Properties

Label 9025.2.a.cu.1.10
Level $9025$
Weight $2$
Character 9025.1
Self dual yes
Analytic conductor $72.065$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9025,2,Mod(1,9025)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9025, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9025.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9025 = 5^{2} \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9025.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(72.0649878242\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: no (minimal twist has level 95)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.10
Character \(\chi\) \(=\) 9025.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.449373 q^{2} +1.95684 q^{3} -1.79806 q^{4} -0.879352 q^{6} -2.06079 q^{7} +1.70675 q^{8} +0.829224 q^{9} -2.30599 q^{11} -3.51852 q^{12} -4.39611 q^{13} +0.926065 q^{14} +2.82916 q^{16} -5.47185 q^{17} -0.372631 q^{18} -4.03264 q^{21} +1.03625 q^{22} -5.81755 q^{23} +3.33983 q^{24} +1.97549 q^{26} -4.24786 q^{27} +3.70544 q^{28} +5.50466 q^{29} +0.757832 q^{31} -4.68485 q^{32} -4.51245 q^{33} +2.45890 q^{34} -1.49100 q^{36} -6.22555 q^{37} -8.60248 q^{39} -6.53829 q^{41} +1.81216 q^{42} +3.16680 q^{43} +4.14632 q^{44} +2.61425 q^{46} +6.36116 q^{47} +5.53621 q^{48} -2.75314 q^{49} -10.7075 q^{51} +7.90448 q^{52} -3.85028 q^{53} +1.90888 q^{54} -3.51725 q^{56} -2.47365 q^{58} +2.55023 q^{59} +9.94010 q^{61} -0.340550 q^{62} -1.70886 q^{63} -3.55308 q^{64} +2.02778 q^{66} +1.70269 q^{67} +9.83874 q^{68} -11.3840 q^{69} +9.85909 q^{71} +1.41528 q^{72} +10.2167 q^{73} +2.79760 q^{74} +4.75216 q^{77} +3.86572 q^{78} +2.41187 q^{79} -10.8001 q^{81} +2.93813 q^{82} -7.06253 q^{83} +7.25095 q^{84} -1.42307 q^{86} +10.7717 q^{87} -3.93574 q^{88} -2.33452 q^{89} +9.05946 q^{91} +10.4603 q^{92} +1.48296 q^{93} -2.85854 q^{94} -9.16749 q^{96} +6.81539 q^{97} +1.23719 q^{98} -1.91218 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 18 q^{4} - 12 q^{6} + 12 q^{9} + 12 q^{11} + 24 q^{14} + 6 q^{16} + 6 q^{21} - 42 q^{24} - 12 q^{26} + 36 q^{29} + 42 q^{31} + 6 q^{34} - 6 q^{36} + 24 q^{39} + 60 q^{41} - 30 q^{44} + 6 q^{46} + 12 q^{49}+ \cdots - 120 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.449373 −0.317755 −0.158877 0.987298i \(-0.550787\pi\)
−0.158877 + 0.987298i \(0.550787\pi\)
\(3\) 1.95684 1.12978 0.564891 0.825165i \(-0.308918\pi\)
0.564891 + 0.825165i \(0.308918\pi\)
\(4\) −1.79806 −0.899032
\(5\) 0 0
\(6\) −0.879352 −0.358994
\(7\) −2.06079 −0.778906 −0.389453 0.921046i \(-0.627336\pi\)
−0.389453 + 0.921046i \(0.627336\pi\)
\(8\) 1.70675 0.603427
\(9\) 0.829224 0.276408
\(10\) 0 0
\(11\) −2.30599 −0.695282 −0.347641 0.937628i \(-0.613017\pi\)
−0.347641 + 0.937628i \(0.613017\pi\)
\(12\) −3.51852 −1.01571
\(13\) −4.39611 −1.21926 −0.609630 0.792686i \(-0.708682\pi\)
−0.609630 + 0.792686i \(0.708682\pi\)
\(14\) 0.926065 0.247501
\(15\) 0 0
\(16\) 2.82916 0.707290
\(17\) −5.47185 −1.32712 −0.663560 0.748123i \(-0.730955\pi\)
−0.663560 + 0.748123i \(0.730955\pi\)
\(18\) −0.372631 −0.0878299
\(19\) 0 0
\(20\) 0 0
\(21\) −4.03264 −0.879994
\(22\) 1.03625 0.220929
\(23\) −5.81755 −1.21304 −0.606522 0.795067i \(-0.707436\pi\)
−0.606522 + 0.795067i \(0.707436\pi\)
\(24\) 3.33983 0.681741
\(25\) 0 0
\(26\) 1.97549 0.387426
\(27\) −4.24786 −0.817502
\(28\) 3.70544 0.700262
\(29\) 5.50466 1.02219 0.511095 0.859524i \(-0.329240\pi\)
0.511095 + 0.859524i \(0.329240\pi\)
\(30\) 0 0
\(31\) 0.757832 0.136111 0.0680553 0.997682i \(-0.478321\pi\)
0.0680553 + 0.997682i \(0.478321\pi\)
\(32\) −4.68485 −0.828171
\(33\) −4.51245 −0.785517
\(34\) 2.45890 0.421699
\(35\) 0 0
\(36\) −1.49100 −0.248499
\(37\) −6.22555 −1.02347 −0.511737 0.859142i \(-0.670998\pi\)
−0.511737 + 0.859142i \(0.670998\pi\)
\(38\) 0 0
\(39\) −8.60248 −1.37750
\(40\) 0 0
\(41\) −6.53829 −1.02111 −0.510554 0.859845i \(-0.670560\pi\)
−0.510554 + 0.859845i \(0.670560\pi\)
\(42\) 1.81216 0.279623
\(43\) 3.16680 0.482932 0.241466 0.970409i \(-0.422372\pi\)
0.241466 + 0.970409i \(0.422372\pi\)
\(44\) 4.14632 0.625081
\(45\) 0 0
\(46\) 2.61425 0.385451
\(47\) 6.36116 0.927871 0.463936 0.885869i \(-0.346437\pi\)
0.463936 + 0.885869i \(0.346437\pi\)
\(48\) 5.53621 0.799084
\(49\) −2.75314 −0.393305
\(50\) 0 0
\(51\) −10.7075 −1.49936
\(52\) 7.90448 1.09615
\(53\) −3.85028 −0.528876 −0.264438 0.964403i \(-0.585187\pi\)
−0.264438 + 0.964403i \(0.585187\pi\)
\(54\) 1.90888 0.259765
\(55\) 0 0
\(56\) −3.51725 −0.470013
\(57\) 0 0
\(58\) −2.47365 −0.324806
\(59\) 2.55023 0.332012 0.166006 0.986125i \(-0.446913\pi\)
0.166006 + 0.986125i \(0.446913\pi\)
\(60\) 0 0
\(61\) 9.94010 1.27270 0.636350 0.771401i \(-0.280444\pi\)
0.636350 + 0.771401i \(0.280444\pi\)
\(62\) −0.340550 −0.0432498
\(63\) −1.70886 −0.215296
\(64\) −3.55308 −0.444135
\(65\) 0 0
\(66\) 2.02778 0.249602
\(67\) 1.70269 0.208017 0.104009 0.994576i \(-0.466833\pi\)
0.104009 + 0.994576i \(0.466833\pi\)
\(68\) 9.83874 1.19312
\(69\) −11.3840 −1.37048
\(70\) 0 0
\(71\) 9.85909 1.17006 0.585029 0.811012i \(-0.301083\pi\)
0.585029 + 0.811012i \(0.301083\pi\)
\(72\) 1.41528 0.166792
\(73\) 10.2167 1.19577 0.597886 0.801581i \(-0.296007\pi\)
0.597886 + 0.801581i \(0.296007\pi\)
\(74\) 2.79760 0.325214
\(75\) 0 0
\(76\) 0 0
\(77\) 4.75216 0.541559
\(78\) 3.86572 0.437707
\(79\) 2.41187 0.271357 0.135679 0.990753i \(-0.456679\pi\)
0.135679 + 0.990753i \(0.456679\pi\)
\(80\) 0 0
\(81\) −10.8001 −1.20001
\(82\) 2.93813 0.324462
\(83\) −7.06253 −0.775213 −0.387607 0.921825i \(-0.626698\pi\)
−0.387607 + 0.921825i \(0.626698\pi\)
\(84\) 7.25095 0.791143
\(85\) 0 0
\(86\) −1.42307 −0.153454
\(87\) 10.7717 1.15485
\(88\) −3.93574 −0.419552
\(89\) −2.33452 −0.247458 −0.123729 0.992316i \(-0.539485\pi\)
−0.123729 + 0.992316i \(0.539485\pi\)
\(90\) 0 0
\(91\) 9.05946 0.949689
\(92\) 10.4603 1.09056
\(93\) 1.48296 0.153775
\(94\) −2.85854 −0.294836
\(95\) 0 0
\(96\) −9.16749 −0.935653
\(97\) 6.81539 0.691998 0.345999 0.938235i \(-0.387540\pi\)
0.345999 + 0.938235i \(0.387540\pi\)
\(98\) 1.23719 0.124975
\(99\) −1.91218 −0.192181
\(100\) 0 0
\(101\) 12.1976 1.21370 0.606851 0.794816i \(-0.292433\pi\)
0.606851 + 0.794816i \(0.292433\pi\)
\(102\) 4.81168 0.476428
\(103\) −12.9197 −1.27302 −0.636509 0.771269i \(-0.719622\pi\)
−0.636509 + 0.771269i \(0.719622\pi\)
\(104\) −7.50304 −0.735734
\(105\) 0 0
\(106\) 1.73021 0.168053
\(107\) 15.1729 1.46682 0.733412 0.679785i \(-0.237927\pi\)
0.733412 + 0.679785i \(0.237927\pi\)
\(108\) 7.63793 0.734960
\(109\) −19.1794 −1.83705 −0.918527 0.395359i \(-0.870620\pi\)
−0.918527 + 0.395359i \(0.870620\pi\)
\(110\) 0 0
\(111\) −12.1824 −1.15630
\(112\) −5.83031 −0.550913
\(113\) 1.91146 0.179815 0.0899075 0.995950i \(-0.471343\pi\)
0.0899075 + 0.995950i \(0.471343\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −9.89773 −0.918981
\(117\) −3.64535 −0.337013
\(118\) −1.14601 −0.105498
\(119\) 11.2764 1.03370
\(120\) 0 0
\(121\) −5.68241 −0.516583
\(122\) −4.46682 −0.404406
\(123\) −12.7944 −1.15363
\(124\) −1.36263 −0.122368
\(125\) 0 0
\(126\) 0.767915 0.0684113
\(127\) −21.2359 −1.88438 −0.942191 0.335077i \(-0.891238\pi\)
−0.942191 + 0.335077i \(0.891238\pi\)
\(128\) 10.9663 0.969297
\(129\) 6.19692 0.545608
\(130\) 0 0
\(131\) −1.67271 −0.146146 −0.0730728 0.997327i \(-0.523281\pi\)
−0.0730728 + 0.997327i \(0.523281\pi\)
\(132\) 8.11368 0.706205
\(133\) 0 0
\(134\) −0.765145 −0.0660984
\(135\) 0 0
\(136\) −9.33908 −0.800819
\(137\) 17.2880 1.47701 0.738506 0.674247i \(-0.235532\pi\)
0.738506 + 0.674247i \(0.235532\pi\)
\(138\) 5.11567 0.435475
\(139\) 12.3265 1.04552 0.522761 0.852479i \(-0.324902\pi\)
0.522761 + 0.852479i \(0.324902\pi\)
\(140\) 0 0
\(141\) 12.4478 1.04829
\(142\) −4.43041 −0.371792
\(143\) 10.1374 0.847730
\(144\) 2.34601 0.195501
\(145\) 0 0
\(146\) −4.59111 −0.379963
\(147\) −5.38745 −0.444349
\(148\) 11.1939 0.920136
\(149\) 4.35901 0.357104 0.178552 0.983930i \(-0.442859\pi\)
0.178552 + 0.983930i \(0.442859\pi\)
\(150\) 0 0
\(151\) 4.44628 0.361833 0.180917 0.983498i \(-0.442094\pi\)
0.180917 + 0.983498i \(0.442094\pi\)
\(152\) 0 0
\(153\) −4.53739 −0.366826
\(154\) −2.13550 −0.172083
\(155\) 0 0
\(156\) 15.4678 1.23841
\(157\) 19.8432 1.58366 0.791831 0.610740i \(-0.209128\pi\)
0.791831 + 0.610740i \(0.209128\pi\)
\(158\) −1.08383 −0.0862250
\(159\) −7.53438 −0.597515
\(160\) 0 0
\(161\) 11.9888 0.944847
\(162\) 4.85326 0.381308
\(163\) −1.28088 −0.100326 −0.0501632 0.998741i \(-0.515974\pi\)
−0.0501632 + 0.998741i \(0.515974\pi\)
\(164\) 11.7563 0.918009
\(165\) 0 0
\(166\) 3.17371 0.246328
\(167\) −8.03589 −0.621836 −0.310918 0.950437i \(-0.600636\pi\)
−0.310918 + 0.950437i \(0.600636\pi\)
\(168\) −6.88270 −0.531012
\(169\) 6.32574 0.486595
\(170\) 0 0
\(171\) 0 0
\(172\) −5.69410 −0.434171
\(173\) 2.65910 0.202167 0.101084 0.994878i \(-0.467769\pi\)
0.101084 + 0.994878i \(0.467769\pi\)
\(174\) −4.84053 −0.366960
\(175\) 0 0
\(176\) −6.52401 −0.491766
\(177\) 4.99040 0.375101
\(178\) 1.04907 0.0786311
\(179\) 8.10201 0.605572 0.302786 0.953059i \(-0.402083\pi\)
0.302786 + 0.953059i \(0.402083\pi\)
\(180\) 0 0
\(181\) 21.5023 1.59826 0.799128 0.601161i \(-0.205295\pi\)
0.799128 + 0.601161i \(0.205295\pi\)
\(182\) −4.07108 −0.301768
\(183\) 19.4512 1.43787
\(184\) −9.92910 −0.731983
\(185\) 0 0
\(186\) −0.666401 −0.0488629
\(187\) 12.6180 0.922722
\(188\) −11.4378 −0.834186
\(189\) 8.75396 0.636757
\(190\) 0 0
\(191\) −19.5939 −1.41777 −0.708884 0.705326i \(-0.750801\pi\)
−0.708884 + 0.705326i \(0.750801\pi\)
\(192\) −6.95280 −0.501775
\(193\) 0.483357 0.0347928 0.0173964 0.999849i \(-0.494462\pi\)
0.0173964 + 0.999849i \(0.494462\pi\)
\(194\) −3.06265 −0.219886
\(195\) 0 0
\(196\) 4.95031 0.353594
\(197\) −1.26189 −0.0899060 −0.0449530 0.998989i \(-0.514314\pi\)
−0.0449530 + 0.998989i \(0.514314\pi\)
\(198\) 0.859283 0.0610666
\(199\) 20.6554 1.46423 0.732113 0.681183i \(-0.238534\pi\)
0.732113 + 0.681183i \(0.238534\pi\)
\(200\) 0 0
\(201\) 3.33190 0.235014
\(202\) −5.48125 −0.385660
\(203\) −11.3440 −0.796190
\(204\) 19.2528 1.34797
\(205\) 0 0
\(206\) 5.80578 0.404508
\(207\) −4.82405 −0.335295
\(208\) −12.4373 −0.862371
\(209\) 0 0
\(210\) 0 0
\(211\) 7.01196 0.482723 0.241361 0.970435i \(-0.422406\pi\)
0.241361 + 0.970435i \(0.422406\pi\)
\(212\) 6.92305 0.475477
\(213\) 19.2927 1.32191
\(214\) −6.81831 −0.466090
\(215\) 0 0
\(216\) −7.25003 −0.493302
\(217\) −1.56173 −0.106017
\(218\) 8.61871 0.583733
\(219\) 19.9924 1.35096
\(220\) 0 0
\(221\) 24.0548 1.61810
\(222\) 5.47445 0.367421
\(223\) −19.4374 −1.30162 −0.650812 0.759239i \(-0.725571\pi\)
−0.650812 + 0.759239i \(0.725571\pi\)
\(224\) 9.65449 0.645068
\(225\) 0 0
\(226\) −0.858959 −0.0571371
\(227\) −6.53998 −0.434074 −0.217037 0.976163i \(-0.569639\pi\)
−0.217037 + 0.976163i \(0.569639\pi\)
\(228\) 0 0
\(229\) −20.4005 −1.34810 −0.674052 0.738684i \(-0.735448\pi\)
−0.674052 + 0.738684i \(0.735448\pi\)
\(230\) 0 0
\(231\) 9.29923 0.611844
\(232\) 9.39507 0.616816
\(233\) −12.0490 −0.789357 −0.394679 0.918819i \(-0.629144\pi\)
−0.394679 + 0.918819i \(0.629144\pi\)
\(234\) 1.63812 0.107088
\(235\) 0 0
\(236\) −4.58548 −0.298489
\(237\) 4.71965 0.306574
\(238\) −5.06729 −0.328464
\(239\) −6.12499 −0.396193 −0.198096 0.980183i \(-0.563476\pi\)
−0.198096 + 0.980183i \(0.563476\pi\)
\(240\) 0 0
\(241\) −7.27309 −0.468501 −0.234250 0.972176i \(-0.575264\pi\)
−0.234250 + 0.972176i \(0.575264\pi\)
\(242\) 2.55352 0.164147
\(243\) −8.39040 −0.538244
\(244\) −17.8729 −1.14420
\(245\) 0 0
\(246\) 5.74945 0.366572
\(247\) 0 0
\(248\) 1.29343 0.0821328
\(249\) −13.8202 −0.875822
\(250\) 0 0
\(251\) −24.1866 −1.52664 −0.763321 0.646019i \(-0.776433\pi\)
−0.763321 + 0.646019i \(0.776433\pi\)
\(252\) 3.07263 0.193558
\(253\) 13.4152 0.843407
\(254\) 9.54285 0.598771
\(255\) 0 0
\(256\) 2.17817 0.136136
\(257\) −12.2379 −0.763382 −0.381691 0.924290i \(-0.624658\pi\)
−0.381691 + 0.924290i \(0.624658\pi\)
\(258\) −2.78473 −0.173370
\(259\) 12.8296 0.797191
\(260\) 0 0
\(261\) 4.56459 0.282541
\(262\) 0.751673 0.0464385
\(263\) 12.3859 0.763746 0.381873 0.924215i \(-0.375279\pi\)
0.381873 + 0.924215i \(0.375279\pi\)
\(264\) −7.70162 −0.474002
\(265\) 0 0
\(266\) 0 0
\(267\) −4.56828 −0.279574
\(268\) −3.06155 −0.187014
\(269\) −4.93880 −0.301124 −0.150562 0.988601i \(-0.548108\pi\)
−0.150562 + 0.988601i \(0.548108\pi\)
\(270\) 0 0
\(271\) −6.90194 −0.419263 −0.209631 0.977780i \(-0.567226\pi\)
−0.209631 + 0.977780i \(0.567226\pi\)
\(272\) −15.4808 −0.938658
\(273\) 17.7279 1.07294
\(274\) −7.76876 −0.469328
\(275\) 0 0
\(276\) 20.4692 1.23210
\(277\) 3.96325 0.238129 0.119064 0.992887i \(-0.462011\pi\)
0.119064 + 0.992887i \(0.462011\pi\)
\(278\) −5.53921 −0.332220
\(279\) 0.628412 0.0376221
\(280\) 0 0
\(281\) 31.1993 1.86119 0.930597 0.366045i \(-0.119289\pi\)
0.930597 + 0.366045i \(0.119289\pi\)
\(282\) −5.59370 −0.333100
\(283\) −10.6270 −0.631711 −0.315855 0.948807i \(-0.602291\pi\)
−0.315855 + 0.948807i \(0.602291\pi\)
\(284\) −17.7273 −1.05192
\(285\) 0 0
\(286\) −4.55546 −0.269370
\(287\) 13.4741 0.795348
\(288\) −3.88478 −0.228913
\(289\) 12.9412 0.761246
\(290\) 0 0
\(291\) 13.3366 0.781807
\(292\) −18.3703 −1.07504
\(293\) 19.6263 1.14658 0.573289 0.819353i \(-0.305667\pi\)
0.573289 + 0.819353i \(0.305667\pi\)
\(294\) 2.42097 0.141194
\(295\) 0 0
\(296\) −10.6255 −0.617592
\(297\) 9.79553 0.568394
\(298\) −1.95882 −0.113472
\(299\) 25.5746 1.47902
\(300\) 0 0
\(301\) −6.52611 −0.376159
\(302\) −1.99804 −0.114974
\(303\) 23.8687 1.37122
\(304\) 0 0
\(305\) 0 0
\(306\) 2.03898 0.116561
\(307\) 22.6258 1.29132 0.645662 0.763623i \(-0.276581\pi\)
0.645662 + 0.763623i \(0.276581\pi\)
\(308\) −8.54469 −0.486879
\(309\) −25.2818 −1.43823
\(310\) 0 0
\(311\) 24.8577 1.40955 0.704776 0.709430i \(-0.251047\pi\)
0.704776 + 0.709430i \(0.251047\pi\)
\(312\) −14.6823 −0.831219
\(313\) 22.2026 1.25497 0.627484 0.778630i \(-0.284085\pi\)
0.627484 + 0.778630i \(0.284085\pi\)
\(314\) −8.91701 −0.503216
\(315\) 0 0
\(316\) −4.33670 −0.243959
\(317\) 2.03957 0.114554 0.0572769 0.998358i \(-0.481758\pi\)
0.0572769 + 0.998358i \(0.481758\pi\)
\(318\) 3.38575 0.189863
\(319\) −12.6937 −0.710710
\(320\) 0 0
\(321\) 29.6910 1.65719
\(322\) −5.38743 −0.300230
\(323\) 0 0
\(324\) 19.4192 1.07884
\(325\) 0 0
\(326\) 0.575594 0.0318792
\(327\) −37.5310 −2.07547
\(328\) −11.1592 −0.616164
\(329\) −13.1090 −0.722725
\(330\) 0 0
\(331\) 33.6525 1.84971 0.924855 0.380321i \(-0.124186\pi\)
0.924855 + 0.380321i \(0.124186\pi\)
\(332\) 12.6989 0.696941
\(333\) −5.16237 −0.282896
\(334\) 3.61111 0.197591
\(335\) 0 0
\(336\) −11.4090 −0.622411
\(337\) −2.58877 −0.141019 −0.0705096 0.997511i \(-0.522463\pi\)
−0.0705096 + 0.997511i \(0.522463\pi\)
\(338\) −2.84262 −0.154618
\(339\) 3.74042 0.203152
\(340\) 0 0
\(341\) −1.74755 −0.0946353
\(342\) 0 0
\(343\) 20.0992 1.08525
\(344\) 5.40493 0.291414
\(345\) 0 0
\(346\) −1.19493 −0.0642397
\(347\) −23.8033 −1.27783 −0.638913 0.769279i \(-0.720616\pi\)
−0.638913 + 0.769279i \(0.720616\pi\)
\(348\) −19.3683 −1.03825
\(349\) −2.48241 −0.132880 −0.0664402 0.997790i \(-0.521164\pi\)
−0.0664402 + 0.997790i \(0.521164\pi\)
\(350\) 0 0
\(351\) 18.6741 0.996747
\(352\) 10.8032 0.575813
\(353\) −35.7434 −1.90243 −0.951216 0.308527i \(-0.900164\pi\)
−0.951216 + 0.308527i \(0.900164\pi\)
\(354\) −2.24255 −0.119190
\(355\) 0 0
\(356\) 4.19761 0.222473
\(357\) 22.0660 1.16786
\(358\) −3.64082 −0.192424
\(359\) −5.76436 −0.304231 −0.152116 0.988363i \(-0.548609\pi\)
−0.152116 + 0.988363i \(0.548609\pi\)
\(360\) 0 0
\(361\) 0 0
\(362\) −9.66258 −0.507854
\(363\) −11.1196 −0.583626
\(364\) −16.2895 −0.853801
\(365\) 0 0
\(366\) −8.74084 −0.456891
\(367\) 5.95729 0.310968 0.155484 0.987838i \(-0.450306\pi\)
0.155484 + 0.987838i \(0.450306\pi\)
\(368\) −16.4588 −0.857974
\(369\) −5.42170 −0.282243
\(370\) 0 0
\(371\) 7.93462 0.411945
\(372\) −2.66645 −0.138249
\(373\) 4.46841 0.231365 0.115683 0.993286i \(-0.463094\pi\)
0.115683 + 0.993286i \(0.463094\pi\)
\(374\) −5.67021 −0.293199
\(375\) 0 0
\(376\) 10.8569 0.559902
\(377\) −24.1991 −1.24631
\(378\) −3.93380 −0.202333
\(379\) 13.3179 0.684095 0.342047 0.939683i \(-0.388880\pi\)
0.342047 + 0.939683i \(0.388880\pi\)
\(380\) 0 0
\(381\) −41.5553 −2.12894
\(382\) 8.80499 0.450502
\(383\) −10.1737 −0.519849 −0.259925 0.965629i \(-0.583698\pi\)
−0.259925 + 0.965629i \(0.583698\pi\)
\(384\) 21.4594 1.09509
\(385\) 0 0
\(386\) −0.217208 −0.0110556
\(387\) 2.62598 0.133486
\(388\) −12.2545 −0.622128
\(389\) −11.4104 −0.578530 −0.289265 0.957249i \(-0.593411\pi\)
−0.289265 + 0.957249i \(0.593411\pi\)
\(390\) 0 0
\(391\) 31.8328 1.60985
\(392\) −4.69891 −0.237331
\(393\) −3.27323 −0.165113
\(394\) 0.567060 0.0285681
\(395\) 0 0
\(396\) 3.43822 0.172777
\(397\) −5.14253 −0.258096 −0.129048 0.991638i \(-0.541192\pi\)
−0.129048 + 0.991638i \(0.541192\pi\)
\(398\) −9.28201 −0.465265
\(399\) 0 0
\(400\) 0 0
\(401\) 17.0822 0.853043 0.426522 0.904477i \(-0.359739\pi\)
0.426522 + 0.904477i \(0.359739\pi\)
\(402\) −1.49727 −0.0746768
\(403\) −3.33151 −0.165954
\(404\) −21.9320 −1.09116
\(405\) 0 0
\(406\) 5.09767 0.252993
\(407\) 14.3561 0.711603
\(408\) −18.2751 −0.904751
\(409\) −26.0696 −1.28906 −0.644529 0.764580i \(-0.722947\pi\)
−0.644529 + 0.764580i \(0.722947\pi\)
\(410\) 0 0
\(411\) 33.8298 1.66870
\(412\) 23.2305 1.14448
\(413\) −5.25550 −0.258606
\(414\) 2.16780 0.106542
\(415\) 0 0
\(416\) 20.5951 1.00976
\(417\) 24.1211 1.18121
\(418\) 0 0
\(419\) 5.77281 0.282020 0.141010 0.990008i \(-0.454965\pi\)
0.141010 + 0.990008i \(0.454965\pi\)
\(420\) 0 0
\(421\) 25.3007 1.23308 0.616540 0.787323i \(-0.288534\pi\)
0.616540 + 0.787323i \(0.288534\pi\)
\(422\) −3.15099 −0.153388
\(423\) 5.27483 0.256471
\(424\) −6.57146 −0.319138
\(425\) 0 0
\(426\) −8.66960 −0.420044
\(427\) −20.4845 −0.991314
\(428\) −27.2819 −1.31872
\(429\) 19.8372 0.957750
\(430\) 0 0
\(431\) −18.7629 −0.903777 −0.451888 0.892074i \(-0.649249\pi\)
−0.451888 + 0.892074i \(0.649249\pi\)
\(432\) −12.0179 −0.578211
\(433\) 8.51298 0.409108 0.204554 0.978855i \(-0.434426\pi\)
0.204554 + 0.978855i \(0.434426\pi\)
\(434\) 0.701802 0.0336876
\(435\) 0 0
\(436\) 34.4858 1.65157
\(437\) 0 0
\(438\) −8.98406 −0.429275
\(439\) −2.05530 −0.0980941 −0.0490470 0.998796i \(-0.515618\pi\)
−0.0490470 + 0.998796i \(0.515618\pi\)
\(440\) 0 0
\(441\) −2.28296 −0.108713
\(442\) −10.8096 −0.514160
\(443\) −12.0403 −0.572054 −0.286027 0.958222i \(-0.592335\pi\)
−0.286027 + 0.958222i \(0.592335\pi\)
\(444\) 21.9048 1.03955
\(445\) 0 0
\(446\) 8.73464 0.413597
\(447\) 8.52989 0.403450
\(448\) 7.32215 0.345939
\(449\) 7.49400 0.353664 0.176832 0.984241i \(-0.443415\pi\)
0.176832 + 0.984241i \(0.443415\pi\)
\(450\) 0 0
\(451\) 15.0772 0.709959
\(452\) −3.43693 −0.161659
\(453\) 8.70066 0.408793
\(454\) 2.93889 0.137929
\(455\) 0 0
\(456\) 0 0
\(457\) 14.0052 0.655137 0.327568 0.944827i \(-0.393771\pi\)
0.327568 + 0.944827i \(0.393771\pi\)
\(458\) 9.16745 0.428367
\(459\) 23.2437 1.08492
\(460\) 0 0
\(461\) −17.6751 −0.823210 −0.411605 0.911362i \(-0.635032\pi\)
−0.411605 + 0.911362i \(0.635032\pi\)
\(462\) −4.17882 −0.194416
\(463\) −16.5926 −0.771123 −0.385562 0.922682i \(-0.625992\pi\)
−0.385562 + 0.922682i \(0.625992\pi\)
\(464\) 15.5736 0.722984
\(465\) 0 0
\(466\) 5.41451 0.250822
\(467\) −15.9904 −0.739949 −0.369975 0.929042i \(-0.620634\pi\)
−0.369975 + 0.929042i \(0.620634\pi\)
\(468\) 6.55458 0.302985
\(469\) −3.50890 −0.162026
\(470\) 0 0
\(471\) 38.8300 1.78919
\(472\) 4.35261 0.200345
\(473\) −7.30260 −0.335774
\(474\) −2.12089 −0.0974155
\(475\) 0 0
\(476\) −20.2756 −0.929331
\(477\) −3.19274 −0.146186
\(478\) 2.75241 0.125892
\(479\) 7.39591 0.337928 0.168964 0.985622i \(-0.445958\pi\)
0.168964 + 0.985622i \(0.445958\pi\)
\(480\) 0 0
\(481\) 27.3682 1.24788
\(482\) 3.26833 0.148868
\(483\) 23.4601 1.06747
\(484\) 10.2173 0.464425
\(485\) 0 0
\(486\) 3.77042 0.171030
\(487\) −20.1881 −0.914811 −0.457406 0.889258i \(-0.651221\pi\)
−0.457406 + 0.889258i \(0.651221\pi\)
\(488\) 16.9652 0.767981
\(489\) −2.50648 −0.113347
\(490\) 0 0
\(491\) 9.33307 0.421195 0.210598 0.977573i \(-0.432459\pi\)
0.210598 + 0.977573i \(0.432459\pi\)
\(492\) 23.0051 1.03715
\(493\) −30.1207 −1.35657
\(494\) 0 0
\(495\) 0 0
\(496\) 2.14403 0.0962697
\(497\) −20.3175 −0.911366
\(498\) 6.21044 0.278297
\(499\) −23.9612 −1.07265 −0.536326 0.844011i \(-0.680188\pi\)
−0.536326 + 0.844011i \(0.680188\pi\)
\(500\) 0 0
\(501\) −15.7249 −0.702539
\(502\) 10.8688 0.485098
\(503\) −10.3338 −0.460763 −0.230382 0.973100i \(-0.573997\pi\)
−0.230382 + 0.973100i \(0.573997\pi\)
\(504\) −2.91659 −0.129915
\(505\) 0 0
\(506\) −6.02844 −0.267997
\(507\) 12.3785 0.549747
\(508\) 38.1835 1.69412
\(509\) 27.7116 1.22829 0.614147 0.789192i \(-0.289500\pi\)
0.614147 + 0.789192i \(0.289500\pi\)
\(510\) 0 0
\(511\) −21.0545 −0.931395
\(512\) −22.9115 −1.01256
\(513\) 0 0
\(514\) 5.49940 0.242568
\(515\) 0 0
\(516\) −11.1424 −0.490519
\(517\) −14.6688 −0.645132
\(518\) −5.76527 −0.253311
\(519\) 5.20343 0.228405
\(520\) 0 0
\(521\) −10.5729 −0.463209 −0.231604 0.972810i \(-0.574398\pi\)
−0.231604 + 0.972810i \(0.574398\pi\)
\(522\) −2.05121 −0.0897788
\(523\) 18.1596 0.794065 0.397032 0.917805i \(-0.370040\pi\)
0.397032 + 0.917805i \(0.370040\pi\)
\(524\) 3.00765 0.131390
\(525\) 0 0
\(526\) −5.56588 −0.242684
\(527\) −4.14675 −0.180635
\(528\) −12.7665 −0.555588
\(529\) 10.8439 0.471475
\(530\) 0 0
\(531\) 2.11471 0.0917707
\(532\) 0 0
\(533\) 28.7430 1.24500
\(534\) 2.05286 0.0888360
\(535\) 0 0
\(536\) 2.90607 0.125523
\(537\) 15.8543 0.684165
\(538\) 2.21936 0.0956835
\(539\) 6.34870 0.273458
\(540\) 0 0
\(541\) 6.10507 0.262478 0.131239 0.991351i \(-0.458105\pi\)
0.131239 + 0.991351i \(0.458105\pi\)
\(542\) 3.10155 0.133223
\(543\) 42.0766 1.80568
\(544\) 25.6348 1.09908
\(545\) 0 0
\(546\) −7.96645 −0.340933
\(547\) −10.9019 −0.466132 −0.233066 0.972461i \(-0.574876\pi\)
−0.233066 + 0.972461i \(0.574876\pi\)
\(548\) −31.0849 −1.32788
\(549\) 8.24256 0.351784
\(550\) 0 0
\(551\) 0 0
\(552\) −19.4297 −0.826981
\(553\) −4.97037 −0.211362
\(554\) −1.78098 −0.0756665
\(555\) 0 0
\(556\) −22.1639 −0.939958
\(557\) 12.2157 0.517595 0.258798 0.965932i \(-0.416674\pi\)
0.258798 + 0.965932i \(0.416674\pi\)
\(558\) −0.282392 −0.0119546
\(559\) −13.9216 −0.588820
\(560\) 0 0
\(561\) 24.6915 1.04247
\(562\) −14.0201 −0.591403
\(563\) −18.3200 −0.772095 −0.386048 0.922479i \(-0.626160\pi\)
−0.386048 + 0.922479i \(0.626160\pi\)
\(564\) −22.3819 −0.942448
\(565\) 0 0
\(566\) 4.77550 0.200729
\(567\) 22.2567 0.934693
\(568\) 16.8270 0.706044
\(569\) 32.3240 1.35509 0.677546 0.735480i \(-0.263043\pi\)
0.677546 + 0.735480i \(0.263043\pi\)
\(570\) 0 0
\(571\) −13.2641 −0.555083 −0.277542 0.960714i \(-0.589520\pi\)
−0.277542 + 0.960714i \(0.589520\pi\)
\(572\) −18.2276 −0.762136
\(573\) −38.3422 −1.60177
\(574\) −6.05488 −0.252726
\(575\) 0 0
\(576\) −2.94629 −0.122762
\(577\) 21.7627 0.905993 0.452996 0.891512i \(-0.350355\pi\)
0.452996 + 0.891512i \(0.350355\pi\)
\(578\) −5.81542 −0.241890
\(579\) 0.945853 0.0393083
\(580\) 0 0
\(581\) 14.5544 0.603818
\(582\) −5.99312 −0.248423
\(583\) 8.87870 0.367718
\(584\) 17.4373 0.721561
\(585\) 0 0
\(586\) −8.81952 −0.364331
\(587\) 41.5762 1.71604 0.858018 0.513620i \(-0.171696\pi\)
0.858018 + 0.513620i \(0.171696\pi\)
\(588\) 9.68697 0.399484
\(589\) 0 0
\(590\) 0 0
\(591\) −2.46932 −0.101574
\(592\) −17.6131 −0.723893
\(593\) −8.58712 −0.352631 −0.176315 0.984334i \(-0.556418\pi\)
−0.176315 + 0.984334i \(0.556418\pi\)
\(594\) −4.40185 −0.180610
\(595\) 0 0
\(596\) −7.83778 −0.321048
\(597\) 40.4194 1.65426
\(598\) −11.4925 −0.469964
\(599\) 41.2980 1.68739 0.843696 0.536822i \(-0.180375\pi\)
0.843696 + 0.536822i \(0.180375\pi\)
\(600\) 0 0
\(601\) −1.60121 −0.0653145 −0.0326573 0.999467i \(-0.510397\pi\)
−0.0326573 + 0.999467i \(0.510397\pi\)
\(602\) 2.93266 0.119526
\(603\) 1.41191 0.0574975
\(604\) −7.99470 −0.325300
\(605\) 0 0
\(606\) −10.7259 −0.435711
\(607\) 32.4708 1.31795 0.658975 0.752165i \(-0.270990\pi\)
0.658975 + 0.752165i \(0.270990\pi\)
\(608\) 0 0
\(609\) −22.1983 −0.899521
\(610\) 0 0
\(611\) −27.9643 −1.13132
\(612\) 8.15852 0.329788
\(613\) 13.9352 0.562839 0.281420 0.959585i \(-0.409195\pi\)
0.281420 + 0.959585i \(0.409195\pi\)
\(614\) −10.1674 −0.410325
\(615\) 0 0
\(616\) 8.11075 0.326791
\(617\) −14.4224 −0.580625 −0.290313 0.956932i \(-0.593759\pi\)
−0.290313 + 0.956932i \(0.593759\pi\)
\(618\) 11.3610 0.457005
\(619\) −4.71305 −0.189434 −0.0947168 0.995504i \(-0.530195\pi\)
−0.0947168 + 0.995504i \(0.530195\pi\)
\(620\) 0 0
\(621\) 24.7122 0.991665
\(622\) −11.1704 −0.447892
\(623\) 4.81095 0.192747
\(624\) −24.3378 −0.974291
\(625\) 0 0
\(626\) −9.97728 −0.398772
\(627\) 0 0
\(628\) −35.6794 −1.42376
\(629\) 34.0653 1.35827
\(630\) 0 0
\(631\) 3.31273 0.131878 0.0659388 0.997824i \(-0.478996\pi\)
0.0659388 + 0.997824i \(0.478996\pi\)
\(632\) 4.11646 0.163744
\(633\) 13.7213 0.545372
\(634\) −0.916530 −0.0364000
\(635\) 0 0
\(636\) 13.5473 0.537185
\(637\) 12.1031 0.479541
\(638\) 5.70420 0.225831
\(639\) 8.17539 0.323413
\(640\) 0 0
\(641\) −0.0491989 −0.00194324 −0.000971620 1.00000i \(-0.500309\pi\)
−0.000971620 1.00000i \(0.500309\pi\)
\(642\) −13.3424 −0.526581
\(643\) −12.0003 −0.473246 −0.236623 0.971602i \(-0.576041\pi\)
−0.236623 + 0.971602i \(0.576041\pi\)
\(644\) −21.5566 −0.849448
\(645\) 0 0
\(646\) 0 0
\(647\) 36.3971 1.43092 0.715458 0.698656i \(-0.246218\pi\)
0.715458 + 0.698656i \(0.246218\pi\)
\(648\) −18.4330 −0.724116
\(649\) −5.88081 −0.230842
\(650\) 0 0
\(651\) −3.05607 −0.119777
\(652\) 2.30311 0.0901967
\(653\) 31.7999 1.24443 0.622214 0.782847i \(-0.286233\pi\)
0.622214 + 0.782847i \(0.286233\pi\)
\(654\) 16.8654 0.659491
\(655\) 0 0
\(656\) −18.4979 −0.722220
\(657\) 8.47192 0.330521
\(658\) 5.89085 0.229649
\(659\) 26.8414 1.04559 0.522796 0.852458i \(-0.324889\pi\)
0.522796 + 0.852458i \(0.324889\pi\)
\(660\) 0 0
\(661\) −34.2970 −1.33400 −0.667000 0.745057i \(-0.732422\pi\)
−0.667000 + 0.745057i \(0.732422\pi\)
\(662\) −15.1225 −0.587754
\(663\) 47.0715 1.82810
\(664\) −12.0540 −0.467784
\(665\) 0 0
\(666\) 2.31983 0.0898917
\(667\) −32.0236 −1.23996
\(668\) 14.4490 0.559050
\(669\) −38.0358 −1.47055
\(670\) 0 0
\(671\) −22.9218 −0.884885
\(672\) 18.8923 0.728786
\(673\) −21.7196 −0.837230 −0.418615 0.908164i \(-0.637484\pi\)
−0.418615 + 0.908164i \(0.637484\pi\)
\(674\) 1.16332 0.0448096
\(675\) 0 0
\(676\) −11.3741 −0.437465
\(677\) −8.53064 −0.327859 −0.163930 0.986472i \(-0.552417\pi\)
−0.163930 + 0.986472i \(0.552417\pi\)
\(678\) −1.68085 −0.0645525
\(679\) −14.0451 −0.539001
\(680\) 0 0
\(681\) −12.7977 −0.490409
\(682\) 0.785303 0.0300708
\(683\) 17.3190 0.662695 0.331347 0.943509i \(-0.392497\pi\)
0.331347 + 0.943509i \(0.392497\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −9.03204 −0.344845
\(687\) −39.9206 −1.52306
\(688\) 8.95938 0.341573
\(689\) 16.9262 0.644838
\(690\) 0 0
\(691\) 17.2709 0.657014 0.328507 0.944501i \(-0.393454\pi\)
0.328507 + 0.944501i \(0.393454\pi\)
\(692\) −4.78122 −0.181755
\(693\) 3.94061 0.149691
\(694\) 10.6966 0.406036
\(695\) 0 0
\(696\) 18.3846 0.696868
\(697\) 35.7765 1.35513
\(698\) 1.11553 0.0422234
\(699\) −23.5780 −0.891802
\(700\) 0 0
\(701\) 21.8816 0.826457 0.413228 0.910627i \(-0.364401\pi\)
0.413228 + 0.910627i \(0.364401\pi\)
\(702\) −8.39162 −0.316721
\(703\) 0 0
\(704\) 8.19336 0.308799
\(705\) 0 0
\(706\) 16.0621 0.604507
\(707\) −25.1366 −0.945360
\(708\) −8.97305 −0.337228
\(709\) 20.5621 0.772224 0.386112 0.922452i \(-0.373818\pi\)
0.386112 + 0.922452i \(0.373818\pi\)
\(710\) 0 0
\(711\) 1.99998 0.0750052
\(712\) −3.98443 −0.149323
\(713\) −4.40873 −0.165108
\(714\) −9.91588 −0.371092
\(715\) 0 0
\(716\) −14.5679 −0.544429
\(717\) −11.9856 −0.447612
\(718\) 2.59035 0.0966709
\(719\) 15.6722 0.584473 0.292237 0.956346i \(-0.405600\pi\)
0.292237 + 0.956346i \(0.405600\pi\)
\(720\) 0 0
\(721\) 26.6249 0.991561
\(722\) 0 0
\(723\) −14.2323 −0.529304
\(724\) −38.6626 −1.43688
\(725\) 0 0
\(726\) 4.99684 0.185450
\(727\) −43.5233 −1.61419 −0.807095 0.590421i \(-0.798962\pi\)
−0.807095 + 0.590421i \(0.798962\pi\)
\(728\) 15.4622 0.573068
\(729\) 15.9815 0.591907
\(730\) 0 0
\(731\) −17.3282 −0.640908
\(732\) −34.9745 −1.29269
\(733\) −12.6904 −0.468729 −0.234364 0.972149i \(-0.575301\pi\)
−0.234364 + 0.972149i \(0.575301\pi\)
\(734\) −2.67705 −0.0988116
\(735\) 0 0
\(736\) 27.2543 1.00461
\(737\) −3.92639 −0.144630
\(738\) 2.43637 0.0896839
\(739\) 28.1664 1.03612 0.518059 0.855345i \(-0.326655\pi\)
0.518059 + 0.855345i \(0.326655\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −3.56561 −0.130898
\(743\) −25.5639 −0.937849 −0.468924 0.883238i \(-0.655358\pi\)
−0.468924 + 0.883238i \(0.655358\pi\)
\(744\) 2.53103 0.0927922
\(745\) 0 0
\(746\) −2.00798 −0.0735175
\(747\) −5.85641 −0.214275
\(748\) −22.6880 −0.829557
\(749\) −31.2683 −1.14252
\(750\) 0 0
\(751\) 34.6687 1.26508 0.632539 0.774529i \(-0.282013\pi\)
0.632539 + 0.774529i \(0.282013\pi\)
\(752\) 17.9968 0.656274
\(753\) −47.3293 −1.72477
\(754\) 10.8744 0.396023
\(755\) 0 0
\(756\) −15.7402 −0.572465
\(757\) −45.7467 −1.66269 −0.831346 0.555755i \(-0.812429\pi\)
−0.831346 + 0.555755i \(0.812429\pi\)
\(758\) −5.98471 −0.217374
\(759\) 26.2514 0.952867
\(760\) 0 0
\(761\) 2.85442 0.103472 0.0517362 0.998661i \(-0.483524\pi\)
0.0517362 + 0.998661i \(0.483524\pi\)
\(762\) 18.6738 0.676481
\(763\) 39.5248 1.43089
\(764\) 35.2311 1.27462
\(765\) 0 0
\(766\) 4.57177 0.165185
\(767\) −11.2111 −0.404809
\(768\) 4.26233 0.153804
\(769\) 19.5208 0.703937 0.351969 0.936012i \(-0.385512\pi\)
0.351969 + 0.936012i \(0.385512\pi\)
\(770\) 0 0
\(771\) −23.9477 −0.862455
\(772\) −0.869107 −0.0312798
\(773\) −7.24881 −0.260722 −0.130361 0.991467i \(-0.541614\pi\)
−0.130361 + 0.991467i \(0.541614\pi\)
\(774\) −1.18005 −0.0424159
\(775\) 0 0
\(776\) 11.6322 0.417570
\(777\) 25.1054 0.900652
\(778\) 5.12753 0.183831
\(779\) 0 0
\(780\) 0 0
\(781\) −22.7349 −0.813520
\(782\) −14.3048 −0.511539
\(783\) −23.3830 −0.835641
\(784\) −7.78906 −0.278181
\(785\) 0 0
\(786\) 1.47090 0.0524654
\(787\) −4.20711 −0.149967 −0.0749837 0.997185i \(-0.523890\pi\)
−0.0749837 + 0.997185i \(0.523890\pi\)
\(788\) 2.26896 0.0808283
\(789\) 24.2372 0.862867
\(790\) 0 0
\(791\) −3.93912 −0.140059
\(792\) −3.26361 −0.115967
\(793\) −43.6977 −1.55175
\(794\) 2.31091 0.0820113
\(795\) 0 0
\(796\) −37.1398 −1.31639
\(797\) −25.6411 −0.908253 −0.454127 0.890937i \(-0.650049\pi\)
−0.454127 + 0.890937i \(0.650049\pi\)
\(798\) 0 0
\(799\) −34.8074 −1.23140
\(800\) 0 0
\(801\) −1.93584 −0.0683994
\(802\) −7.67627 −0.271059
\(803\) −23.5596 −0.831399
\(804\) −5.99096 −0.211285
\(805\) 0 0
\(806\) 1.49709 0.0527328
\(807\) −9.66444 −0.340204
\(808\) 20.8181 0.732380
\(809\) −0.516056 −0.0181436 −0.00907179 0.999959i \(-0.502888\pi\)
−0.00907179 + 0.999959i \(0.502888\pi\)
\(810\) 0 0
\(811\) −24.0377 −0.844078 −0.422039 0.906578i \(-0.638685\pi\)
−0.422039 + 0.906578i \(0.638685\pi\)
\(812\) 20.3972 0.715800
\(813\) −13.5060 −0.473676
\(814\) −6.45123 −0.226115
\(815\) 0 0
\(816\) −30.2934 −1.06048
\(817\) 0 0
\(818\) 11.7150 0.409605
\(819\) 7.51232 0.262502
\(820\) 0 0
\(821\) 38.7573 1.35264 0.676320 0.736608i \(-0.263574\pi\)
0.676320 + 0.736608i \(0.263574\pi\)
\(822\) −15.2022 −0.530238
\(823\) 3.48827 0.121593 0.0607967 0.998150i \(-0.480636\pi\)
0.0607967 + 0.998150i \(0.480636\pi\)
\(824\) −22.0507 −0.768173
\(825\) 0 0
\(826\) 2.36168 0.0821734
\(827\) −27.4821 −0.955645 −0.477823 0.878456i \(-0.658574\pi\)
−0.477823 + 0.878456i \(0.658574\pi\)
\(828\) 8.67395 0.301441
\(829\) −8.60945 −0.299019 −0.149509 0.988760i \(-0.547769\pi\)
−0.149509 + 0.988760i \(0.547769\pi\)
\(830\) 0 0
\(831\) 7.75545 0.269034
\(832\) 15.6197 0.541516
\(833\) 15.0648 0.521963
\(834\) −10.8394 −0.375336
\(835\) 0 0
\(836\) 0 0
\(837\) −3.21917 −0.111271
\(838\) −2.59415 −0.0896133
\(839\) 11.9397 0.412206 0.206103 0.978530i \(-0.433922\pi\)
0.206103 + 0.978530i \(0.433922\pi\)
\(840\) 0 0
\(841\) 1.30126 0.0448710
\(842\) −11.3695 −0.391817
\(843\) 61.0520 2.10274
\(844\) −12.6079 −0.433983
\(845\) 0 0
\(846\) −2.37037 −0.0814949
\(847\) 11.7103 0.402370
\(848\) −10.8931 −0.374069
\(849\) −20.7954 −0.713695
\(850\) 0 0
\(851\) 36.2175 1.24152
\(852\) −34.6894 −1.18844
\(853\) 28.9175 0.990117 0.495059 0.868860i \(-0.335147\pi\)
0.495059 + 0.868860i \(0.335147\pi\)
\(854\) 9.20518 0.314995
\(855\) 0 0
\(856\) 25.8964 0.885121
\(857\) −55.2147 −1.88610 −0.943050 0.332651i \(-0.892057\pi\)
−0.943050 + 0.332651i \(0.892057\pi\)
\(858\) −8.91431 −0.304330
\(859\) −26.6572 −0.909532 −0.454766 0.890611i \(-0.650277\pi\)
−0.454766 + 0.890611i \(0.650277\pi\)
\(860\) 0 0
\(861\) 26.3666 0.898570
\(862\) 8.43154 0.287180
\(863\) −1.21123 −0.0412307 −0.0206154 0.999787i \(-0.506563\pi\)
−0.0206154 + 0.999787i \(0.506563\pi\)
\(864\) 19.9006 0.677031
\(865\) 0 0
\(866\) −3.82551 −0.129996
\(867\) 25.3238 0.860042
\(868\) 2.80810 0.0953131
\(869\) −5.56176 −0.188670
\(870\) 0 0
\(871\) −7.48522 −0.253627
\(872\) −32.7344 −1.10853
\(873\) 5.65148 0.191274
\(874\) 0 0
\(875\) 0 0
\(876\) −35.9476 −1.21456
\(877\) 49.5420 1.67291 0.836457 0.548032i \(-0.184623\pi\)
0.836457 + 0.548032i \(0.184623\pi\)
\(878\) 0.923597 0.0311699
\(879\) 38.4055 1.29538
\(880\) 0 0
\(881\) −30.5639 −1.02972 −0.514861 0.857273i \(-0.672157\pi\)
−0.514861 + 0.857273i \(0.672157\pi\)
\(882\) 1.02590 0.0345440
\(883\) 5.57841 0.187729 0.0938643 0.995585i \(-0.470078\pi\)
0.0938643 + 0.995585i \(0.470078\pi\)
\(884\) −43.2521 −1.45473
\(885\) 0 0
\(886\) 5.41061 0.181773
\(887\) −0.666360 −0.0223742 −0.0111871 0.999937i \(-0.503561\pi\)
−0.0111871 + 0.999937i \(0.503561\pi\)
\(888\) −20.7923 −0.697744
\(889\) 43.7628 1.46776
\(890\) 0 0
\(891\) 24.9048 0.834343
\(892\) 34.9497 1.17020
\(893\) 0 0
\(894\) −3.83310 −0.128198
\(895\) 0 0
\(896\) −22.5994 −0.754992
\(897\) 50.0454 1.67097
\(898\) −3.36760 −0.112378
\(899\) 4.17161 0.139131
\(900\) 0 0
\(901\) 21.0682 0.701882
\(902\) −6.77530 −0.225593
\(903\) −12.7706 −0.424978
\(904\) 3.26238 0.108505
\(905\) 0 0
\(906\) −3.90984 −0.129896
\(907\) 52.7812 1.75257 0.876286 0.481792i \(-0.160014\pi\)
0.876286 + 0.481792i \(0.160014\pi\)
\(908\) 11.7593 0.390246
\(909\) 10.1145 0.335477
\(910\) 0 0
\(911\) −13.0586 −0.432650 −0.216325 0.976321i \(-0.569407\pi\)
−0.216325 + 0.976321i \(0.569407\pi\)
\(912\) 0 0
\(913\) 16.2861 0.538992
\(914\) −6.29357 −0.208173
\(915\) 0 0
\(916\) 36.6814 1.21199
\(917\) 3.44712 0.113834
\(918\) −10.4451 −0.344739
\(919\) −46.0539 −1.51918 −0.759589 0.650403i \(-0.774600\pi\)
−0.759589 + 0.650403i \(0.774600\pi\)
\(920\) 0 0
\(921\) 44.2751 1.45892
\(922\) 7.94271 0.261579
\(923\) −43.3416 −1.42661
\(924\) −16.7206 −0.550067
\(925\) 0 0
\(926\) 7.45627 0.245028
\(927\) −10.7133 −0.351872
\(928\) −25.7885 −0.846548
\(929\) 30.9736 1.01621 0.508105 0.861295i \(-0.330346\pi\)
0.508105 + 0.861295i \(0.330346\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 21.6649 0.709657
\(933\) 48.6426 1.59249
\(934\) 7.18568 0.235123
\(935\) 0 0
\(936\) −6.22170 −0.203363
\(937\) −34.8133 −1.13730 −0.568650 0.822580i \(-0.692534\pi\)
−0.568650 + 0.822580i \(0.692534\pi\)
\(938\) 1.57680 0.0514845
\(939\) 43.4470 1.41784
\(940\) 0 0
\(941\) −16.2153 −0.528604 −0.264302 0.964440i \(-0.585142\pi\)
−0.264302 + 0.964440i \(0.585142\pi\)
\(942\) −17.4492 −0.568525
\(943\) 38.0368 1.23865
\(944\) 7.21502 0.234829
\(945\) 0 0
\(946\) 3.28159 0.106694
\(947\) 14.6403 0.475746 0.237873 0.971296i \(-0.423550\pi\)
0.237873 + 0.971296i \(0.423550\pi\)
\(948\) −8.48624 −0.275620
\(949\) −44.9136 −1.45796
\(950\) 0 0
\(951\) 3.99112 0.129421
\(952\) 19.2459 0.623763
\(953\) 40.8271 1.32252 0.661260 0.750156i \(-0.270022\pi\)
0.661260 + 0.750156i \(0.270022\pi\)
\(954\) 1.43473 0.0464512
\(955\) 0 0
\(956\) 11.0131 0.356190
\(957\) −24.8395 −0.802947
\(958\) −3.32352 −0.107378
\(959\) −35.6269 −1.15045
\(960\) 0 0
\(961\) −30.4257 −0.981474
\(962\) −12.2985 −0.396520
\(963\) 12.5818 0.405442
\(964\) 13.0775 0.421197
\(965\) 0 0
\(966\) −10.5423 −0.339194
\(967\) −24.1608 −0.776958 −0.388479 0.921458i \(-0.626999\pi\)
−0.388479 + 0.921458i \(0.626999\pi\)
\(968\) −9.69845 −0.311720
\(969\) 0 0
\(970\) 0 0
\(971\) 27.7592 0.890836 0.445418 0.895323i \(-0.353055\pi\)
0.445418 + 0.895323i \(0.353055\pi\)
\(972\) 15.0865 0.483899
\(973\) −25.4024 −0.814364
\(974\) 9.07201 0.290686
\(975\) 0 0
\(976\) 28.1221 0.900168
\(977\) −3.56499 −0.114054 −0.0570270 0.998373i \(-0.518162\pi\)
−0.0570270 + 0.998373i \(0.518162\pi\)
\(978\) 1.12635 0.0360166
\(979\) 5.38337 0.172053
\(980\) 0 0
\(981\) −15.9040 −0.507776
\(982\) −4.19403 −0.133837
\(983\) 1.63550 0.0521643 0.0260822 0.999660i \(-0.491697\pi\)
0.0260822 + 0.999660i \(0.491697\pi\)
\(984\) −21.8368 −0.696131
\(985\) 0 0
\(986\) 13.5354 0.431056
\(987\) −25.6523 −0.816521
\(988\) 0 0
\(989\) −18.4230 −0.585818
\(990\) 0 0
\(991\) 1.50405 0.0477778 0.0238889 0.999715i \(-0.492395\pi\)
0.0238889 + 0.999715i \(0.492395\pi\)
\(992\) −3.55033 −0.112723
\(993\) 65.8526 2.08977
\(994\) 9.13015 0.289591
\(995\) 0 0
\(996\) 24.8497 0.787392
\(997\) 51.4138 1.62829 0.814146 0.580660i \(-0.197205\pi\)
0.814146 + 0.580660i \(0.197205\pi\)
\(998\) 10.7675 0.340841
\(999\) 26.4453 0.836692
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9025.2.a.cu.1.10 24
5.2 odd 4 1805.2.b.k.1084.10 24
5.3 odd 4 1805.2.b.k.1084.15 24
5.4 even 2 inner 9025.2.a.cu.1.15 24
19.4 even 9 475.2.l.f.301.4 48
19.5 even 9 475.2.l.f.101.4 48
19.18 odd 2 9025.2.a.ct.1.15 24
95.4 even 18 475.2.l.f.301.5 48
95.18 even 4 1805.2.b.l.1084.10 24
95.23 odd 36 95.2.p.a.54.4 yes 48
95.24 even 18 475.2.l.f.101.5 48
95.37 even 4 1805.2.b.l.1084.15 24
95.42 odd 36 95.2.p.a.54.5 yes 48
95.43 odd 36 95.2.p.a.44.5 yes 48
95.62 odd 36 95.2.p.a.44.4 48
95.94 odd 2 9025.2.a.ct.1.10 24
285.23 even 36 855.2.da.b.244.5 48
285.62 even 36 855.2.da.b.424.5 48
285.137 even 36 855.2.da.b.244.4 48
285.233 even 36 855.2.da.b.424.4 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
95.2.p.a.44.4 48 95.62 odd 36
95.2.p.a.44.5 yes 48 95.43 odd 36
95.2.p.a.54.4 yes 48 95.23 odd 36
95.2.p.a.54.5 yes 48 95.42 odd 36
475.2.l.f.101.4 48 19.5 even 9
475.2.l.f.101.5 48 95.24 even 18
475.2.l.f.301.4 48 19.4 even 9
475.2.l.f.301.5 48 95.4 even 18
855.2.da.b.244.4 48 285.137 even 36
855.2.da.b.244.5 48 285.23 even 36
855.2.da.b.424.4 48 285.233 even 36
855.2.da.b.424.5 48 285.62 even 36
1805.2.b.k.1084.10 24 5.2 odd 4
1805.2.b.k.1084.15 24 5.3 odd 4
1805.2.b.l.1084.10 24 95.18 even 4
1805.2.b.l.1084.15 24 95.37 even 4
9025.2.a.ct.1.10 24 95.94 odd 2
9025.2.a.ct.1.15 24 19.18 odd 2
9025.2.a.cu.1.10 24 1.1 even 1 trivial
9025.2.a.cu.1.15 24 5.4 even 2 inner