627i \(-0.203096\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 4.24264i 0.200223i 0.994976 + 0.100111i \(0.0319199\pi\)
−0.994976 + 0.100111i \(0.968080\pi\)
\(450\) 0 0
\(451\) −1.76593 −0.0831542
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −28.8680 −1.35039 −0.675193 0.737641i \(-0.735940\pi\)
−0.675193 + 0.737641i \(0.735940\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −36.7389 −1.71110 −0.855550 0.517721i \(-0.826781\pi\)
−0.855550 + 0.517721i \(0.826781\pi\)
\(462\) 0 0
\(463\) 16.6136i 0.772100i 0.922478 + 0.386050i \(0.126161\pi\)
−0.922478 + 0.386050i \(0.873839\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 1.47959i − 0.0684673i −0.999414 0.0342336i \(-0.989101\pi\)
0.999414 0.0342336i \(-0.0108990\pi\)
\(468\) 0 0
\(469\) − 2.44557i − 0.112926i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 2.44557i 0.112448i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 2.81215 0.128491 0.0642453 0.997934i \(-0.479536\pi\)
0.0642453 + 0.997934i \(0.479536\pi\)
\(480\) 0 0
\(481\) −20.0925 −0.916137
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) − 16.9447i − 0.767835i −0.923367 0.383918i \(-0.874575\pi\)
0.923367 0.383918i \(-0.125425\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) − 26.0696i − 1.17650i −0.808678 0.588252i \(-0.799816\pi\)
0.808678 0.588252i \(-0.200184\pi\)
\(492\) 0 0
\(493\) 1.67987i 0.0756574i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 13.7593i 0.617188i
\(498\) 0 0
\(499\) −22.5327 −1.00870 −0.504351 0.863499i \(-0.668268\pi\)
−0.504351 + 0.863499i \(0.668268\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −8.80342 −0.392525 −0.196262 0.980551i \(-0.562880\pi\)
−0.196262 + 0.980551i \(0.562880\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 20.6339 0.914581 0.457291 0.889317i \(-0.348820\pi\)
0.457291 + 0.889317i \(0.348820\pi\)
\(510\) 0 0
\(511\) − 7.71957i − 0.341494i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0.726241i 0.0319400i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) − 8.55066i − 0.374611i −0.982302 0.187306i \(-0.940025\pi\)
0.982302 0.187306i \(-0.0599755\pi\)
\(522\) 0 0
\(523\) 33.0096 1.44341 0.721704 0.692202i \(-0.243359\pi\)
0.721704 + 0.692202i \(0.243359\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −38.5048 −1.67730
\(528\) 0 0
\(529\) 4.58767 0.199464
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 24.3265 1.05370
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) − 0.957133i − 0.0412267i
\(540\) 0 0
\(541\) 27.6493i 1.18874i 0.804193 + 0.594369i \(0.202598\pi\)
−0.804193 + 0.594369i \(0.797402\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −9.85838 −0.421514 −0.210757 0.977538i \(-0.567593\pi\)
−0.210757 + 0.977538i \(0.567593\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0.412335 0.0175661
\(552\) 0 0
\(553\) −20.2341 −0.860440
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 2.68305 0.113685 0.0568423 0.998383i \(-0.481897\pi\)
0.0568423 + 0.998383i \(0.481897\pi\)
\(558\) 0 0
\(559\) − 33.6890i − 1.42489i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 12.0794i 0.509087i 0.967061 + 0.254543i \(0.0819251\pi\)
−0.967061 + 0.254543i \(0.918075\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) − 15.8479i − 0.664379i −0.943213 0.332190i \(-0.892213\pi\)
0.943213 0.332190i \(-0.107787\pi\)
\(570\) 0 0
\(571\) −1.11078 −0.0464847 −0.0232423 0.999730i \(-0.507399\pi\)
−0.0232423 + 0.999730i \(0.507399\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −14.7755 −0.615113 −0.307556 0.951530i \(-0.599511\pi\)
−0.307556 + 0.951530i \(0.599511\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 21.5510 0.894087
\(582\) 0 0
\(583\) 1.67987i 0.0695730i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 13.5590i 0.559640i 0.960052 + 0.279820i \(0.0902748\pi\)
−0.960052 + 0.279820i \(0.909725\pi\)
\(588\) 0 0
\(589\) 9.45126i 0.389433i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 31.9921i 1.31376i 0.753996 + 0.656879i \(0.228124\pi\)
−0.753996 + 0.656879i \(0.771876\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 3.82174 0.156152 0.0780760 0.996947i \(-0.475122\pi\)
0.0780760 + 0.996947i \(0.475122\pi\)
\(600\) 0 0
\(601\) 31.6435 1.29076 0.645382 0.763860i \(-0.276698\pi\)
0.645382 + 0.763860i \(0.276698\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 34.7204i 1.40926i 0.709576 + 0.704629i \(0.248886\pi\)
−0.709576 + 0.704629i \(0.751114\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) − 10.0043i − 0.404732i
\(612\) 0 0
\(613\) 26.3612i 1.06472i 0.846519 + 0.532359i \(0.178694\pi\)
−0.846519 + 0.532359i \(0.821306\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 7.88509i − 0.317442i −0.987323 0.158721i \(-0.949263\pi\)
0.987323 0.158721i \(-0.0507370\pi\)
\(618\) 0 0
\(619\) 38.9325 1.56483 0.782415 0.622757i \(-0.213988\pi\)
0.782415 + 0.622757i \(0.213988\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −5.04623 −0.202173
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −47.2803 −1.88519
\(630\) 0 0
\(631\) 0.800468i 0.0318661i 0.999873 + 0.0159331i \(0.00507186\pi\)
−0.999873 + 0.0159331i \(0.994928\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 13.1850i 0.522409i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 22.8931i 0.904222i 0.891962 + 0.452111i \(0.149329\pi\)
−0.891962 + 0.452111i \(0.850671\pi\)
\(642\) 0 0
\(643\) −12.9538 −0.510847 −0.255423 0.966829i \(-0.582215\pi\)
−0.255423 + 0.966829i \(0.582215\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 15.6647 0.615844 0.307922 0.951412i \(-0.400366\pi\)
0.307922 + 0.951412i \(0.400366\pi\)
\(648\) 0 0
\(649\) −2.00000 −0.0785069
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 41.5144 1.62458 0.812292 0.583252i \(-0.198220\pi\)
0.812292 + 0.583252i \(0.198220\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) − 34.8859i − 1.35896i −0.733693 0.679481i \(-0.762205\pi\)
0.733693 0.679481i \(-0.237795\pi\)
\(660\) 0 0
\(661\) 19.7990i 0.770091i 0.922897 + 0.385046i \(0.125814\pi\)
−0.922897 + 0.385046i \(0.874186\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 1.42192 0.0550569
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0.0732884 0.00282927
\(672\) 0 0
\(673\) −34.1849 −1.31773 −0.658866 0.752260i \(-0.728964\pi\)
−0.658866 + 0.752260i \(0.728964\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −17.0462 −0.655140 −0.327570 0.944827i \(-0.606230\pi\)
−0.327570 + 0.944827i \(0.606230\pi\)
\(678\) 0 0
\(679\) 10.3477i 0.397109i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) − 28.6671i − 1.09692i −0.836178 0.548459i \(-0.815215\pi\)
0.836178 0.548459i \(-0.184785\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) − 23.1410i − 0.881603i
\(690\) 0 0
\(691\) 27.0741 1.02995 0.514974 0.857206i \(-0.327801\pi\)
0.514974 + 0.857206i \(0.327801\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 57.2437 2.16826
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 23.5510 0.889510 0.444755 0.895652i \(-0.353291\pi\)
0.444755 + 0.895652i \(0.353291\pi\)
\(702\) 0 0
\(703\) 11.6053i 0.437701i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 21.9925i 0.827112i
\(708\) 0 0
\(709\) 7.85033i 0.294825i 0.989075 + 0.147413i \(0.0470945\pi\)
−0.989075 + 0.147413i \(0.952905\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 32.5923i 1.22059i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 10.1416 0.378218 0.189109 0.981956i \(-0.439440\pi\)
0.189109 + 0.981956i \(0.439440\pi\)
\(720\) 0 0
\(721\) −2.95377 −0.110004
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 4.86524i 0.180442i 0.995922 + 0.0902208i \(0.0287573\pi\)
−0.995922 + 0.0902208i \(0.971243\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) − 79.2749i − 2.93209i
\(732\) 0 0
\(733\) 9.09903i 0.336080i 0.985780 + 0.168040i \(0.0537438\pi\)
−0.985780 + 0.168040i \(0.946256\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 0.331031i − 0.0121937i
\(738\) 0 0
\(739\) −12.5693 −0.462371 −0.231185 0.972910i \(-0.574260\pi\)
−0.231185 + 0.972910i \(0.574260\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 23.6647 0.868175 0.434087 0.900871i \(-0.357071\pi\)
0.434087 + 0.900871i \(0.357071\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 4.00000 0.146157
\(750\) 0 0
\(751\) − 31.2782i − 1.14136i −0.821173 0.570679i \(-0.806680\pi\)
0.821173 0.570679i \(-0.193320\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) − 39.1150i − 1.42166i −0.703365 0.710829i \(-0.748320\pi\)
0.703365 0.710829i \(-0.251680\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) − 2.76305i − 0.100160i −0.998745 0.0500802i \(-0.984052\pi\)
0.998745 0.0500802i \(-0.0159477\pi\)
\(762\) 0 0
\(763\) 7.45856 0.270018
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 27.5510 0.994810
\(768\) 0 0
\(769\) 46.5606 1.67902 0.839509 0.543345i \(-0.182843\pi\)
0.839509 + 0.543345i \(0.182843\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −29.5877 −1.06419 −0.532097 0.846683i \(-0.678596\pi\)
−0.532097 + 0.846683i \(0.678596\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) − 14.0508i − 0.503424i
\(780\) 0 0
\(781\) 1.86244i 0.0666435i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −35.9267 −1.28065 −0.640324 0.768105i \(-0.721200\pi\)
−0.640324 + 0.768105i \(0.721200\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −8.23407 −0.292770
\(792\) 0 0
\(793\) −1.00958 −0.0358514
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −9.31695 −0.330023 −0.165012 0.986292i \(-0.552766\pi\)
−0.165012 + 0.986292i \(0.552766\pi\)
\(798\) 0 0
\(799\) − 23.5416i − 0.832841i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) − 1.04491i − 0.0368742i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 34.9207i 1.22775i 0.789405 + 0.613873i \(0.210389\pi\)
−0.789405 + 0.613873i \(0.789611\pi\)
\(810\) 0 0
\(811\) 25.7938 0.905744 0.452872 0.891576i \(-0.350399\pi\)
0.452872 + 0.891576i \(0.350399\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −19.4586 −0.680769
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −31.1878 −1.08846 −0.544232 0.838935i \(-0.683179\pi\)
−0.544232 + 0.838935i \(0.683179\pi\)
\(822\) 0 0
\(823\) − 33.5718i − 1.17024i −0.810947 0.585120i \(-0.801047\pi\)
0.810947 0.585120i \(-0.198953\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 53.4362i 1.85816i 0.369881 + 0.929079i \(0.379399\pi\)
−0.369881 + 0.929079i \(0.620601\pi\)
\(828\) 0 0
\(829\) − 0.634952i − 0.0220528i −0.999939 0.0110264i \(-0.996490\pi\)
0.999939 0.0110264i \(-0.00350988\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 31.0261i 1.07499i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 24.9046 0.859803 0.429901 0.902876i \(-0.358548\pi\)
0.429901 + 0.902876i \(0.358548\pi\)
\(840\) 0 0
\(841\) −28.9267 −0.997473
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) − 15.5045i − 0.532742i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 40.0203i 1.37188i
\(852\) 0 0
\(853\) − 17.5448i − 0.600724i −0.953825 0.300362i \(-0.902893\pi\)
0.953825 0.300362i \(-0.0971075\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 7.30196i 0.249430i 0.992193 + 0.124715i \(0.0398017\pi\)
−0.992193 + 0.124715i \(0.960198\pi\)
\(858\) 0 0
\(859\) −15.2890 −0.521655 −0.260828 0.965385i \(-0.583995\pi\)
−0.260828 + 0.965385i \(0.583995\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −41.9787 −1.42897 −0.714487 0.699649i \(-0.753340\pi\)
−0.714487 + 0.699649i \(0.753340\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −2.73887 −0.0929097
\(870\) 0 0
\(871\) 4.56012i 0.154514i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 38.4800i − 1.29938i −0.760200 0.649689i \(-0.774899\pi\)
0.760200 0.649689i \(-0.225101\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 7.11053i 0.239560i 0.992800 + 0.119780i \(0.0382189\pi\)
−0.992800 + 0.119780i \(0.961781\pi\)
\(882\) 0 0
\(883\) −26.5048 −0.891957 −0.445979 0.895044i \(-0.647144\pi\)
−0.445979 + 0.895044i \(0.647144\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 39.3449 1.32107 0.660535 0.750795i \(-0.270329\pi\)
0.660535 + 0.750795i \(0.270329\pi\)
\(888\) 0 0
\(889\) 29.0462 0.974179
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −5.77844 −0.193368
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 1.67987i 0.0560267i
\(900\) 0 0
\(901\) − 54.4540i − 1.81413i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −22.1974 −0.737054 −0.368527 0.929617i \(-0.620138\pi\)
−0.368527 + 0.929617i \(0.620138\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −20.9538 −0.694229 −0.347115 0.937823i \(-0.612839\pi\)
−0.347115 + 0.937823i \(0.612839\pi\)
\(912\) 0 0
\(913\) 2.91713 0.0965428
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 19.1878 0.633638
\(918\) 0 0
\(919\) − 7.88509i − 0.260105i −0.991507 0.130053i \(-0.958485\pi\)
0.991507 0.130053i \(-0.0415146\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) − 25.6561i − 0.844481i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 6.35718i 0.208572i 0.994547 + 0.104286i \(0.0332558\pi\)
−0.994547 + 0.104286i \(0.966744\pi\)
\(930\) 0 0
\(931\) 7.61557 0.249590
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −35.0096 −1.14371 −0.571857 0.820354i \(-0.693777\pi\)
−0.571857 + 0.820354i \(0.693777\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 28.5606 0.931049 0.465525 0.885035i \(-0.345866\pi\)
0.465525 + 0.885035i \(0.345866\pi\)
\(942\) 0 0
\(943\) − 48.4538i − 1.57787i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 20.7650i − 0.674771i −0.941367 0.337385i \(-0.890457\pi\)
0.941367 0.337385i \(-0.109543\pi\)
\(948\) 0 0
\(949\) 14.3942i 0.467257i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 38.4147i 1.24437i 0.782869 + 0.622186i \(0.213755\pi\)
−0.782869 + 0.622186i \(0.786245\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 6.68305 0.215807
\(960\) 0 0
\(961\) −7.50479 −0.242090
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 16.6013i 0.533861i 0.963716 + 0.266930i \(0.0860094\pi\)
−0.963716 + 0.266930i \(0.913991\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) − 10.3171i − 0.331092i −0.986202 0.165546i \(-0.947061\pi\)
0.986202 0.165546i \(-0.0529386\pi\)
\(972\) 0 0
\(973\) 22.2840i 0.714393i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 32.0439i − 1.02518i −0.858635 0.512588i \(-0.828687\pi\)
0.858635 0.512588i \(-0.171313\pi\)
\(978\) 0 0
\(979\) −0.683053 −0.0218305
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 24.8034 0.791106 0.395553 0.918443i \(-0.370553\pi\)
0.395553 + 0.918443i \(0.370553\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −67.1020 −2.13372
\(990\) 0 0
\(991\) − 15.7872i − 0.501498i −0.968052 0.250749i \(-0.919323\pi\)
0.968052 0.250749i \(-0.0806769\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 51.3823i 1.62729i 0.581359 + 0.813647i \(0.302521\pi\)
−0.581359 + 0.813647i \(0.697479\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7200.2.b.d.4751.2 6
3.2 odd 2 7200.2.b.e.4751.2 6
4.3 odd 2 1800.2.b.e.251.6 6
5.2 odd 4 7200.2.m.d.3599.9 12
5.3 odd 4 7200.2.m.d.3599.3 12
5.4 even 2 1440.2.b.c.431.5 6
8.3 odd 2 7200.2.b.e.4751.5 6
8.5 even 2 1800.2.b.d.251.2 6
12.11 even 2 1800.2.b.d.251.1 6
15.2 even 4 7200.2.m.e.3599.10 12
15.8 even 4 7200.2.m.e.3599.4 12
15.14 odd 2 1440.2.b.d.431.5 6
20.3 even 4 1800.2.m.d.899.7 12
20.7 even 4 1800.2.m.d.899.6 12
20.19 odd 2 360.2.b.c.251.1 6
24.5 odd 2 1800.2.b.e.251.5 6
24.11 even 2 inner 7200.2.b.d.4751.5 6
40.3 even 4 7200.2.m.e.3599.9 12
40.13 odd 4 1800.2.m.e.899.8 12
40.19 odd 2 1440.2.b.d.431.2 6
40.27 even 4 7200.2.m.e.3599.3 12
40.29 even 2 360.2.b.d.251.5 yes 6
40.37 odd 4 1800.2.m.e.899.5 12
60.23 odd 4 1800.2.m.e.899.6 12
60.47 odd 4 1800.2.m.e.899.7 12
60.59 even 2 360.2.b.d.251.6 yes 6
120.29 odd 2 360.2.b.c.251.2 yes 6
120.53 even 4 1800.2.m.d.899.5 12
120.59 even 2 1440.2.b.c.431.2 6
120.77 even 4 1800.2.m.d.899.8 12
120.83 odd 4 7200.2.m.d.3599.10 12
120.107 odd 4 7200.2.m.d.3599.4 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
360.2.b.c.251.1 6 20.19 odd 2
360.2.b.c.251.2 yes 6 120.29 odd 2
360.2.b.d.251.5 yes 6 40.29 even 2
360.2.b.d.251.6 yes 6 60.59 even 2
1440.2.b.c.431.2 6 120.59 even 2
1440.2.b.c.431.5 6 5.4 even 2
1440.2.b.d.431.2 6 40.19 odd 2
1440.2.b.d.431.5 6 15.14 odd 2
1800.2.b.d.251.1 6 12.11 even 2
1800.2.b.d.251.2 6 8.5 even 2
1800.2.b.e.251.5 6 24.5 odd 2
1800.2.b.e.251.6 6 4.3 odd 2
1800.2.m.d.899.5 12 120.53 even 4
1800.2.m.d.899.6 12 20.7 even 4
1800.2.m.d.899.7 12 20.3 even 4
1800.2.m.d.899.8 12 120.77 even 4
1800.2.m.e.899.5 12 40.37 odd 4
1800.2.m.e.899.6 12 60.23 odd 4
1800.2.m.e.899.7 12 60.47 odd 4
1800.2.m.e.899.8 12 40.13 odd 4
7200.2.b.d.4751.2 6 1.1 even 1 trivial
7200.2.b.d.4751.5 6 24.11 even 2 inner
7200.2.b.e.4751.2 6 3.2 odd 2
7200.2.b.e.4751.5 6 8.3 odd 2
7200.2.m.d.3599.3 12 5.3 odd 4
7200.2.m.d.3599.4 12 120.107 odd 4
7200.2.m.d.3599.9 12 5.2 odd 4
7200.2.m.d.3599.10 12 120.83 odd 4
7200.2.m.e.3599.3 12 40.27 even 4
7200.2.m.e.3599.4 12 15.8 even 4
7200.2.m.e.3599.9 12 40.3 even 4
7200.2.m.e.3599.10 12 15.2 even 4