Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1815,1,Mod(269,1815)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1815, base_ring=CyclotomicField(10))
chi = DirichletCharacter(H, H._module([5, 5, 4]))
N = Newforms(chi, 1, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1815.269");
S:= CuspForms(chi, 1);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 1815.o (of order , degree , not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Projective image: | |
Projective field: | Galois closure of |
Artin image: | |
Artin field: | Galois closure of |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
The -expansion and trace form are shown below.
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
269.1 |
|
0 | 0.809017 | + | 0.587785i | 0.809017 | − | 0.587785i | 0.309017 | − | 0.951057i | 0 | 0 | 0 | 0.309017 | + | 0.951057i | 0 | ||||||||||||||||||||||
614.1 | 0 | 0.809017 | − | 0.587785i | 0.809017 | + | 0.587785i | 0.309017 | + | 0.951057i | 0 | 0 | 0 | 0.309017 | − | 0.951057i | 0 | |||||||||||||||||||||||
1049.1 | 0 | −0.309017 | + | 0.951057i | −0.309017 | − | 0.951057i | −0.809017 | + | 0.587785i | 0 | 0 | 0 | −0.809017 | − | 0.587785i | 0 | |||||||||||||||||||||||
1334.1 | 0 | −0.309017 | − | 0.951057i | −0.309017 | + | 0.951057i | −0.809017 | − | 0.587785i | 0 | 0 | 0 | −0.809017 | + | 0.587785i | 0 | |||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
11.b | odd | 2 | 1 | CM by |
15.d | odd | 2 | 1 | CM by |
165.d | even | 2 | 1 | RM by |
11.c | even | 5 | 3 | inner |
11.d | odd | 10 | 3 | inner |
165.o | odd | 10 | 3 | inner |
165.r | even | 10 | 3 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1815.1.o.d | 4 | |
3.b | odd | 2 | 1 | 1815.1.o.c | 4 | ||
5.b | even | 2 | 1 | 1815.1.o.c | 4 | ||
11.b | odd | 2 | 1 | CM | 1815.1.o.d | 4 | |
11.c | even | 5 | 1 | 1815.1.g.c | ✓ | 1 | |
11.c | even | 5 | 3 | inner | 1815.1.o.d | 4 | |
11.d | odd | 10 | 1 | 1815.1.g.c | ✓ | 1 | |
11.d | odd | 10 | 3 | inner | 1815.1.o.d | 4 | |
15.d | odd | 2 | 1 | CM | 1815.1.o.d | 4 | |
33.d | even | 2 | 1 | 1815.1.o.c | 4 | ||
33.f | even | 10 | 1 | 1815.1.g.d | yes | 1 | |
33.f | even | 10 | 3 | 1815.1.o.c | 4 | ||
33.h | odd | 10 | 1 | 1815.1.g.d | yes | 1 | |
33.h | odd | 10 | 3 | 1815.1.o.c | 4 | ||
55.d | odd | 2 | 1 | 1815.1.o.c | 4 | ||
55.h | odd | 10 | 1 | 1815.1.g.d | yes | 1 | |
55.h | odd | 10 | 3 | 1815.1.o.c | 4 | ||
55.j | even | 10 | 1 | 1815.1.g.d | yes | 1 | |
55.j | even | 10 | 3 | 1815.1.o.c | 4 | ||
165.d | even | 2 | 1 | RM | 1815.1.o.d | 4 | |
165.o | odd | 10 | 1 | 1815.1.g.c | ✓ | 1 | |
165.o | odd | 10 | 3 | inner | 1815.1.o.d | 4 | |
165.r | even | 10 | 1 | 1815.1.g.c | ✓ | 1 | |
165.r | even | 10 | 3 | inner | 1815.1.o.d | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
1815.1.g.c | ✓ | 1 | 11.c | even | 5 | 1 | |
1815.1.g.c | ✓ | 1 | 11.d | odd | 10 | 1 | |
1815.1.g.c | ✓ | 1 | 165.o | odd | 10 | 1 | |
1815.1.g.c | ✓ | 1 | 165.r | even | 10 | 1 | |
1815.1.g.d | yes | 1 | 33.f | even | 10 | 1 | |
1815.1.g.d | yes | 1 | 33.h | odd | 10 | 1 | |
1815.1.g.d | yes | 1 | 55.h | odd | 10 | 1 | |
1815.1.g.d | yes | 1 | 55.j | even | 10 | 1 | |
1815.1.o.c | 4 | 3.b | odd | 2 | 1 | ||
1815.1.o.c | 4 | 5.b | even | 2 | 1 | ||
1815.1.o.c | 4 | 33.d | even | 2 | 1 | ||
1815.1.o.c | 4 | 33.f | even | 10 | 3 | ||
1815.1.o.c | 4 | 33.h | odd | 10 | 3 | ||
1815.1.o.c | 4 | 55.d | odd | 2 | 1 | ||
1815.1.o.c | 4 | 55.h | odd | 10 | 3 | ||
1815.1.o.c | 4 | 55.j | even | 10 | 3 | ||
1815.1.o.d | 4 | 1.a | even | 1 | 1 | trivial | |
1815.1.o.d | 4 | 11.b | odd | 2 | 1 | CM | |
1815.1.o.d | 4 | 11.c | even | 5 | 3 | inner | |
1815.1.o.d | 4 | 11.d | odd | 10 | 3 | inner | |
1815.1.o.d | 4 | 15.d | odd | 2 | 1 | CM | |
1815.1.o.d | 4 | 165.d | even | 2 | 1 | RM | |
1815.1.o.d | 4 | 165.o | odd | 10 | 3 | inner | |
1815.1.o.d | 4 | 165.r | even | 10 | 3 | inner |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|
|