Properties

Label 1815.1.o.d
Level 18151815
Weight 11
Character orbit 1815.o
Analytic conductor 0.9060.906
Analytic rank 00
Dimension 44
Projective image D2D_{2}
CM/RM discs -11, -15, 165
Inner twists 1616

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1815,1,Mod(269,1815)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1815, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 5, 4]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1815.269");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 1815=35112 1815 = 3 \cdot 5 \cdot 11^{2}
Weight: k k == 1 1
Character orbit: [χ][\chi] == 1815.o (of order 1010, degree 44, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.9058029979290.905802997929
Analytic rank: 00
Dimension: 44
Coefficient field: Q(ζ10)\Q(\zeta_{10})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x3+x2x+1 x^{4} - x^{3} + x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D2D_{2}
Projective field: Galois closure of Q(11,15)\Q(\sqrt{-11}, \sqrt{-15})
Artin image: C5×D4C_5\times D_4
Artin field: Galois closure of Q[x]/(x20)\mathbb{Q}[x]/(x^{20} - \cdots)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The qq-expansion and trace form are shown below.

f(q)f(q) == qζ104q3+ζ10q4+ζ102q5ζ103q9+q12+ζ10q15+ζ102q16+ζ103q202q23+ζ104q25+2ζ102q93+O(q100) q - \zeta_{10}^{4} q^{3} + \zeta_{10} q^{4} + \zeta_{10}^{2} q^{5} - \zeta_{10}^{3} q^{9} + q^{12} + \zeta_{10} q^{15} + \zeta_{10}^{2} q^{16} + \zeta_{10}^{3} q^{20} - 2 q^{23} + \zeta_{10}^{4} q^{25} + \cdots - 2 \zeta_{10}^{2} q^{93} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+q3+q4q5q9+4q12+q15q16+q208q23q25+q272q31+q36+4q452q47+q48q492q53q60+q64++2q93+O(q100) 4 q + q^{3} + q^{4} - q^{5} - q^{9} + 4 q^{12} + q^{15} - q^{16} + q^{20} - 8 q^{23} - q^{25} + q^{27} - 2 q^{31} + q^{36} + 4 q^{45} - 2 q^{47} + q^{48} - q^{49} - 2 q^{53} - q^{60} + q^{64}+ \cdots + 2 q^{93}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1815Z)×\left(\mathbb{Z}/1815\mathbb{Z}\right)^\times.

nn 727727 12111211 16961696
χ(n)\chi(n) 1-1 1-1 ζ10-\zeta_{10}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
269.1
0.809017 0.587785i
0.809017 + 0.587785i
−0.309017 0.951057i
−0.309017 + 0.951057i
0 0.809017 + 0.587785i 0.809017 0.587785i 0.309017 0.951057i 0 0 0 0.309017 + 0.951057i 0
614.1 0 0.809017 0.587785i 0.809017 + 0.587785i 0.309017 + 0.951057i 0 0 0 0.309017 0.951057i 0
1049.1 0 −0.309017 + 0.951057i −0.309017 0.951057i −0.809017 + 0.587785i 0 0 0 −0.809017 0.587785i 0
1334.1 0 −0.309017 0.951057i −0.309017 + 0.951057i −0.809017 0.587785i 0 0 0 −0.809017 + 0.587785i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.b odd 2 1 CM by Q(11)\Q(\sqrt{-11})
15.d odd 2 1 CM by Q(15)\Q(\sqrt{-15})
165.d even 2 1 RM by Q(165)\Q(\sqrt{165})
11.c even 5 3 inner
11.d odd 10 3 inner
165.o odd 10 3 inner
165.r even 10 3 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1815.1.o.d 4
3.b odd 2 1 1815.1.o.c 4
5.b even 2 1 1815.1.o.c 4
11.b odd 2 1 CM 1815.1.o.d 4
11.c even 5 1 1815.1.g.c 1
11.c even 5 3 inner 1815.1.o.d 4
11.d odd 10 1 1815.1.g.c 1
11.d odd 10 3 inner 1815.1.o.d 4
15.d odd 2 1 CM 1815.1.o.d 4
33.d even 2 1 1815.1.o.c 4
33.f even 10 1 1815.1.g.d yes 1
33.f even 10 3 1815.1.o.c 4
33.h odd 10 1 1815.1.g.d yes 1
33.h odd 10 3 1815.1.o.c 4
55.d odd 2 1 1815.1.o.c 4
55.h odd 10 1 1815.1.g.d yes 1
55.h odd 10 3 1815.1.o.c 4
55.j even 10 1 1815.1.g.d yes 1
55.j even 10 3 1815.1.o.c 4
165.d even 2 1 RM 1815.1.o.d 4
165.o odd 10 1 1815.1.g.c 1
165.o odd 10 3 inner 1815.1.o.d 4
165.r even 10 1 1815.1.g.c 1
165.r even 10 3 inner 1815.1.o.d 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1815.1.g.c 1 11.c even 5 1
1815.1.g.c 1 11.d odd 10 1
1815.1.g.c 1 165.o odd 10 1
1815.1.g.c 1 165.r even 10 1
1815.1.g.d yes 1 33.f even 10 1
1815.1.g.d yes 1 33.h odd 10 1
1815.1.g.d yes 1 55.h odd 10 1
1815.1.g.d yes 1 55.j even 10 1
1815.1.o.c 4 3.b odd 2 1
1815.1.o.c 4 5.b even 2 1
1815.1.o.c 4 33.d even 2 1
1815.1.o.c 4 33.f even 10 3
1815.1.o.c 4 33.h odd 10 3
1815.1.o.c 4 55.d odd 2 1
1815.1.o.c 4 55.h odd 10 3
1815.1.o.c 4 55.j even 10 3
1815.1.o.d 4 1.a even 1 1 trivial
1815.1.o.d 4 11.b odd 2 1 CM
1815.1.o.d 4 11.c even 5 3 inner
1815.1.o.d 4 11.d odd 10 3 inner
1815.1.o.d 4 15.d odd 2 1 CM
1815.1.o.d 4 165.d even 2 1 RM
1815.1.o.d 4 165.o odd 10 3 inner
1815.1.o.d 4 165.r even 10 3 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S1new(1815,[χ])S_{1}^{\mathrm{new}}(1815, [\chi]):

T2 T_{2} Copy content Toggle raw display
T19 T_{19} Copy content Toggle raw display
T23+2 T_{23} + 2 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 T4T3+T2++1 T^{4} - T^{3} + T^{2} + \cdots + 1 Copy content Toggle raw display
55 T4+T3+T2++1 T^{4} + T^{3} + T^{2} + \cdots + 1 Copy content Toggle raw display
77 T4 T^{4} Copy content Toggle raw display
1111 T4 T^{4} Copy content Toggle raw display
1313 T4 T^{4} Copy content Toggle raw display
1717 T4 T^{4} Copy content Toggle raw display
1919 T4 T^{4} Copy content Toggle raw display
2323 (T+2)4 (T + 2)^{4} Copy content Toggle raw display
2929 T4 T^{4} Copy content Toggle raw display
3131 T4+2T3++16 T^{4} + 2 T^{3} + \cdots + 16 Copy content Toggle raw display
3737 T4 T^{4} Copy content Toggle raw display
4141 T4 T^{4} Copy content Toggle raw display
4343 T4 T^{4} Copy content Toggle raw display
4747 T4+2T3++16 T^{4} + 2 T^{3} + \cdots + 16 Copy content Toggle raw display
5353 T4+2T3++16 T^{4} + 2 T^{3} + \cdots + 16 Copy content Toggle raw display
5959 T4 T^{4} Copy content Toggle raw display
6161 T4 T^{4} Copy content Toggle raw display
6767 T4 T^{4} Copy content Toggle raw display
7171 T4 T^{4} Copy content Toggle raw display
7373 T4 T^{4} Copy content Toggle raw display
7979 T4 T^{4} Copy content Toggle raw display
8383 T4 T^{4} Copy content Toggle raw display
8989 T4 T^{4} Copy content Toggle raw display
9797 T4 T^{4} Copy content Toggle raw display
show more
show less