Properties

Label 1805.2.b.l.1084.10
Level 18051805
Weight 22
Character 1805.1084
Analytic conductor 14.41314.413
Analytic rank 00
Dimension 2424
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1805,2,Mod(1084,1805)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1805, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1805.1084");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1805=5192 1805 = 5 \cdot 19^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1805.b (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 14.412997564814.4129975648
Analytic rank: 00
Dimension: 2424
Twist minimal: no (minimal twist has level 95)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Embedding invariants

Embedding label 1084.10
Character χ\chi == 1805.1084
Dual form 1805.2.b.l.1084.15

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q0.449373iq21.95684iq3+1.79806q4+(1.87757+1.21438i)q50.879352q6+2.06079iq71.70675iq80.829224q9+(0.5457090.843732i)q102.30599q113.51852iq12+4.39611iq13+0.926065q14+(2.376343.67411i)q15+2.82916q16+5.47185iq17+0.372631iq18+(3.37600+2.18353i)q20+4.03264q21+1.03625iq225.81755iq233.33983q24+(2.05058+4.56017i)q25+1.97549q264.24786iq27+3.70544iq28+5.50466q29+(1.651051.06786i)q300.757832q314.68485iq32+4.51245iq33+2.45890q34+(2.50258+3.86929i)q351.49100q366.22555iq37+8.60248q39+(2.072643.20455i)q40+6.53829q411.81216iq42+3.16680iq434.14632q44+(1.556931.00699i)q452.61425q466.36116iq475.53621iq48+2.75314q49+(2.049220.921474i)q50+10.7075q51+7.90448iq52+3.85028iq531.90888q54+(4.329672.80034i)q55+3.51725q562.47365iq58+2.55023q59+(4.272826.60629i)q60+9.94010q61+0.340550iq621.70886iq63+3.55308q64+(5.33853+8.25402i)q65+2.02778q66+1.70269iq67+9.83874iq6811.3840q69+(1.73876+1.12459i)q709.85909q71+1.41528iq72+10.2167iq732.79760q74+(8.923524.01265i)q754.75216iq773.86572iq78+2.41187q79+(5.31196+3.43567i)q8010.8001q812.93813iq827.06253iq83+7.25095q84+(6.64489+10.2738i)q85+1.42307q8610.7717iq87+3.93574iq882.33452q89+(0.452514+0.699642i)q909.05946q9110.4603iq92+1.48296iq932.85854q949.16749q96+6.81539iq971.23719iq98+1.91218q99+O(q100)q-0.449373i q^{2} -1.95684i q^{3} +1.79806 q^{4} +(1.87757 + 1.21438i) q^{5} -0.879352 q^{6} +2.06079i q^{7} -1.70675i q^{8} -0.829224 q^{9} +(0.545709 - 0.843732i) q^{10} -2.30599 q^{11} -3.51852i q^{12} +4.39611i q^{13} +0.926065 q^{14} +(2.37634 - 3.67411i) q^{15} +2.82916 q^{16} +5.47185i q^{17} +0.372631i q^{18} +(3.37600 + 2.18353i) q^{20} +4.03264 q^{21} +1.03625i q^{22} -5.81755i q^{23} -3.33983 q^{24} +(2.05058 + 4.56017i) q^{25} +1.97549 q^{26} -4.24786i q^{27} +3.70544i q^{28} +5.50466 q^{29} +(-1.65105 - 1.06786i) q^{30} -0.757832 q^{31} -4.68485i q^{32} +4.51245i q^{33} +2.45890 q^{34} +(-2.50258 + 3.86929i) q^{35} -1.49100 q^{36} -6.22555i q^{37} +8.60248 q^{39} +(2.07264 - 3.20455i) q^{40} +6.53829 q^{41} -1.81216i q^{42} +3.16680i q^{43} -4.14632 q^{44} +(-1.55693 - 1.00699i) q^{45} -2.61425 q^{46} -6.36116i q^{47} -5.53621i q^{48} +2.75314 q^{49} +(2.04922 - 0.921474i) q^{50} +10.7075 q^{51} +7.90448i q^{52} +3.85028i q^{53} -1.90888 q^{54} +(-4.32967 - 2.80034i) q^{55} +3.51725 q^{56} -2.47365i q^{58} +2.55023 q^{59} +(4.27282 - 6.60629i) q^{60} +9.94010 q^{61} +0.340550i q^{62} -1.70886i q^{63} +3.55308 q^{64} +(-5.33853 + 8.25402i) q^{65} +2.02778 q^{66} +1.70269i q^{67} +9.83874i q^{68} -11.3840 q^{69} +(1.73876 + 1.12459i) q^{70} -9.85909 q^{71} +1.41528i q^{72} +10.2167i q^{73} -2.79760 q^{74} +(8.92352 - 4.01265i) q^{75} -4.75216i q^{77} -3.86572i q^{78} +2.41187 q^{79} +(5.31196 + 3.43567i) q^{80} -10.8001 q^{81} -2.93813i q^{82} -7.06253i q^{83} +7.25095 q^{84} +(-6.64489 + 10.2738i) q^{85} +1.42307 q^{86} -10.7717i q^{87} +3.93574i q^{88} -2.33452 q^{89} +(-0.452514 + 0.699642i) q^{90} -9.05946 q^{91} -10.4603i q^{92} +1.48296i q^{93} -2.85854 q^{94} -9.16749 q^{96} +6.81539i q^{97} -1.23719i q^{98} +1.91218 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 24q18q43q512q612q9+6q10+12q11+24q14+9q15+6q16+21q206q21+42q243q2512q26+36q2918q3042q31+6q34+120q96+O(q100) 24 q - 18 q^{4} - 3 q^{5} - 12 q^{6} - 12 q^{9} + 6 q^{10} + 12 q^{11} + 24 q^{14} + 9 q^{15} + 6 q^{16} + 21 q^{20} - 6 q^{21} + 42 q^{24} - 3 q^{25} - 12 q^{26} + 36 q^{29} - 18 q^{30} - 42 q^{31} + 6 q^{34}+ \cdots - 120 q^{96}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1805Z)×\left(\mathbb{Z}/1805\mathbb{Z}\right)^\times.

nn 362362 14461446
χ(n)\chi(n) 1-1 11

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0.449373i 0.317755i −0.987298 0.158877i 0.949213π-0.949213\pi
0.987298 0.158877i 0.0507875π-0.0507875\pi
33 1.95684i 1.12978i −0.825165 0.564891i 0.808918π-0.808918\pi
0.825165 0.564891i 0.191082π-0.191082\pi
44 1.79806 0.899032
55 1.87757 + 1.21438i 0.839677 + 0.543086i
66 −0.879352 −0.358994
77 2.06079i 0.778906i 0.921046 + 0.389453i 0.127336π0.127336\pi
−0.921046 + 0.389453i 0.872664π0.872664\pi
88 1.70675i 0.603427i
99 −0.829224 −0.276408
1010 0.545709 0.843732i 0.172568 0.266811i
1111 −2.30599 −0.695282 −0.347641 0.937628i 0.613017π-0.613017\pi
−0.347641 + 0.937628i 0.613017π0.613017\pi
1212 3.51852i 1.01571i
1313 4.39611i 1.21926i 0.792686 + 0.609630i 0.208682π0.208682\pi
−0.792686 + 0.609630i 0.791318π0.791318\pi
1414 0.926065 0.247501
1515 2.37634 3.67411i 0.613569 0.948652i
1616 2.82916 0.707290
1717 5.47185i 1.32712i 0.748123 + 0.663560i 0.230955π0.230955\pi
−0.748123 + 0.663560i 0.769045π0.769045\pi
1818 0.372631i 0.0878299i
1919 0 0
2020 3.37600 + 2.18353i 0.754896 + 0.488252i
2121 4.03264 0.879994
2222 1.03625i 0.220929i
2323 5.81755i 1.21304i −0.795067 0.606522i 0.792564π-0.792564\pi
0.795067 0.606522i 0.207436π-0.207436\pi
2424 −3.33983 −0.681741
2525 2.05058 + 4.56017i 0.410115 + 0.912034i
2626 1.97549 0.387426
2727 4.24786i 0.817502i
2828 3.70544i 0.700262i
2929 5.50466 1.02219 0.511095 0.859524i 0.329240π-0.329240\pi
0.511095 + 0.859524i 0.329240π0.329240\pi
3030 −1.65105 1.06786i −0.301439 0.194965i
3131 −0.757832 −0.136111 −0.0680553 0.997682i 0.521679π-0.521679\pi
−0.0680553 + 0.997682i 0.521679π0.521679\pi
3232 4.68485i 0.828171i
3333 4.51245i 0.785517i
3434 2.45890 0.421699
3535 −2.50258 + 3.86929i −0.423013 + 0.654030i
3636 −1.49100 −0.248499
3737 6.22555i 1.02347i −0.859142 0.511737i 0.829002π-0.829002\pi
0.859142 0.511737i 0.170998π-0.170998\pi
3838 0 0
3939 8.60248 1.37750
4040 2.07264 3.20455i 0.327713 0.506683i
4141 6.53829 1.02111 0.510554 0.859845i 0.329440π-0.329440\pi
0.510554 + 0.859845i 0.329440π0.329440\pi
4242 1.81216i 0.279623i
4343 3.16680i 0.482932i 0.970409 + 0.241466i 0.0776282π0.0776282\pi
−0.970409 + 0.241466i 0.922372π0.922372\pi
4444 −4.14632 −0.625081
4545 −1.55693 1.00699i −0.232093 0.150113i
4646 −2.61425 −0.385451
4747 6.36116i 0.927871i −0.885869 0.463936i 0.846437π-0.846437\pi
0.885869 0.463936i 0.153563π-0.153563\pi
4848 5.53621i 0.799084i
4949 2.75314 0.393305
5050 2.04922 0.921474i 0.289803 0.130316i
5151 10.7075 1.49936
5252 7.90448i 1.09615i
5353 3.85028i 0.528876i 0.964403 + 0.264438i 0.0851865π0.0851865\pi
−0.964403 + 0.264438i 0.914813π0.914813\pi
5454 −1.90888 −0.259765
5555 −4.32967 2.80034i −0.583812 0.377598i
5656 3.51725 0.470013
5757 0 0
5858 2.47365i 0.324806i
5959 2.55023 0.332012 0.166006 0.986125i 0.446913π-0.446913\pi
0.166006 + 0.986125i 0.446913π0.446913\pi
6060 4.27282 6.60629i 0.551618 0.852869i
6161 9.94010 1.27270 0.636350 0.771401i 0.280444π-0.280444\pi
0.636350 + 0.771401i 0.280444π0.280444\pi
6262 0.340550i 0.0432498i
6363 1.70886i 0.215296i
6464 3.55308 0.444135
6565 −5.33853 + 8.25402i −0.662163 + 1.02378i
6666 2.02778 0.249602
6767 1.70269i 0.208017i 0.994576 + 0.104009i 0.0331669π0.0331669\pi
−0.994576 + 0.104009i 0.966833π0.966833\pi
6868 9.83874i 1.19312i
6969 −11.3840 −1.37048
7070 1.73876 + 1.12459i 0.207821 + 0.134414i
7171 −9.85909 −1.17006 −0.585029 0.811012i 0.698917π-0.698917\pi
−0.585029 + 0.811012i 0.698917π0.698917\pi
7272 1.41528i 0.166792i
7373 10.2167i 1.19577i 0.801581 + 0.597886i 0.203993π0.203993\pi
−0.801581 + 0.597886i 0.796007π0.796007\pi
7474 −2.79760 −0.325214
7575 8.92352 4.01265i 1.03040 0.463341i
7676 0 0
7777 4.75216i 0.541559i
7878 3.86572i 0.437707i
7979 2.41187 0.271357 0.135679 0.990753i 0.456679π-0.456679\pi
0.135679 + 0.990753i 0.456679π0.456679\pi
8080 5.31196 + 3.43567i 0.593895 + 0.384119i
8181 −10.8001 −1.20001
8282 2.93813i 0.324462i
8383 7.06253i 0.775213i −0.921825 0.387607i 0.873302π-0.873302\pi
0.921825 0.387607i 0.126698π-0.126698\pi
8484 7.25095 0.791143
8585 −6.64489 + 10.2738i −0.720740 + 1.11435i
8686 1.42307 0.153454
8787 10.7717i 1.15485i
8888 3.93574i 0.419552i
8989 −2.33452 −0.247458 −0.123729 0.992316i 0.539485π-0.539485\pi
−0.123729 + 0.992316i 0.539485π0.539485\pi
9090 −0.452514 + 0.699642i −0.0476992 + 0.0737488i
9191 −9.05946 −0.949689
9292 10.4603i 1.09056i
9393 1.48296i 0.153775i
9494 −2.85854 −0.294836
9595 0 0
9696 −9.16749 −0.935653
9797 6.81539i 0.691998i 0.938235 + 0.345999i 0.112460π0.112460\pi
−0.938235 + 0.345999i 0.887540π0.887540\pi
9898 1.23719i 0.124975i
9999 1.91218 0.192181
100100 3.68706 + 8.19947i 0.368706 + 0.819947i
101101 12.1976 1.21370 0.606851 0.794816i 0.292433π-0.292433\pi
0.606851 + 0.794816i 0.292433π0.292433\pi
102102 4.81168i 0.476428i
103103 12.9197i 1.27302i 0.771269 + 0.636509i 0.219622π0.219622\pi
−0.771269 + 0.636509i 0.780378π0.780378\pi
104104 7.50304 0.735734
105105 7.57159 + 4.89715i 0.738911 + 0.477913i
106106 1.73021 0.168053
107107 15.1729i 1.46682i 0.679785 + 0.733412i 0.262073π0.262073\pi
−0.679785 + 0.733412i 0.737927π0.737927\pi
108108 7.63793i 0.734960i
109109 −19.1794 −1.83705 −0.918527 0.395359i 0.870620π-0.870620\pi
−0.918527 + 0.395359i 0.870620π0.870620\pi
110110 −1.25840 + 1.94564i −0.119984 + 0.185509i
111111 −12.1824 −1.15630
112112 5.83031i 0.550913i
113113 1.91146i 0.179815i −0.995950 0.0899075i 0.971343π-0.971343\pi
0.995950 0.0899075i 0.0286571π-0.0286571\pi
114114 0 0
115115 7.06470 10.9229i 0.658787 1.01856i
116116 9.89773 0.918981
117117 3.64535i 0.337013i
118118 1.14601i 0.105498i
119119 −11.2764 −1.03370
120120 −6.27079 4.05582i −0.572442 0.370244i
121121 −5.68241 −0.516583
122122 4.46682i 0.404406i
123123 12.7944i 1.15363i
124124 −1.36263 −0.122368
125125 −1.68766 + 11.0522i −0.150949 + 0.988542i
126126 −0.767915 −0.0684113
127127 21.2359i 1.88438i −0.335077 0.942191i 0.608762π-0.608762\pi
0.335077 0.942191i 0.391238π-0.391238\pi
128128 10.9663i 0.969297i
129129 6.19692 0.545608
130130 3.70913 + 2.39899i 0.325313 + 0.210406i
131131 −1.67271 −0.146146 −0.0730728 0.997327i 0.523281π-0.523281\pi
−0.0730728 + 0.997327i 0.523281π0.523281\pi
132132 8.11368i 0.706205i
133133 0 0
134134 0.765145 0.0660984
135135 5.15851 7.97568i 0.443974 0.686437i
136136 9.33908 0.800819
137137 17.2880i 1.47701i −0.674247 0.738506i 0.735532π-0.735532\pi
0.674247 0.738506i 0.264468π-0.264468\pi
138138 5.11567i 0.435475i
139139 −12.3265 −1.04552 −0.522761 0.852479i 0.675098π-0.675098\pi
−0.522761 + 0.852479i 0.675098π0.675098\pi
140140 −4.49980 + 6.95723i −0.380302 + 0.587994i
141141 −12.4478 −1.04829
142142 4.43041i 0.371792i
143143 10.1374i 0.847730i
144144 −2.34601 −0.195501
145145 10.3354 + 6.68473i 0.858309 + 0.555137i
146146 4.59111 0.379963
147147 5.38745i 0.444349i
148148 11.1939i 0.920136i
149149 −4.35901 −0.357104 −0.178552 0.983930i 0.557141π-0.557141\pi
−0.178552 + 0.983930i 0.557141π0.557141\pi
150150 −1.80318 4.00999i −0.147229 0.327414i
151151 −4.44628 −0.361833 −0.180917 0.983498i 0.557906π-0.557906\pi
−0.180917 + 0.983498i 0.557906π0.557906\pi
152152 0 0
153153 4.53739i 0.366826i
154154 −2.13550 −0.172083
155155 −1.42289 0.920294i −0.114289 0.0739198i
156156 15.4678 1.23841
157157 19.8432i 1.58366i −0.610740 0.791831i 0.709128π-0.709128\pi
0.610740 0.791831i 0.290872π-0.290872\pi
158158 1.08383i 0.0862250i
159159 7.53438 0.597515
160160 5.68917 8.79615i 0.449768 0.695397i
161161 11.9888 0.944847
162162 4.85326i 0.381308i
163163 1.28088i 0.100326i −0.998741 0.0501632i 0.984026π-0.984026\pi
0.998741 0.0501632i 0.0159742π-0.0159742\pi
164164 11.7563 0.918009
165165 −5.47982 + 8.47247i −0.426603 + 0.659581i
166166 −3.17371 −0.246328
167167 8.03589i 0.621836i −0.950437 0.310918i 0.899364π-0.899364\pi
0.950437 0.310918i 0.100636π-0.100636\pi
168168 6.88270i 0.531012i
169169 −6.32574 −0.486595
170170 4.61678 + 2.98604i 0.354091 + 0.229019i
171171 0 0
172172 5.69410i 0.434171i
173173 2.65910i 0.202167i −0.994878 0.101084i 0.967769π-0.967769\pi
0.994878 0.101084i 0.0322310π-0.0322310\pi
174174 −4.84053 −0.366960
175175 −9.39756 + 4.22581i −0.710389 + 0.319441i
176176 −6.52401 −0.491766
177177 4.99040i 0.375101i
178178 1.04907i 0.0786311i
179179 8.10201 0.605572 0.302786 0.953059i 0.402083π-0.402083\pi
0.302786 + 0.953059i 0.402083π0.402083\pi
180180 −2.79946 1.81063i −0.208659 0.134957i
181181 −21.5023 −1.59826 −0.799128 0.601161i 0.794705π-0.794705\pi
−0.799128 + 0.601161i 0.794705π0.794705\pi
182182 4.07108i 0.301768i
183183 19.4512i 1.43787i
184184 −9.92910 −0.731983
185185 7.56017 11.6889i 0.555835 0.859388i
186186 0.666401 0.0488629
187187 12.6180i 0.922722i
188188 11.4378i 0.834186i
189189 8.75396 0.636757
190190 0 0
191191 −19.5939 −1.41777 −0.708884 0.705326i 0.750801π-0.750801\pi
−0.708884 + 0.705326i 0.750801π0.750801\pi
192192 6.95280i 0.501775i
193193 0.483357i 0.0347928i −0.999849 0.0173964i 0.994462π-0.994462\pi
0.999849 0.0173964i 0.00553773π-0.00553773\pi
194194 3.06265 0.219886
195195 16.1518 + 10.4467i 1.15665 + 0.748100i
196196 4.95031 0.353594
197197 1.26189i 0.0899060i 0.998989 + 0.0449530i 0.0143138π0.0143138\pi
−0.998989 + 0.0449530i 0.985686π0.985686\pi
198198 0.859283i 0.0610666i
199199 −20.6554 −1.46423 −0.732113 0.681183i 0.761466π-0.761466\pi
−0.732113 + 0.681183i 0.761466π0.761466\pi
200200 7.78306 3.49982i 0.550345 0.247474i
201201 3.33190 0.235014
202202 5.48125i 0.385660i
203203 11.3440i 0.796190i
204204 19.2528 1.34797
205205 12.2761 + 7.93995i 0.857402 + 0.554550i
206206 5.80578 0.404508
207207 4.82405i 0.335295i
208208 12.4373i 0.862371i
209209 0 0
210210 2.20065 3.40247i 0.151859 0.234793i
211211 −7.01196 −0.482723 −0.241361 0.970435i 0.577594π-0.577594\pi
−0.241361 + 0.970435i 0.577594π0.577594\pi
212212 6.92305i 0.475477i
213213 19.2927i 1.32191i
214214 6.81831 0.466090
215215 −3.84569 + 5.94590i −0.262274 + 0.405507i
216216 −7.25003 −0.493302
217217 1.56173i 0.106017i
218218 8.61871i 0.583733i
219219 19.9924 1.35096
220220 −7.78502 5.03519i −0.524866 0.339473i
221221 −24.0548 −1.61810
222222 5.47445i 0.367421i
223223 19.4374i 1.30162i 0.759239 + 0.650812i 0.225571π0.225571\pi
−0.759239 + 0.650812i 0.774429π0.774429\pi
224224 9.65449 0.645068
225225 −1.70039 3.78140i −0.113359 0.252093i
226226 −0.858959 −0.0571371
227227 6.53998i 0.434074i −0.976163 0.217037i 0.930361π-0.930361\pi
0.976163 0.217037i 0.0696392π-0.0696392\pi
228228 0 0
229229 20.4005 1.34810 0.674052 0.738684i 0.264552π-0.264552\pi
0.674052 + 0.738684i 0.264552π0.264552\pi
230230 −4.90846 3.17469i −0.323654 0.209333i
231231 −9.29923 −0.611844
232232 9.39507i 0.616816i
233233 12.0490i 0.789357i −0.918819 0.394679i 0.870856π-0.870856\pi
0.918819 0.394679i 0.129144π-0.129144\pi
234234 −1.63812 −0.107088
235235 7.72485 11.9436i 0.503914 0.779112i
236236 4.58548 0.298489
237237 4.71965i 0.306574i
238238 5.06729i 0.328464i
239239 6.12499 0.396193 0.198096 0.980183i 0.436524π-0.436524\pi
0.198096 + 0.980183i 0.436524π0.436524\pi
240240 6.72305 10.3947i 0.433971 0.670972i
241241 7.27309 0.468501 0.234250 0.972176i 0.424736π-0.424736\pi
0.234250 + 0.972176i 0.424736π0.424736\pi
242242 2.55352i 0.164147i
243243 8.39040i 0.538244i
244244 17.8729 1.14420
245245 5.16922 + 3.34335i 0.330249 + 0.213598i
246246 −5.74945 −0.366572
247247 0 0
248248 1.29343i 0.0821328i
249249 −13.8202 −0.875822
250250 4.96658 + 0.758388i 0.314114 + 0.0479647i
251251 −24.1866 −1.52664 −0.763321 0.646019i 0.776433π-0.776433\pi
−0.763321 + 0.646019i 0.776433π0.776433\pi
252252 3.07263i 0.193558i
253253 13.4152i 0.843407i
254254 −9.54285 −0.598771
255255 20.1042 + 13.0030i 1.25897 + 0.814279i
256256 2.17817 0.136136
257257 12.2379i 0.763382i −0.924290 0.381691i 0.875342π-0.875342\pi
0.924290 0.381691i 0.124658π-0.124658\pi
258258 2.78473i 0.173370i
259259 12.8296 0.797191
260260 −9.59902 + 14.8412i −0.595306 + 0.920415i
261261 −4.56459 −0.282541
262262 0.751673i 0.0464385i
263263 12.3859i 0.763746i 0.924215 + 0.381873i 0.124721π0.124721\pi
−0.924215 + 0.381873i 0.875279π0.875279\pi
264264 7.70162 0.474002
265265 −4.67569 + 7.22919i −0.287225 + 0.444085i
266266 0 0
267267 4.56828i 0.279574i
268268 3.06155i 0.187014i
269269 −4.93880 −0.301124 −0.150562 0.988601i 0.548108π-0.548108\pi
−0.150562 + 0.988601i 0.548108π0.548108\pi
270270 −3.58406 2.31810i −0.218119 0.141075i
271271 −6.90194 −0.419263 −0.209631 0.977780i 0.567226π-0.567226\pi
−0.209631 + 0.977780i 0.567226π0.567226\pi
272272 15.4808i 0.938658i
273273 17.7279i 1.07294i
274274 −7.76876 −0.469328
275275 −4.72860 10.5157i −0.285146 0.634121i
276276 −20.4692 −1.23210
277277 3.96325i 0.238129i −0.992887 0.119064i 0.962011π-0.962011\pi
0.992887 0.119064i 0.0379895π-0.0379895\pi
278278 5.53921i 0.332220i
279279 0.628412 0.0376221
280280 6.60391 + 4.27127i 0.394659 + 0.255257i
281281 −31.1993 −1.86119 −0.930597 0.366045i 0.880711π-0.880711\pi
−0.930597 + 0.366045i 0.880711π0.880711\pi
282282 5.59370i 0.333100i
283283 10.6270i 0.631711i −0.948807 0.315855i 0.897709π-0.897709\pi
0.948807 0.315855i 0.102291π-0.102291\pi
284284 −17.7273 −1.05192
285285 0 0
286286 −4.55546 −0.269370
287287 13.4741i 0.795348i
288288 3.88478i 0.228913i
289289 −12.9412 −0.761246
290290 3.00394 4.64446i 0.176397 0.272732i
291291 13.3366 0.781807
292292 18.3703i 1.07504i
293293 19.6263i 1.14658i −0.819353 0.573289i 0.805667π-0.805667\pi
0.819353 0.573289i 0.194333π-0.194333\pi
294294 −2.42097 −0.141194
295295 4.78825 + 3.09695i 0.278783 + 0.180311i
296296 −10.6255 −0.617592
297297 9.79553i 0.568394i
298298 1.95882i 0.113472i
299299 25.5746 1.47902
300300 16.0451 7.21500i 0.926362 0.416558i
301301 −6.52611 −0.376159
302302 1.99804i 0.114974i
303303 23.8687i 1.37122i
304304 0 0
305305 18.6633 + 12.0710i 1.06866 + 0.691185i
306306 −2.03898 −0.116561
307307 22.6258i 1.29132i 0.763623 + 0.645662i 0.223419π0.223419\pi
−0.763623 + 0.645662i 0.776581π0.776581\pi
308308 8.54469i 0.486879i
309309 25.2818 1.43823
310310 −0.413556 + 0.639407i −0.0234884 + 0.0363159i
311311 24.8577 1.40955 0.704776 0.709430i 0.251047π-0.251047\pi
0.704776 + 0.709430i 0.251047π0.251047\pi
312312 14.6823i 0.831219i
313313 22.2026i 1.25497i 0.778630 + 0.627484i 0.215915π0.215915\pi
−0.778630 + 0.627484i 0.784085π0.784085\pi
314314 −8.91701 −0.503216
315315 2.07520 3.20851i 0.116924 0.180779i
316316 4.33670 0.243959
317317 2.03957i 0.114554i 0.998358 + 0.0572769i 0.0182418π0.0182418\pi
−0.998358 + 0.0572769i 0.981758π0.981758\pi
318318 3.38575i 0.189863i
319319 −12.6937 −0.710710
320320 6.67117 + 4.31478i 0.372930 + 0.241203i
321321 29.6910 1.65719
322322 5.38743i 0.300230i
323323 0 0
324324 −19.4192 −1.07884
325325 −20.0470 + 9.01454i −1.11201 + 0.500037i
326326 −0.575594 −0.0318792
327327 37.5310i 2.07547i
328328 11.1592i 0.616164i
329329 13.1090 0.722725
330330 3.80730 + 2.46248i 0.209585 + 0.135555i
331331 −33.6525 −1.84971 −0.924855 0.380321i 0.875814π-0.875814\pi
−0.924855 + 0.380321i 0.875814π0.875814\pi
332332 12.6989i 0.696941i
333333 5.16237i 0.282896i
334334 −3.61111 −0.197591
335335 −2.06771 + 3.19693i −0.112971 + 0.174667i
336336 11.4090 0.622411
337337 2.58877i 0.141019i −0.997511 0.0705096i 0.977537π-0.977537\pi
0.997511 0.0705096i 0.0224625π-0.0224625\pi
338338 2.84262i 0.154618i
339339 −3.74042 −0.203152
340340 −11.9479 + 18.4730i −0.647968 + 1.00184i
341341 1.74755 0.0946353
342342 0 0
343343 20.0992i 1.08525i
344344 5.40493 0.291414
345345 −21.3744 13.8245i −1.15076 0.744286i
346346 −1.19493 −0.0642397
347347 23.8033i 1.27783i 0.769279 + 0.638913i 0.220616π0.220616\pi
−0.769279 + 0.638913i 0.779384π0.779384\pi
348348 19.3683i 1.03825i
349349 2.48241 0.132880 0.0664402 0.997790i 0.478836π-0.478836\pi
0.0664402 + 0.997790i 0.478836π0.478836\pi
350350 1.89897 + 4.22301i 0.101504 + 0.225730i
351351 18.6741 0.996747
352352 10.8032i 0.575813i
353353 35.7434i 1.90243i −0.308527 0.951216i 0.599836π-0.599836\pi
0.308527 0.951216i 0.400164π-0.400164\pi
354354 −2.24255 −0.119190
355355 −18.5112 11.9727i −0.982471 0.635442i
356356 −4.19761 −0.222473
357357 22.0660i 1.16786i
358358 3.64082i 0.192424i
359359 5.76436 0.304231 0.152116 0.988363i 0.451391π-0.451391\pi
0.152116 + 0.988363i 0.451391π0.451391\pi
360360 −1.71868 + 2.65729i −0.0905823 + 0.140051i
361361 0 0
362362 9.66258i 0.507854i
363363 11.1196i 0.583626i
364364 −16.2895 −0.853801
365365 −12.4069 + 19.1826i −0.649407 + 1.00406i
366366 −8.74084 −0.456891
367367 5.95729i 0.310968i −0.987838 0.155484i 0.950306π-0.950306\pi
0.987838 0.155484i 0.0496937π-0.0496937\pi
368368 16.4588i 0.857974i
369369 −5.42170 −0.282243
370370 −5.25270 3.39734i −0.273075 0.176619i
371371 −7.93462 −0.411945
372372 2.66645i 0.138249i
373373 4.46841i 0.231365i −0.993286 0.115683i 0.963094π-0.963094\pi
0.993286 0.115683i 0.0369056π-0.0369056\pi
374374 −5.67021 −0.293199
375375 21.6274 + 3.30248i 1.11684 + 0.170539i
376376 −10.8569 −0.559902
377377 24.1991i 1.24631i
378378 3.93380i 0.202333i
379379 13.3179 0.684095 0.342047 0.939683i 0.388880π-0.388880\pi
0.342047 + 0.939683i 0.388880π0.388880\pi
380380 0 0
381381 −41.5553 −2.12894
382382 8.80499i 0.450502i
383383 10.1737i 0.519849i 0.965629 + 0.259925i 0.0836977π0.0836977\pi
−0.965629 + 0.259925i 0.916302π0.916302\pi
384384 −21.4594 −1.09509
385385 5.77092 8.92255i 0.294113 0.454735i
386386 −0.217208 −0.0110556
387387 2.62598i 0.133486i
388388 12.2545i 0.622128i
389389 11.4104 0.578530 0.289265 0.957249i 0.406589π-0.406589\pi
0.289265 + 0.957249i 0.406589π0.406589\pi
390390 4.69445 7.25818i 0.237712 0.367532i
391391 31.8328 1.60985
392392 4.69891i 0.237331i
393393 3.27323i 0.165113i
394394 0.567060 0.0285681
395395 4.52848 + 2.92893i 0.227852 + 0.147370i
396396 3.43822 0.172777
397397 5.14253i 0.258096i 0.991638 + 0.129048i 0.0411921π0.0411921\pi
−0.991638 + 0.129048i 0.958808π0.958808\pi
398398 9.28201i 0.465265i
399399 0 0
400400 5.80141 + 12.9014i 0.290070 + 0.645072i
401401 −17.0822 −0.853043 −0.426522 0.904477i 0.640261π-0.640261\pi
−0.426522 + 0.904477i 0.640261π0.640261\pi
402402 1.49727i 0.0746768i
403403 3.33151i 0.165954i
404404 21.9320 1.09116
405405 −20.2779 13.1153i −1.00762 0.651707i
406406 5.09767 0.252993
407407 14.3561i 0.711603i
408408 18.2751i 0.904751i
409409 −26.0696 −1.28906 −0.644529 0.764580i 0.722947π-0.722947\pi
−0.644529 + 0.764580i 0.722947π0.722947\pi
410410 3.56800 5.51656i 0.176211 0.272444i
411411 −33.8298 −1.66870
412412 23.2305i 1.14448i
413413 5.25550i 0.258606i
414414 2.16780 0.106542
415415 8.57657 13.2604i 0.421007 0.650929i
416416 20.5951 1.00976
417417 24.1211i 1.18121i
418418 0 0
419419 −5.77281 −0.282020 −0.141010 0.990008i 0.545035π-0.545035\pi
−0.141010 + 0.990008i 0.545035π0.545035\pi
420420 13.6142 + 8.80538i 0.664305 + 0.429659i
421421 −25.3007 −1.23308 −0.616540 0.787323i 0.711466π-0.711466\pi
−0.616540 + 0.787323i 0.711466π0.711466\pi
422422 3.15099i 0.153388i
423423 5.27483i 0.256471i
424424 6.57146 0.319138
425425 −24.9526 + 11.2204i −1.21038 + 0.544272i
426426 8.66960 0.420044
427427 20.4845i 0.991314i
428428 27.2819i 1.31872i
429429 −19.8372 −0.957750
430430 2.67193 + 1.72815i 0.128852 + 0.0833387i
431431 18.7629 0.903777 0.451888 0.892074i 0.350751π-0.350751\pi
0.451888 + 0.892074i 0.350751π0.350751\pi
432432 12.0179i 0.578211i
433433 8.51298i 0.409108i −0.978855 0.204554i 0.934426π-0.934426\pi
0.978855 0.204554i 0.0655743π-0.0655743\pi
434434 −0.701802 −0.0336876
435435 13.0810 20.2247i 0.627184 0.969702i
436436 −34.4858 −1.65157
437437 0 0
438438 8.98406i 0.429275i
439439 −2.05530 −0.0980941 −0.0490470 0.998796i 0.515618π-0.515618\pi
−0.0490470 + 0.998796i 0.515618π0.515618\pi
440440 −4.77948 + 7.38965i −0.227853 + 0.352288i
441441 −2.28296 −0.108713
442442 10.8096i 0.514160i
443443 12.0403i 0.572054i −0.958222 0.286027i 0.907665π-0.907665\pi
0.958222 0.286027i 0.0923347π-0.0923347\pi
444444 −21.9048 −1.03955
445445 −4.38323 2.83498i −0.207785 0.134391i
446446 8.73464 0.413597
447447 8.52989i 0.403450i
448448 7.32215i 0.345939i
449449 7.49400 0.353664 0.176832 0.984241i 0.443415π-0.443415\pi
0.176832 + 0.984241i 0.443415π0.443415\pi
450450 −1.69926 + 0.764108i −0.0801039 + 0.0360204i
451451 −15.0772 −0.709959
452452 3.43693i 0.161659i
453453 8.70066i 0.408793i
454454 −2.93889 −0.137929
455455 −17.0098 11.0016i −0.797432 0.515763i
456456 0 0
457457 14.0052i 0.655137i −0.944827 0.327568i 0.893771π-0.893771\pi
0.944827 0.327568i 0.106229π-0.106229\pi
458458 9.16745i 0.428367i
459459 23.2437 1.08492
460460 12.7028 19.6401i 0.592271 0.915722i
461461 −17.6751 −0.823210 −0.411605 0.911362i 0.635032π-0.635032\pi
−0.411605 + 0.911362i 0.635032π0.635032\pi
462462 4.17882i 0.194416i
463463 16.5926i 0.771123i −0.922682 0.385562i 0.874008π-0.874008\pi
0.922682 0.385562i 0.125992π-0.125992\pi
464464 15.5736 0.722984
465465 −1.80087 + 2.78436i −0.0835133 + 0.129122i
466466 −5.41451 −0.250822
467467 15.9904i 0.739949i 0.929042 + 0.369975i 0.120634π0.120634\pi
−0.929042 + 0.369975i 0.879366π0.879366\pi
468468 6.55458i 0.302985i
469469 −3.50890 −0.162026
470470 −5.36712 3.47134i −0.247567 0.160121i
471471 −38.8300 −1.78919
472472 4.35261i 0.200345i
473473 7.30260i 0.335774i
474474 −2.12089 −0.0974155
475475 0 0
476476 −20.2756 −0.929331
477477 3.19274i 0.146186i
478478 2.75241i 0.125892i
479479 −7.39591 −0.337928 −0.168964 0.985622i 0.554042π-0.554042\pi
−0.168964 + 0.985622i 0.554042π0.554042\pi
480480 −17.2127 11.1328i −0.785647 0.508140i
481481 27.3682 1.24788
482482 3.26833i 0.148868i
483483 23.4601i 1.06747i
484484 −10.2173 −0.464425
485485 −8.27645 + 12.7964i −0.375814 + 0.581055i
486486 3.77042 0.171030
487487 20.1881i 0.914811i −0.889258 0.457406i 0.848779π-0.848779\pi
0.889258 0.457406i 0.151221π-0.151221\pi
488488 16.9652i 0.767981i
489489 −2.50648 −0.113347
490490 1.50241 2.32291i 0.0678720 0.104938i
491491 9.33307 0.421195 0.210598 0.977573i 0.432459π-0.432459\pi
0.210598 + 0.977573i 0.432459π0.432459\pi
492492 23.0051i 1.03715i
493493 30.1207i 1.35657i
494494 0 0
495495 3.59026 + 2.32211i 0.161370 + 0.104371i
496496 −2.14403 −0.0962697
497497 20.3175i 0.911366i
498498 6.21044i 0.278297i
499499 23.9612 1.07265 0.536326 0.844011i 0.319812π-0.319812\pi
0.536326 + 0.844011i 0.319812π0.319812\pi
500500 −3.03452 + 19.8726i −0.135708 + 0.888730i
501501 −15.7249 −0.702539
502502 10.8688i 0.485098i
503503 10.3338i 0.460763i −0.973100 0.230382i 0.926003π-0.926003\pi
0.973100 0.230382i 0.0739974π-0.0739974\pi
504504 −2.91659 −0.129915
505505 22.9018 + 14.8124i 1.01912 + 0.659144i
506506 6.02844 0.267997
507507 12.3785i 0.549747i
508508 38.1835i 1.69412i
509509 27.7116 1.22829 0.614147 0.789192i 0.289500π-0.289500\pi
0.614147 + 0.789192i 0.289500π0.289500\pi
510510 5.84320 9.03430i 0.258741 0.400045i
511511 −21.0545 −0.931395
512512 22.9115i 1.01256i
513513 0 0
514514 −5.49940 −0.242568
515515 −15.6894 + 24.2577i −0.691358 + 1.06892i
516516 11.1424 0.490519
517517 14.6688i 0.645132i
518518 5.76527i 0.253311i
519519 −5.20343 −0.228405
520520 14.0875 + 9.11153i 0.617779 + 0.399567i
521521 10.5729 0.463209 0.231604 0.972810i 0.425602π-0.425602\pi
0.231604 + 0.972810i 0.425602π0.425602\pi
522522 2.05121i 0.0897788i
523523 18.1596i 0.794065i −0.917805 0.397032i 0.870040π-0.870040\pi
0.917805 0.397032i 0.129960π-0.129960\pi
524524 −3.00765 −0.131390
525525 8.26923 + 18.3895i 0.360899 + 0.802585i
526526 5.56588 0.242684
527527 4.14675i 0.180635i
528528 12.7665i 0.555588i
529529 −10.8439 −0.471475
530530 3.24860 + 2.10113i 0.141110 + 0.0912673i
531531 −2.11471 −0.0917707
532532 0 0
533533 28.7430i 1.24500i
534534 2.05286 0.0888360
535535 −18.4257 + 28.4883i −0.796612 + 1.23166i
536536 2.90607 0.125523
537537 15.8543i 0.684165i
538538 2.21936i 0.0956835i
539539 −6.34870 −0.273458
540540 9.27533 14.3408i 0.399147 0.617129i
541541 6.10507 0.262478 0.131239 0.991351i 0.458105π-0.458105\pi
0.131239 + 0.991351i 0.458105π0.458105\pi
542542 3.10155i 0.133223i
543543 42.0766i 1.80568i
544544 25.6348 1.09908
545545 −36.0108 23.2910i −1.54253 0.997678i
546546 7.96645 0.340933
547547 10.9019i 0.466132i −0.972461 0.233066i 0.925124π-0.925124\pi
0.972461 0.233066i 0.0748759π-0.0748759\pi
548548 31.0849i 1.32788i
549549 −8.24256 −0.351784
550550 −4.72547 + 2.12491i −0.201495 + 0.0906064i
551551 0 0
552552 19.4297i 0.826981i
553553 4.97037i 0.211362i
554554 −1.78098 −0.0756665
555555 −22.8734 14.7940i −0.970921 0.627972i
556556 −22.1639 −0.939958
557557 12.2157i 0.517595i −0.965932 0.258798i 0.916674π-0.916674\pi
0.965932 0.258798i 0.0833263π-0.0833263\pi
558558 0.282392i 0.0119546i
559559 −13.9216 −0.588820
560560 −7.08020 + 10.9468i −0.299193 + 0.462589i
561561 −24.6915 −1.04247
562562 14.0201i 0.591403i
563563 18.3200i 0.772095i 0.922479 + 0.386048i 0.126160π0.126160\pi
−0.922479 + 0.386048i 0.873840π0.873840\pi
564564 −22.3819 −0.942448
565565 2.32123 3.58891i 0.0976550 0.150987i
566566 −4.77550 −0.200729
567567 22.2567i 0.934693i
568568 16.8270i 0.706044i
569569 32.3240 1.35509 0.677546 0.735480i 0.263043π-0.263043\pi
0.677546 + 0.735480i 0.263043π0.263043\pi
570570 0 0
571571 −13.2641 −0.555083 −0.277542 0.960714i 0.589520π-0.589520\pi
−0.277542 + 0.960714i 0.589520π0.589520\pi
572572 18.2276i 0.762136i
573573 38.3422i 1.60177i
574574 6.05488 0.252726
575575 26.5290 11.9293i 1.10634 0.497487i
576576 −2.94629 −0.122762
577577 21.7627i 0.905993i −0.891512 0.452996i 0.850355π-0.850355\pi
0.891512 0.452996i 0.149645π-0.149645\pi
578578 5.81542i 0.241890i
579579 −0.945853 −0.0393083
580580 18.5837 + 12.0196i 0.771647 + 0.499086i
581581 14.5544 0.603818
582582 5.99312i 0.248423i
583583 8.87870i 0.367718i
584584 17.4373 0.721561
585585 4.42684 6.84442i 0.183027 0.282982i
586586 −8.81952 −0.364331
587587 41.5762i 1.71604i −0.513620 0.858018i 0.671696π-0.671696\pi
0.513620 0.858018i 0.328304π-0.328304\pi
588588 9.68697i 0.399484i
589589 0 0
590590 1.39168 2.15171i 0.0572947 0.0885846i
591591 2.46932 0.101574
592592 17.6131i 0.723893i
593593 8.58712i 0.352631i −0.984334 0.176315i 0.943582π-0.943582\pi
0.984334 0.176315i 0.0564179π-0.0564179\pi
594594 4.40185 0.180610
595595 −21.1722 13.6937i −0.867975 0.561389i
596596 −7.83778 −0.321048
597597 40.4194i 1.65426i
598598 11.4925i 0.469964i
599599 41.2980 1.68739 0.843696 0.536822i 0.180375π-0.180375\pi
0.843696 + 0.536822i 0.180375π0.180375\pi
600600 −6.84858 15.2302i −0.279592 0.621771i
601601 1.60121 0.0653145 0.0326573 0.999467i 0.489603π-0.489603\pi
0.0326573 + 0.999467i 0.489603π0.489603\pi
602602 2.93266i 0.119526i
603603 1.41191i 0.0574975i
604604 −7.99470 −0.325300
605605 −10.6692 6.90060i −0.433763 0.280549i
606606 −10.7259 −0.435711
607607 32.4708i 1.31795i 0.752165 + 0.658975i 0.229010π0.229010\pi
−0.752165 + 0.658975i 0.770990π0.770990\pi
608608 0 0
609609 22.1983 0.899521
610610 5.42440 8.38678i 0.219628 0.339571i
611611 27.9643 1.13132
612612 8.15852i 0.329788i
613613 13.9352i 0.562839i 0.959585 + 0.281420i 0.0908053π0.0908053\pi
−0.959585 + 0.281420i 0.909195π0.909195\pi
614614 10.1674 0.410325
615615 15.5372 24.0224i 0.626521 0.968677i
616616 −8.11075 −0.326791
617617 14.4224i 0.580625i 0.956932 + 0.290313i 0.0937593π0.0937593\pi
−0.956932 + 0.290313i 0.906241π0.906241\pi
618618 11.3610i 0.457005i
619619 4.71305 0.189434 0.0947168 0.995504i 0.469805π-0.469805\pi
0.0947168 + 0.995504i 0.469805π0.469805\pi
620620 −2.55844 1.65475i −0.102749 0.0664563i
621621 −24.7122 −0.991665
622622 11.1704i 0.447892i
623623 4.81095i 0.192747i
624624 24.3378 0.974291
625625 −16.5903 + 18.7019i −0.663611 + 0.748078i
626626 9.97728 0.398772
627627 0 0
628628 35.6794i 1.42376i
629629 34.0653 1.35827
630630 −1.44182 0.932538i −0.0574434 0.0371532i
631631 3.31273 0.131878 0.0659388 0.997824i 0.478996π-0.478996\pi
0.0659388 + 0.997824i 0.478996π0.478996\pi
632632 4.11646i 0.163744i
633633 13.7213i 0.545372i
634634 0.916530 0.0364000
635635 25.7884 39.8720i 1.02338 1.58227i
636636 13.5473 0.537185
637637 12.1031i 0.479541i
638638 5.70420i 0.225831i
639639 8.17539 0.323413
640640 13.3173 20.5901i 0.526412 0.813897i
641641 0.0491989 0.00194324 0.000971620 1.00000i 0.499691π-0.499691\pi
0.000971620 1.00000i 0.499691π0.499691\pi
642642 13.3424i 0.526581i
643643 12.0003i 0.473246i −0.971602 0.236623i 0.923959π-0.923959\pi
0.971602 0.236623i 0.0760406π-0.0760406\pi
644644 21.5566 0.849448
645645 11.6352 + 7.52539i 0.458135 + 0.296312i
646646 0 0
647647 36.3971i 1.43092i −0.698656 0.715458i 0.746218π-0.746218\pi
0.698656 0.715458i 0.253782π-0.253782\pi
648648 18.4330i 0.724116i
649649 −5.88081 −0.230842
650650 4.05089 + 9.00858i 0.158889 + 0.353345i
651651 −3.05607 −0.119777
652652 2.30311i 0.0901967i
653653 31.7999i 1.24443i 0.782847 + 0.622214i 0.213767π0.213767\pi
−0.782847 + 0.622214i 0.786233π0.786233\pi
654654 16.8654 0.659491
655655 −3.14065 2.03131i −0.122715 0.0793697i
656656 18.4979 0.722220
657657 8.47192i 0.330521i
658658 5.89085i 0.229649i
659659 26.8414 1.04559 0.522796 0.852458i 0.324889π-0.324889\pi
0.522796 + 0.852458i 0.324889π0.324889\pi
660660 −9.85307 + 15.2340i −0.383530 + 0.592984i
661661 34.2970 1.33400 0.667000 0.745057i 0.267578π-0.267578\pi
0.667000 + 0.745057i 0.267578π0.267578\pi
662662 15.1225i 0.587754i
663663 47.0715i 1.82810i
664664 −12.0540 −0.467784
665665 0 0
666666 2.31983 0.0898917
667667 32.0236i 1.23996i
668668 14.4490i 0.559050i
669669 38.0358 1.47055
670670 1.43662 + 0.929174i 0.0555013 + 0.0358971i
671671 −22.9218 −0.884885
672672 18.8923i 0.728786i
673673 21.7196i 0.837230i 0.908164 + 0.418615i 0.137484π0.137484\pi
−0.908164 + 0.418615i 0.862516π0.862516\pi
674674 −1.16332 −0.0448096
675675 19.3710 8.71056i 0.745589 0.335270i
676676 −11.3741 −0.437465
677677 8.53064i 0.327859i −0.986472 0.163930i 0.947583π-0.947583\pi
0.986472 0.163930i 0.0524170π-0.0524170\pi
678678 1.68085i 0.0645525i
679679 −14.0451 −0.539001
680680 17.5348 + 11.3412i 0.672429 + 0.434914i
681681 −12.7977 −0.490409
682682 0.785303i 0.0300708i
683683 17.3190i 0.662695i −0.943509 0.331347i 0.892497π-0.892497\pi
0.943509 0.331347i 0.107503π-0.107503\pi
684684 0 0
685685 20.9941 32.4595i 0.802145 1.24021i
686686 9.03204 0.344845
687687 39.9206i 1.52306i
688688 8.95938i 0.341573i
689689 −16.9262 −0.644838
690690 −6.21236 + 9.60506i −0.236500 + 0.365658i
691691 17.2709 0.657014 0.328507 0.944501i 0.393454π-0.393454\pi
0.328507 + 0.944501i 0.393454π0.393454\pi
692692 4.78122i 0.181755i
693693 3.94061i 0.149691i
694694 10.6966 0.406036
695695 −23.1440 14.9691i −0.877902 0.567809i
696696 −18.3846 −0.696868
697697 35.7765i 1.35513i
698698 1.11553i 0.0422234i
699699 −23.5780 −0.891802
700700 −16.8974 + 7.59827i −0.638662 + 0.287188i
701701 21.8816 0.826457 0.413228 0.910627i 0.364401π-0.364401\pi
0.413228 + 0.910627i 0.364401π0.364401\pi
702702 8.39162i 0.316721i
703703 0 0
704704 −8.19336 −0.308799
705705 −23.3716 15.1163i −0.880227 0.569313i
706706 −16.0621 −0.604507
707707 25.1366i 0.945360i
708708 8.97305i 0.337228i
709709 −20.5621 −0.772224 −0.386112 0.922452i 0.626182π-0.626182\pi
−0.386112 + 0.922452i 0.626182π0.626182\pi
710710 −5.38019 + 8.31843i −0.201915 + 0.312185i
711711 −1.99998 −0.0750052
712712 3.98443i 0.149323i
713713 4.40873i 0.165108i
714714 9.91588 0.371092
715715 12.3106 19.0337i 0.460390 0.711819i
716716 14.5679 0.544429
717717 11.9856i 0.447612i
718718 2.59035i 0.0966709i
719719 −15.6722 −0.584473 −0.292237 0.956346i 0.594400π-0.594400\pi
−0.292237 + 0.956346i 0.594400π0.594400\pi
720720 −4.40480 2.84894i −0.164157 0.106174i
721721 −26.6249 −0.991561
722722 0 0
723723 14.2323i 0.529304i
724724 −38.6626 −1.43688
725725 11.2877 + 25.1022i 0.419215 + 0.932271i
726726 4.99684 0.185450
727727 43.5233i 1.61419i 0.590421 + 0.807095i 0.298962π0.298962\pi
−0.590421 + 0.807095i 0.701038π0.701038\pi
728728 15.4622i 0.573068i
729729 −15.9815 −0.591907
730730 8.62014 + 5.57533i 0.319046 + 0.206352i
731731 −17.3282 −0.640908
732732 34.9745i 1.29269i
733733 12.6904i 0.468729i −0.972149 0.234364i 0.924699π-0.924699\pi
0.972149 0.234364i 0.0753009π-0.0753009\pi
734734 −2.67705 −0.0988116
735735 6.54239 10.1153i 0.241320 0.373110i
736736 −27.2543 −1.00461
737737 3.92639i 0.144630i
738738 2.43637i 0.0896839i
739739 −28.1664 −1.03612 −0.518059 0.855345i 0.673345π-0.673345\pi
−0.518059 + 0.855345i 0.673345π0.673345\pi
740740 13.5937 21.0175i 0.499713 0.772617i
741741 0 0
742742 3.56561i 0.130898i
743743 25.5639i 0.937849i 0.883238 + 0.468924i 0.155358π0.155358\pi
−0.883238 + 0.468924i 0.844642π0.844642\pi
744744 2.53103 0.0927922
745745 −8.18437 5.29348i −0.299852 0.193938i
746746 −2.00798 −0.0735175
747747 5.85641i 0.214275i
748748 22.6880i 0.829557i
749749 −31.2683 −1.14252
750750 1.48404 9.71880i 0.0541896 0.354880i
751751 −34.6687 −1.26508 −0.632539 0.774529i 0.717987π-0.717987\pi
−0.632539 + 0.774529i 0.717987π0.717987\pi
752752 17.9968i 0.656274i
753753 47.3293i 1.72477i
754754 10.8744 0.396023
755755 −8.34823 5.39946i −0.303823 0.196507i
756756 15.7402 0.572465
757757 45.7467i 1.66269i 0.555755 + 0.831346i 0.312429π0.312429\pi
−0.555755 + 0.831346i 0.687571π0.687571\pi
758758 5.98471i 0.217374i
759759 26.2514 0.952867
760760 0 0
761761 2.85442 0.103472 0.0517362 0.998661i 0.483524π-0.483524\pi
0.0517362 + 0.998661i 0.483524π0.483524\pi
762762 18.6738i 0.676481i
763763 39.5248i 1.43089i
764764 −35.2311 −1.27462
765765 5.51010 8.51929i 0.199218 0.308016i
766766 4.57177 0.165185
767767 11.2111i 0.404809i
768768 4.26233i 0.153804i
769769 −19.5208 −0.703937 −0.351969 0.936012i 0.614488π-0.614488\pi
−0.351969 + 0.936012i 0.614488π0.614488\pi
770770 −4.00955 2.59330i −0.144494 0.0934560i
771771 −23.9477 −0.862455
772772 0.869107i 0.0312798i
773773 7.24881i 0.260722i 0.991467 + 0.130361i 0.0416136π0.0416136\pi
−0.991467 + 0.130361i 0.958386π0.958386\pi
774774 −1.18005 −0.0424159
775775 −1.55399 3.45584i −0.0558210 0.124138i
776776 11.6322 0.417570
777777 25.1054i 0.900652i
778778 5.12753i 0.183831i
779779 0 0
780780 29.0419 + 18.7837i 1.03987 + 0.672566i
781781 22.7349 0.813520
782782 14.3048i 0.511539i
783783 23.3830i 0.835641i
784784 7.78906 0.278181
785785 24.0972 37.2571i 0.860065 1.32976i
786786 1.47090 0.0524654
787787 4.20711i 0.149967i −0.997185 0.0749837i 0.976110π-0.976110\pi
0.997185 0.0749837i 0.0238905π-0.0238905\pi
788788 2.26896i 0.0808283i
789789 24.2372 0.862867
790790 1.31618 2.03498i 0.0468276 0.0724012i
791791 3.93912 0.140059
792792 3.26361i 0.115967i
793793 43.6977i 1.55175i
794794 2.31091 0.0820113
795795 14.1464 + 9.14958i 0.501720 + 0.324502i
796796 −37.1398 −1.31639
797797 25.6411i 0.908253i −0.890937 0.454127i 0.849951π-0.849951\pi
0.890937 0.454127i 0.150049π-0.150049\pi
798798 0 0
799799 34.8074 1.23140
800800 21.3637 9.60663i 0.755320 0.339646i
801801 1.93584 0.0683994
802802 7.67627i 0.271059i
803803 23.5596i 0.831399i
804804 5.99096 0.211285
805805 22.5098 + 14.5589i 0.793367 + 0.513133i
806806 −1.49709 −0.0527328
807807 9.66444i 0.340204i
808808 20.8181i 0.732380i
809809 0.516056 0.0181436 0.00907179 0.999959i 0.497112π-0.497112\pi
0.00907179 + 0.999959i 0.497112π0.497112\pi
810810 −5.89369 + 9.11235i −0.207083 + 0.320176i
811811 24.0377 0.844078 0.422039 0.906578i 0.361315π-0.361315\pi
0.422039 + 0.906578i 0.361315π0.361315\pi
812812 20.3972i 0.715800i
813813 13.5060i 0.473676i
814814 6.45123 0.226115
815815 1.55547 2.40495i 0.0544859 0.0842418i
816816 30.2934 1.06048
817817 0 0
818818 11.7150i 0.409605i
819819 7.51232 0.262502
820820 22.0733 + 14.2765i 0.770831 + 0.498558i
821821 38.7573 1.35264 0.676320 0.736608i 0.263574π-0.263574\pi
0.676320 + 0.736608i 0.263574π0.263574\pi
822822 15.2022i 0.530238i
823823 3.48827i 0.121593i 0.998150 + 0.0607967i 0.0193641π0.0193641\pi
−0.998150 + 0.0607967i 0.980636π0.980636\pi
824824 22.0507 0.768173
825825 −20.5775 + 9.25312i −0.716418 + 0.322152i
826826 2.36168 0.0821734
827827 27.4821i 0.955645i −0.878456 0.477823i 0.841426π-0.841426\pi
0.878456 0.477823i 0.158574π-0.158574\pi
828828 8.67395i 0.301441i
829829 −8.60945 −0.299019 −0.149509 0.988760i 0.547769π-0.547769\pi
−0.149509 + 0.988760i 0.547769π0.547769\pi
830830 −5.95888 3.85408i −0.206836 0.133777i
831831 −7.75545 −0.269034
832832 15.6197i 0.541516i
833833 15.0648i 0.521963i
834834 10.8394 0.375336
835835 9.75860 15.0880i 0.337710 0.522141i
836836 0 0
837837 3.21917i 0.111271i
838838 2.59415i 0.0896133i
839839 11.9397 0.412206 0.206103 0.978530i 0.433922π-0.433922\pi
0.206103 + 0.978530i 0.433922π0.433922\pi
840840 8.35820 12.9228i 0.288385 0.445879i
841841 1.30126 0.0448710
842842 11.3695i 0.391817i
843843 61.0520i 2.10274i
844844 −12.6079 −0.433983
845845 −11.8771 7.68184i −0.408583 0.264263i
846846 2.37037 0.0814949
847847 11.7103i 0.402370i
848848 10.8931i 0.374069i
849849 −20.7954 −0.713695
850850 5.04217 + 11.2130i 0.172945 + 0.384603i
851851 −36.2175 −1.24152
852852 34.6894i 1.18844i
853853 28.9175i 0.990117i 0.868860 + 0.495059i 0.164853π0.164853\pi
−0.868860 + 0.495059i 0.835147π0.835147\pi
854854 9.20518 0.314995
855855 0 0
856856 25.8964 0.885121
857857 55.2147i 1.88610i −0.332651 0.943050i 0.607943π-0.607943\pi
0.332651 0.943050i 0.392057π-0.392057\pi
858858 8.91431i 0.304330i
859859 26.6572 0.909532 0.454766 0.890611i 0.349723π-0.349723\pi
0.454766 + 0.890611i 0.349723π0.349723\pi
860860 −6.91479 + 10.6911i −0.235792 + 0.364564i
861861 26.3666 0.898570
862862 8.43154i 0.287180i
863863 1.21123i 0.0412307i 0.999787 + 0.0206154i 0.00656254π0.00656254\pi
−0.999787 + 0.0206154i 0.993437π0.993437\pi
864864 −19.9006 −0.677031
865865 3.22915 4.99265i 0.109794 0.169755i
866866 −3.82551 −0.129996
867867 25.3238i 0.860042i
868868 2.80810i 0.0953131i
869869 −5.56176 −0.188670
870870 −9.08846 5.87823i −0.308128 0.199291i
871871 −7.48522 −0.253627
872872 32.7344i 1.10853i
873873 5.65148i 0.191274i
874874 0 0
875875 −22.7764 3.47791i −0.769981 0.117575i
876876 35.9476 1.21456
877877 49.5420i 1.67291i 0.548032 + 0.836457i 0.315377π0.315377\pi
−0.548032 + 0.836457i 0.684623π0.684623\pi
878878 0.923597i 0.0311699i
879879 −38.4055 −1.29538
880880 −12.2493 7.92261i −0.412925 0.267071i
881881 −30.5639 −1.02972 −0.514861 0.857273i 0.672157π-0.672157\pi
−0.514861 + 0.857273i 0.672157π0.672157\pi
882882 1.02590i 0.0345440i
883883 5.57841i 0.187729i 0.995585 + 0.0938643i 0.0299220π0.0299220\pi
−0.995585 + 0.0938643i 0.970078π0.970078\pi
884884 −43.2521 −1.45473
885885 6.06023 9.36985i 0.203712 0.314964i
886886 −5.41061 −0.181773
887887 0.666360i 0.0223742i −0.999937 0.0111871i 0.996439π-0.996439\pi
0.999937 0.0111871i 0.00356104π-0.00356104\pi
888888 20.7923i 0.697744i
889889 43.7628 1.46776
890890 −1.27397 + 1.96971i −0.0427034 + 0.0660247i
891891 24.9048 0.834343
892892 34.9497i 1.17020i
893893 0 0
894894 3.83310 0.128198
895895 15.2121 + 9.83889i 0.508485 + 0.328878i
896896 22.5994 0.754992
897897 50.0454i 1.67097i
898898 3.36760i 0.112378i
899899 −4.17161 −0.139131
900900 −3.05740 6.79920i −0.101913 0.226640i
901901 −21.0682 −0.701882
902902 6.77530i 0.225593i
903903 12.7706i 0.424978i
904904 −3.26238 −0.108505
905905 −40.3723 26.1120i −1.34202 0.867991i
906906 3.90984 0.129896
907907 52.7812i 1.75257i 0.481792 + 0.876286i 0.339986π0.339986\pi
−0.481792 + 0.876286i 0.660014π0.660014\pi
908908 11.7593i 0.390246i
909909 −10.1145 −0.335477
910910 −4.94383 + 7.64376i −0.163886 + 0.253388i
911911 13.0586 0.432650 0.216325 0.976321i 0.430593π-0.430593\pi
0.216325 + 0.976321i 0.430593π0.430593\pi
912912 0 0
913913 16.2861i 0.538992i
914914 −6.29357 −0.208173
915915 23.6211 36.5211i 0.780889 1.20735i
916916 36.6814 1.21199
917917 3.44712i 0.113834i
918918 10.4451i 0.344739i
919919 46.0539 1.51918 0.759589 0.650403i 0.225400π-0.225400\pi
0.759589 + 0.650403i 0.225400π0.225400\pi
920920 −18.6426 12.0577i −0.614629 0.397530i
921921 44.2751 1.45892
922922 7.94271i 0.261579i
923923 43.3416i 1.42661i
924924 −16.7206 −0.550067
925925 28.3896 12.7660i 0.933443 0.419742i
926926 −7.45627 −0.245028
927927 10.7133i 0.351872i
928928 25.7885i 0.846548i
929929 −30.9736 −1.01621 −0.508105 0.861295i 0.669654π-0.669654\pi
−0.508105 + 0.861295i 0.669654π0.669654\pi
930930 1.25122 + 0.809262i 0.0410290 + 0.0265368i
931931 0 0
932932 21.6649i 0.709657i
933933 48.6426i 1.59249i
934934 7.18568 0.235123
935935 15.3231 23.6913i 0.501118 0.774789i
936936 −6.22170 −0.203363
937937 34.8133i 1.13730i 0.822580 + 0.568650i 0.192534π0.192534\pi
−0.822580 + 0.568650i 0.807466π0.807466\pi
938938 1.57680i 0.0514845i
939939 43.4470 1.41784
940940 13.8898 21.4753i 0.453035 0.700447i
941941 16.2153 0.528604 0.264302 0.964440i 0.414858π-0.414858\pi
0.264302 + 0.964440i 0.414858π0.414858\pi
942942 17.4492i 0.568525i
943943 38.0368i 1.23865i
944944 7.21502 0.234829
945945 16.4362 + 10.6306i 0.534670 + 0.345814i
946946 −3.28159 −0.106694
947947 14.6403i 0.475746i −0.971296 0.237873i 0.923550π-0.923550\pi
0.971296 0.237873i 0.0764502π-0.0764502\pi
948948 8.48624i 0.275620i
949949 −44.9136 −1.45796
950950 0 0
951951 3.99112 0.129421
952952 19.2459i 0.623763i
953953 40.8271i 1.32252i −0.750156 0.661260i 0.770022π-0.770022\pi
0.750156 0.661260i 0.229978π-0.229978\pi
954954 −1.43473 −0.0464512
955955 −36.7891 23.7944i −1.19047 0.769970i
956956 11.0131 0.356190
957957 24.8395i 0.802947i
958958 3.32352i 0.107378i
959959 35.6269 1.15045
960960 8.44333 13.0544i 0.272507 0.421329i
961961 −30.4257 −0.981474
962962 12.2985i 0.396520i
963963 12.5818i 0.405442i
964964 13.0775 0.421197
965965 0.586978 0.907539i 0.0188955 0.0292147i
966966 −10.5423 −0.339194
967967 24.1608i 0.776958i 0.921458 + 0.388479i 0.126999π0.126999\pi
−0.921458 + 0.388479i 0.873001π0.873001\pi
968968 9.69845i 0.311720i
969969 0 0
970970 5.75036 + 3.71922i 0.184633 + 0.119417i
971971 −27.7592 −0.890836 −0.445418 0.895323i 0.646945π-0.646945\pi
−0.445418 + 0.895323i 0.646945π0.646945\pi
972972 15.0865i 0.483899i
973973 25.4024i 0.814364i
974974 −9.07201 −0.290686
975975 17.6400 + 39.2287i 0.564933 + 1.25633i
976976 28.1221 0.900168
977977 3.56499i 0.114054i −0.998373 0.0570270i 0.981838π-0.981838\pi
0.998373 0.0570270i 0.0181621π-0.0181621\pi
978978 1.12635i 0.0360166i
979979 5.38337 0.172053
980980 9.29458 + 6.01155i 0.296905 + 0.192032i
981981 15.9040 0.507776
982982 4.19403i 0.133837i
983983 1.63550i 0.0521643i −0.999660 0.0260822i 0.991697π-0.991697\pi
0.999660 0.0260822i 0.00830315π-0.00830315\pi
984984 −21.8368 −0.696131
985985 −1.53241 + 2.36929i −0.0488267 + 0.0754920i
986986 13.5354 0.431056
987987 25.6523i 0.816521i
988988 0 0
989989 18.4230 0.585818
990990 1.04349 1.61337i 0.0331644 0.0512762i
991991 −1.50405 −0.0477778 −0.0238889 0.999715i 0.507605π-0.507605\pi
−0.0238889 + 0.999715i 0.507605π0.507605\pi
992992 3.55033i 0.112723i
993993 65.8526i 2.08977i
994994 −9.13015 −0.289591
995995 −38.7822 25.0835i −1.22948 0.795201i
996996 −24.8497 −0.787392
997997 51.4138i 1.62829i −0.580660 0.814146i 0.697205π-0.697205\pi
0.580660 0.814146i 0.302795π-0.302795\pi
998998 10.7675i 0.340841i
999999 −26.4453 −0.836692
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1805.2.b.l.1084.10 24
5.2 odd 4 9025.2.a.ct.1.15 24
5.3 odd 4 9025.2.a.ct.1.10 24
5.4 even 2 inner 1805.2.b.l.1084.15 24
19.14 odd 18 95.2.p.a.44.5 yes 48
19.15 odd 18 95.2.p.a.54.4 yes 48
19.18 odd 2 1805.2.b.k.1084.15 24
57.14 even 18 855.2.da.b.424.4 48
57.53 even 18 855.2.da.b.244.5 48
95.14 odd 18 95.2.p.a.44.4 48
95.18 even 4 9025.2.a.cu.1.15 24
95.33 even 36 475.2.l.f.101.5 48
95.34 odd 18 95.2.p.a.54.5 yes 48
95.37 even 4 9025.2.a.cu.1.10 24
95.52 even 36 475.2.l.f.101.4 48
95.53 even 36 475.2.l.f.301.5 48
95.72 even 36 475.2.l.f.301.4 48
95.94 odd 2 1805.2.b.k.1084.10 24
285.14 even 18 855.2.da.b.424.5 48
285.224 even 18 855.2.da.b.244.4 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
95.2.p.a.44.4 48 95.14 odd 18
95.2.p.a.44.5 yes 48 19.14 odd 18
95.2.p.a.54.4 yes 48 19.15 odd 18
95.2.p.a.54.5 yes 48 95.34 odd 18
475.2.l.f.101.4 48 95.52 even 36
475.2.l.f.101.5 48 95.33 even 36
475.2.l.f.301.4 48 95.72 even 36
475.2.l.f.301.5 48 95.53 even 36
855.2.da.b.244.4 48 285.224 even 18
855.2.da.b.244.5 48 57.53 even 18
855.2.da.b.424.4 48 57.14 even 18
855.2.da.b.424.5 48 285.14 even 18
1805.2.b.k.1084.10 24 95.94 odd 2
1805.2.b.k.1084.15 24 19.18 odd 2
1805.2.b.l.1084.10 24 1.1 even 1 trivial
1805.2.b.l.1084.15 24 5.4 even 2 inner
9025.2.a.ct.1.10 24 5.3 odd 4
9025.2.a.ct.1.15 24 5.2 odd 4
9025.2.a.cu.1.10 24 95.37 even 4
9025.2.a.cu.1.15 24 95.18 even 4