L(s) = 1 | − 0.449i·2-s − 1.95i·3-s + 1.79·4-s + (1.87 + 1.21i)5-s − 0.879·6-s + 2.06i·7-s − 1.70i·8-s − 0.829·9-s + (0.545 − 0.843i)10-s − 2.30·11-s − 3.51i·12-s + 4.39i·13-s + 0.926·14-s + (2.37 − 3.67i)15-s + 2.82·16-s + 5.47i·17-s + ⋯ |
L(s) = 1 | − 0.317i·2-s − 1.12i·3-s + 0.899·4-s + (0.839 + 0.543i)5-s − 0.358·6-s + 0.778i·7-s − 0.603i·8-s − 0.276·9-s + (0.172 − 0.266i)10-s − 0.695·11-s − 1.01i·12-s + 1.21i·13-s + 0.247·14-s + (0.613 − 0.948i)15-s + 0.707·16-s + 1.32i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1805 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.839 + 0.543i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1805 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.839 + 0.543i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.630069753\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.630069753\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (-1.87 - 1.21i)T \) |
| 19 | \( 1 \) |
good | 2 | \( 1 + 0.449iT - 2T^{2} \) |
| 3 | \( 1 + 1.95iT - 3T^{2} \) |
| 7 | \( 1 - 2.06iT - 7T^{2} \) |
| 11 | \( 1 + 2.30T + 11T^{2} \) |
| 13 | \( 1 - 4.39iT - 13T^{2} \) |
| 17 | \( 1 - 5.47iT - 17T^{2} \) |
| 23 | \( 1 + 5.81iT - 23T^{2} \) |
| 29 | \( 1 - 5.50T + 29T^{2} \) |
| 31 | \( 1 + 0.757T + 31T^{2} \) |
| 37 | \( 1 + 6.22iT - 37T^{2} \) |
| 41 | \( 1 - 6.53T + 41T^{2} \) |
| 43 | \( 1 - 3.16iT - 43T^{2} \) |
| 47 | \( 1 + 6.36iT - 47T^{2} \) |
| 53 | \( 1 - 3.85iT - 53T^{2} \) |
| 59 | \( 1 - 2.55T + 59T^{2} \) |
| 61 | \( 1 - 9.94T + 61T^{2} \) |
| 67 | \( 1 - 1.70iT - 67T^{2} \) |
| 71 | \( 1 + 9.85T + 71T^{2} \) |
| 73 | \( 1 - 10.2iT - 73T^{2} \) |
| 79 | \( 1 - 2.41T + 79T^{2} \) |
| 83 | \( 1 + 7.06iT - 83T^{2} \) |
| 89 | \( 1 + 2.33T + 89T^{2} \) |
| 97 | \( 1 - 6.81iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.176661138551404341515304369136, −8.321988744296589455923967172773, −7.44213799053998538037632301737, −6.65011012284975674898443096056, −6.30201534916654976405125666447, −5.51569922003310481929991357822, −4.04459984865588512970459596904, −2.53615539161218854254440294910, −2.30388385068419052047526844303, −1.34770632930046797494439591199,
1.07334531821126731106111073758, 2.56466478113519372989509832854, 3.37566287188269731330912884920, 4.66890752998936663231482151664, 5.25772691787317753698416798715, 5.92774632081883711542355952488, 7.05537372125825525813073410959, 7.68576148846580952938820170203, 8.574233933266098467875372118539, 9.628198015440086909496145299424