Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1805,2,Mod(1084,1805)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1805, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1805.1084");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 1805 = 5 \cdot 19^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1805.b (of order \(2\), degree \(1\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(14.4129975648\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Twist minimal: | no (minimal twist has level 95) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1084.1 | − | 2.68669i | − | 2.14658i | −5.21828 | −1.71227 | + | 1.43810i | −5.76720 | 2.78303i | 8.64651i | −1.60782 | 3.86371 | + | 4.60034i | ||||||||||||
1084.2 | − | 2.37097i | − | 2.28512i | −3.62149 | 1.17411 | − | 1.90301i | −5.41794 | − | 1.63677i | 3.84450i | −2.22176 | −4.51198 | − | 2.78378i | |||||||||||
1084.3 | − | 2.32462i | 1.14858i | −3.40387 | −2.01201 | + | 0.975617i | 2.67001 | − | 0.143302i | 3.26348i | 1.68077 | 2.26794 | + | 4.67716i | ||||||||||||
1084.4 | − | 1.96177i | 0.187708i | −1.84854 | 1.81111 | + | 1.31144i | 0.368240 | 0.677067i | − | 0.297123i | 2.96477 | 2.57274 | − | 3.55299i | ||||||||||||
1084.5 | − | 1.78468i | 2.38377i | −1.18508 | −1.16534 | − | 1.90840i | 4.25426 | 4.23911i | − | 1.45438i | −2.68235 | −3.40588 | + | 2.07976i | ||||||||||||
1084.6 | − | 1.61907i | 1.18857i | −0.621387 | 0.326390 | + | 2.21212i | 1.92438 | − | 2.23190i | − | 2.23207i | 1.58730 | 3.58157 | − | 0.528448i | |||||||||||
1084.7 | − | 1.47917i | − | 2.48321i | −0.187941 | 0.111989 | − | 2.23326i | −3.67308 | 3.24988i | − | 2.68034i | −3.16631 | −3.30337 | − | 0.165651i | |||||||||||
1084.8 | − | 1.22159i | 0.804421i | 0.507728 | −2.23387 | + | 0.0991400i | 0.982669 | − | 3.79180i | − | 3.06341i | 2.35291 | 0.121108 | + | 2.72886i | |||||||||||
1084.9 | − | 1.04740i | − | 0.531453i | 0.902948 | 1.65192 | + | 1.50704i | −0.556645 | 2.74033i | − | 3.04056i | 2.71756 | 1.57847 | − | 1.73023i | |||||||||||
1084.10 | − | 0.449373i | − | 1.95684i | 1.79806 | 1.87757 | + | 1.21438i | −0.879352 | 2.06079i | − | 1.70675i | −0.829224 | 0.545709 | − | 0.843732i | |||||||||||
1084.11 | − | 0.249751i | − | 2.30156i | 1.93762 | −2.08007 | + | 0.820550i | −0.574816 | − | 3.96043i | − | 0.983424i | −2.29718 | 0.204933 | + | 0.519499i | ||||||||||
1084.12 | − | 0.244477i | 2.73837i | 1.94023 | 0.750459 | − | 2.10637i | 0.669469 | 1.94027i | − | 0.963297i | −4.49866 | −0.514961 | − | 0.183470i | ||||||||||||
1084.13 | 0.244477i | − | 2.73837i | 1.94023 | 0.750459 | + | 2.10637i | 0.669469 | − | 1.94027i | 0.963297i | −4.49866 | −0.514961 | + | 0.183470i | ||||||||||||
1084.14 | 0.249751i | 2.30156i | 1.93762 | −2.08007 | − | 0.820550i | −0.574816 | 3.96043i | 0.983424i | −2.29718 | 0.204933 | − | 0.519499i | ||||||||||||||
1084.15 | 0.449373i | 1.95684i | 1.79806 | 1.87757 | − | 1.21438i | −0.879352 | − | 2.06079i | 1.70675i | −0.829224 | 0.545709 | + | 0.843732i | |||||||||||||
1084.16 | 1.04740i | 0.531453i | 0.902948 | 1.65192 | − | 1.50704i | −0.556645 | − | 2.74033i | 3.04056i | 2.71756 | 1.57847 | + | 1.73023i | |||||||||||||
1084.17 | 1.22159i | − | 0.804421i | 0.507728 | −2.23387 | − | 0.0991400i | 0.982669 | 3.79180i | 3.06341i | 2.35291 | 0.121108 | − | 2.72886i | |||||||||||||
1084.18 | 1.47917i | 2.48321i | −0.187941 | 0.111989 | + | 2.23326i | −3.67308 | − | 3.24988i | 2.68034i | −3.16631 | −3.30337 | + | 0.165651i | |||||||||||||
1084.19 | 1.61907i | − | 1.18857i | −0.621387 | 0.326390 | − | 2.21212i | 1.92438 | 2.23190i | 2.23207i | 1.58730 | 3.58157 | + | 0.528448i | |||||||||||||
1084.20 | 1.78468i | − | 2.38377i | −1.18508 | −1.16534 | + | 1.90840i | 4.25426 | − | 4.23911i | 1.45438i | −2.68235 | −3.40588 | − | 2.07976i | ||||||||||||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1805.2.b.l | 24 | |
5.b | even | 2 | 1 | inner | 1805.2.b.l | 24 | |
5.c | odd | 4 | 2 | 9025.2.a.ct | 24 | ||
19.b | odd | 2 | 1 | 1805.2.b.k | 24 | ||
19.f | odd | 18 | 2 | 95.2.p.a | ✓ | 48 | |
57.j | even | 18 | 2 | 855.2.da.b | 48 | ||
95.d | odd | 2 | 1 | 1805.2.b.k | 24 | ||
95.g | even | 4 | 2 | 9025.2.a.cu | 24 | ||
95.o | odd | 18 | 2 | 95.2.p.a | ✓ | 48 | |
95.r | even | 36 | 4 | 475.2.l.f | 48 | ||
285.bf | even | 18 | 2 | 855.2.da.b | 48 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
95.2.p.a | ✓ | 48 | 19.f | odd | 18 | 2 | |
95.2.p.a | ✓ | 48 | 95.o | odd | 18 | 2 | |
475.2.l.f | 48 | 95.r | even | 36 | 4 | ||
855.2.da.b | 48 | 57.j | even | 18 | 2 | ||
855.2.da.b | 48 | 285.bf | even | 18 | 2 | ||
1805.2.b.k | 24 | 19.b | odd | 2 | 1 | ||
1805.2.b.k | 24 | 95.d | odd | 2 | 1 | ||
1805.2.b.l | 24 | 1.a | even | 1 | 1 | trivial | |
1805.2.b.l | 24 | 5.b | even | 2 | 1 | inner | |
9025.2.a.ct | 24 | 5.c | odd | 4 | 2 | ||
9025.2.a.cu | 24 | 95.g | even | 4 | 2 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1805, [\chi])\):
\( T_{2}^{24} + 33 T_{2}^{22} + 468 T_{2}^{20} + 3743 T_{2}^{18} + 18618 T_{2}^{16} + 59871 T_{2}^{14} + \cdots + 19 \) |
\( T_{29}^{12} - 18 T_{29}^{11} + 45 T_{29}^{10} + 756 T_{29}^{9} - 3600 T_{29}^{8} - 9369 T_{29}^{7} + \cdots - 263169 \) |