gp: [N,k,chi] = [1815,1,Mod(269,1815)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1815, base_ring=CyclotomicField(10))
chi = DirichletCharacter(H, H._module([5, 5, 4]))
N = Newforms(chi, 1, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1815.269");
S:= CuspForms(chi, 1);
N := Newforms(S);
Newform invariants
sage: traces = [4,0,1]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
The q q q -expansion and trace form are shown below.
Character values
We give the values of χ \chi χ on generators for ( Z / 1815 Z ) × \left(\mathbb{Z}/1815\mathbb{Z}\right)^\times ( Z / 1 8 1 5 Z ) × .
n n n
727 727 7 2 7
1211 1211 1 2 1 1
1696 1696 1 6 9 6
χ ( n ) \chi(n) χ ( n )
− 1 -1 − 1
− 1 -1 − 1
− ζ 10 -\zeta_{10} − ζ 1 0
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 1 n e w ( 1815 , [ χ ] ) S_{1}^{\mathrm{new}}(1815, [\chi]) S 1 n e w ( 1 8 1 5 , [ χ ] ) :
T 2 T_{2} T 2
T2
T 19 T_{19} T 1 9
T19
T 23 + 2 T_{23} + 2 T 2 3 + 2
T23 + 2
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 4 T^{4} T 4
T^4
3 3 3
T 4 − T 3 + T 2 + ⋯ + 1 T^{4} - T^{3} + T^{2} + \cdots + 1 T 4 − T 3 + T 2 + ⋯ + 1
T^4 - T^3 + T^2 - T + 1
5 5 5
T 4 + T 3 + T 2 + ⋯ + 1 T^{4} + T^{3} + T^{2} + \cdots + 1 T 4 + T 3 + T 2 + ⋯ + 1
T^4 + T^3 + T^2 + T + 1
7 7 7
T 4 T^{4} T 4
T^4
11 11 1 1
T 4 T^{4} T 4
T^4
13 13 1 3
T 4 T^{4} T 4
T^4
17 17 1 7
T 4 T^{4} T 4
T^4
19 19 1 9
T 4 T^{4} T 4
T^4
23 23 2 3
( T + 2 ) 4 (T + 2)^{4} ( T + 2 ) 4
(T + 2)^4
29 29 2 9
T 4 T^{4} T 4
T^4
31 31 3 1
T 4 + 2 T 3 + ⋯ + 16 T^{4} + 2 T^{3} + \cdots + 16 T 4 + 2 T 3 + ⋯ + 1 6
T^4 + 2*T^3 + 4*T^2 + 8*T + 16
37 37 3 7
T 4 T^{4} T 4
T^4
41 41 4 1
T 4 T^{4} T 4
T^4
43 43 4 3
T 4 T^{4} T 4
T^4
47 47 4 7
T 4 + 2 T 3 + ⋯ + 16 T^{4} + 2 T^{3} + \cdots + 16 T 4 + 2 T 3 + ⋯ + 1 6
T^4 + 2*T^3 + 4*T^2 + 8*T + 16
53 53 5 3
T 4 + 2 T 3 + ⋯ + 16 T^{4} + 2 T^{3} + \cdots + 16 T 4 + 2 T 3 + ⋯ + 1 6
T^4 + 2*T^3 + 4*T^2 + 8*T + 16
59 59 5 9
T 4 T^{4} T 4
T^4
61 61 6 1
T 4 T^{4} T 4
T^4
67 67 6 7
T 4 T^{4} T 4
T^4
71 71 7 1
T 4 T^{4} T 4
T^4
73 73 7 3
T 4 T^{4} T 4
T^4
79 79 7 9
T 4 T^{4} T 4
T^4
83 83 8 3
T 4 T^{4} T 4
T^4
89 89 8 9
T 4 T^{4} T 4
T^4
97 97 9 7
T 4 T^{4} T 4
T^4
show more
show less