L(s) = 1 | − 0.449i·2-s − 1.95i·3-s + 1.79·4-s + (1.87 + 1.21i)5-s − 0.879·6-s + 2.06i·7-s − 1.70i·8-s − 0.829·9-s + (0.545 − 0.843i)10-s − 2.30·11-s − 3.51i·12-s + 4.39i·13-s + 0.926·14-s + (2.37 − 3.67i)15-s + 2.82·16-s + 5.47i·17-s + ⋯ |
L(s) = 1 | − 0.317i·2-s − 1.12i·3-s + 0.899·4-s + (0.839 + 0.543i)5-s − 0.358·6-s + 0.778i·7-s − 0.603i·8-s − 0.276·9-s + (0.172 − 0.266i)10-s − 0.695·11-s − 1.01i·12-s + 1.21i·13-s + 0.247·14-s + (0.613 − 0.948i)15-s + 0.707·16-s + 1.32i·17-s + ⋯ |
Λ(s)=(=(1805s/2ΓC(s)L(s)(0.839+0.543i)Λ(2−s)
Λ(s)=(=(1805s/2ΓC(s+1/2)L(s)(0.839+0.543i)Λ(1−s)
Degree: |
2 |
Conductor: |
1805
= 5⋅192
|
Sign: |
0.839+0.543i
|
Analytic conductor: |
14.4129 |
Root analytic conductor: |
3.79644 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1805(1084,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1805, ( :1/2), 0.839+0.543i)
|
Particular Values
L(1) |
≈ |
2.630069753 |
L(21) |
≈ |
2.630069753 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(−1.87−1.21i)T |
| 19 | 1 |
good | 2 | 1+0.449iT−2T2 |
| 3 | 1+1.95iT−3T2 |
| 7 | 1−2.06iT−7T2 |
| 11 | 1+2.30T+11T2 |
| 13 | 1−4.39iT−13T2 |
| 17 | 1−5.47iT−17T2 |
| 23 | 1+5.81iT−23T2 |
| 29 | 1−5.50T+29T2 |
| 31 | 1+0.757T+31T2 |
| 37 | 1+6.22iT−37T2 |
| 41 | 1−6.53T+41T2 |
| 43 | 1−3.16iT−43T2 |
| 47 | 1+6.36iT−47T2 |
| 53 | 1−3.85iT−53T2 |
| 59 | 1−2.55T+59T2 |
| 61 | 1−9.94T+61T2 |
| 67 | 1−1.70iT−67T2 |
| 71 | 1+9.85T+71T2 |
| 73 | 1−10.2iT−73T2 |
| 79 | 1−2.41T+79T2 |
| 83 | 1+7.06iT−83T2 |
| 89 | 1+2.33T+89T2 |
| 97 | 1−6.81iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.176661138551404341515304369136, −8.321988744296589455923967172773, −7.44213799053998538037632301737, −6.65011012284975674898443096056, −6.30201534916654976405125666447, −5.51569922003310481929991357822, −4.04459984865588512970459596904, −2.53615539161218854254440294910, −2.30388385068419052047526844303, −1.34770632930046797494439591199,
1.07334531821126731106111073758, 2.56466478113519372989509832854, 3.37566287188269731330912884920, 4.66890752998936663231482151664, 5.25772691787317753698416798715, 5.92774632081883711542355952488, 7.05537372125825525813073410959, 7.68576148846580952938820170203, 8.574233933266098467875372118539, 9.628198015440086909496145299424