L(s) = 1 | + (−0.309 + 0.951i)3-s + (−0.309 − 0.951i)4-s + (−0.809 + 0.587i)5-s + (−0.809 − 0.587i)9-s + 0.999·12-s + (−0.309 − 0.951i)15-s + (−0.809 + 0.587i)16-s + (0.809 + 0.587i)20-s − 2·23-s + (0.309 − 0.951i)25-s + (0.809 − 0.587i)27-s + (−1.61 − 1.17i)31-s + (−0.309 + 0.951i)36-s + 0.999·45-s + (0.618 − 1.90i)47-s + (−0.309 − 0.951i)48-s + ⋯ |
L(s) = 1 | + (−0.309 + 0.951i)3-s + (−0.309 − 0.951i)4-s + (−0.809 + 0.587i)5-s + (−0.809 − 0.587i)9-s + 0.999·12-s + (−0.309 − 0.951i)15-s + (−0.809 + 0.587i)16-s + (0.809 + 0.587i)20-s − 2·23-s + (0.309 − 0.951i)25-s + (0.809 − 0.587i)27-s + (−1.61 − 1.17i)31-s + (−0.309 + 0.951i)36-s + 0.999·45-s + (0.618 − 1.90i)47-s + (−0.309 − 0.951i)48-s + ⋯ |
Λ(s)=(=(1815s/2ΓC(s)L(s)(−0.642+0.766i)Λ(1−s)
Λ(s)=(=(1815s/2ΓC(s)L(s)(−0.642+0.766i)Λ(1−s)
Degree: |
2 |
Conductor: |
1815
= 3⋅5⋅112
|
Sign: |
−0.642+0.766i
|
Analytic conductor: |
0.905802 |
Root analytic conductor: |
0.951736 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1815(1049,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1815, ( :0), −0.642+0.766i)
|
Particular Values
L(21) |
≈ |
0.1538604558 |
L(21) |
≈ |
0.1538604558 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(0.309−0.951i)T |
| 5 | 1+(0.809−0.587i)T |
| 11 | 1 |
good | 2 | 1+(0.309+0.951i)T2 |
| 7 | 1+(0.809−0.587i)T2 |
| 13 | 1+(−0.309−0.951i)T2 |
| 17 | 1+(0.309−0.951i)T2 |
| 19 | 1+(−0.809−0.587i)T2 |
| 23 | 1+2T+T2 |
| 29 | 1+(0.809−0.587i)T2 |
| 31 | 1+(1.61+1.17i)T+(0.309+0.951i)T2 |
| 37 | 1+(0.809−0.587i)T2 |
| 41 | 1+(0.809+0.587i)T2 |
| 43 | 1−T2 |
| 47 | 1+(−0.618+1.90i)T+(−0.809−0.587i)T2 |
| 53 | 1+(1.61+1.17i)T+(0.309+0.951i)T2 |
| 59 | 1+(0.809−0.587i)T2 |
| 61 | 1+(0.309−0.951i)T2 |
| 67 | 1−T2 |
| 71 | 1+(−0.309+0.951i)T2 |
| 73 | 1+(0.809−0.587i)T2 |
| 79 | 1+(0.309+0.951i)T2 |
| 83 | 1+(0.309−0.951i)T2 |
| 89 | 1−T2 |
| 97 | 1+(−0.309−0.951i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.398807897831135551076206588091, −8.504560777955781884350327921667, −7.67745148583229730935224138478, −6.54470293394561449733858120162, −5.90071889215554155210256010090, −5.06834472441158219404922787744, −4.13870364400120784210035557835, −3.58479043149398759032717981350, −2.14085894493375642298972644180, −0.11657590058233451959682657159,
1.64957419471006557370417787151, 2.97717148550644085183360690348, 3.92738743065864183146225175975, 4.78428214810834825470227494186, 5.75905844211031755709008676512, 6.76223078182398118698394662105, 7.65049717121541997325555262822, 7.943795214674795353093899515017, 8.724250555028151935912127266186, 9.436996876924458651129433406559