Properties

Label 1815.1.o.d
Level $1815$
Weight $1$
Character orbit 1815.o
Analytic conductor $0.906$
Analytic rank $0$
Dimension $4$
Projective image $D_{2}$
CM/RM discs -11, -15, 165
Inner twists $16$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1815,1,Mod(269,1815)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1815, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 5, 4]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1815.269");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1815 = 3 \cdot 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1815.o (of order \(10\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.905802997929\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{2}\)
Projective field: Galois closure of \(\Q(\sqrt{-11}, \sqrt{-15})\)
Artin image: $C_5\times D_4$
Artin field: Galois closure of \(\mathbb{Q}[x]/(x^{20} - \cdots)\)

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q - \zeta_{10}^{4} q^{3} + \zeta_{10} q^{4} + \zeta_{10}^{2} q^{5} - \zeta_{10}^{3} q^{9} + q^{12} + \zeta_{10} q^{15} + \zeta_{10}^{2} q^{16} + \zeta_{10}^{3} q^{20} - 2 q^{23} + \zeta_{10}^{4} q^{25} + \cdots - 2 \zeta_{10}^{2} q^{93} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + q^{3} + q^{4} - q^{5} - q^{9} + 4 q^{12} + q^{15} - q^{16} + q^{20} - 8 q^{23} - q^{25} + q^{27} - 2 q^{31} + q^{36} + 4 q^{45} - 2 q^{47} + q^{48} - q^{49} - 2 q^{53} - q^{60} + q^{64}+ \cdots + 2 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1815\mathbb{Z}\right)^\times\).

\(n\) \(727\) \(1211\) \(1696\)
\(\chi(n)\) \(-1\) \(-1\) \(-\zeta_{10}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
269.1
0.809017 0.587785i
0.809017 + 0.587785i
−0.309017 0.951057i
−0.309017 + 0.951057i
0 0.809017 + 0.587785i 0.809017 0.587785i 0.309017 0.951057i 0 0 0 0.309017 + 0.951057i 0
614.1 0 0.809017 0.587785i 0.809017 + 0.587785i 0.309017 + 0.951057i 0 0 0 0.309017 0.951057i 0
1049.1 0 −0.309017 + 0.951057i −0.309017 0.951057i −0.809017 + 0.587785i 0 0 0 −0.809017 0.587785i 0
1334.1 0 −0.309017 0.951057i −0.309017 + 0.951057i −0.809017 0.587785i 0 0 0 −0.809017 + 0.587785i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.b odd 2 1 CM by \(\Q(\sqrt{-11}) \)
15.d odd 2 1 CM by \(\Q(\sqrt{-15}) \)
165.d even 2 1 RM by \(\Q(\sqrt{165}) \)
11.c even 5 3 inner
11.d odd 10 3 inner
165.o odd 10 3 inner
165.r even 10 3 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1815.1.o.d 4
3.b odd 2 1 1815.1.o.c 4
5.b even 2 1 1815.1.o.c 4
11.b odd 2 1 CM 1815.1.o.d 4
11.c even 5 1 1815.1.g.c 1
11.c even 5 3 inner 1815.1.o.d 4
11.d odd 10 1 1815.1.g.c 1
11.d odd 10 3 inner 1815.1.o.d 4
15.d odd 2 1 CM 1815.1.o.d 4
33.d even 2 1 1815.1.o.c 4
33.f even 10 1 1815.1.g.d yes 1
33.f even 10 3 1815.1.o.c 4
33.h odd 10 1 1815.1.g.d yes 1
33.h odd 10 3 1815.1.o.c 4
55.d odd 2 1 1815.1.o.c 4
55.h odd 10 1 1815.1.g.d yes 1
55.h odd 10 3 1815.1.o.c 4
55.j even 10 1 1815.1.g.d yes 1
55.j even 10 3 1815.1.o.c 4
165.d even 2 1 RM 1815.1.o.d 4
165.o odd 10 1 1815.1.g.c 1
165.o odd 10 3 inner 1815.1.o.d 4
165.r even 10 1 1815.1.g.c 1
165.r even 10 3 inner 1815.1.o.d 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1815.1.g.c 1 11.c even 5 1
1815.1.g.c 1 11.d odd 10 1
1815.1.g.c 1 165.o odd 10 1
1815.1.g.c 1 165.r even 10 1
1815.1.g.d yes 1 33.f even 10 1
1815.1.g.d yes 1 33.h odd 10 1
1815.1.g.d yes 1 55.h odd 10 1
1815.1.g.d yes 1 55.j even 10 1
1815.1.o.c 4 3.b odd 2 1
1815.1.o.c 4 5.b even 2 1
1815.1.o.c 4 33.d even 2 1
1815.1.o.c 4 33.f even 10 3
1815.1.o.c 4 33.h odd 10 3
1815.1.o.c 4 55.d odd 2 1
1815.1.o.c 4 55.h odd 10 3
1815.1.o.c 4 55.j even 10 3
1815.1.o.d 4 1.a even 1 1 trivial
1815.1.o.d 4 11.b odd 2 1 CM
1815.1.o.d 4 11.c even 5 3 inner
1815.1.o.d 4 11.d odd 10 3 inner
1815.1.o.d 4 15.d odd 2 1 CM
1815.1.o.d 4 165.d even 2 1 RM
1815.1.o.d 4 165.o odd 10 3 inner
1815.1.o.d 4 165.r even 10 3 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(1815, [\chi])\):

\( T_{2} \) Copy content Toggle raw display
\( T_{19} \) Copy content Toggle raw display
\( T_{23} + 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} - T^{3} + T^{2} + \cdots + 1 \) Copy content Toggle raw display
$5$ \( T^{4} + T^{3} + T^{2} + \cdots + 1 \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( T^{4} \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( T^{4} \) Copy content Toggle raw display
$19$ \( T^{4} \) Copy content Toggle raw display
$23$ \( (T + 2)^{4} \) Copy content Toggle raw display
$29$ \( T^{4} \) Copy content Toggle raw display
$31$ \( T^{4} + 2 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$37$ \( T^{4} \) Copy content Toggle raw display
$41$ \( T^{4} \) Copy content Toggle raw display
$43$ \( T^{4} \) Copy content Toggle raw display
$47$ \( T^{4} + 2 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$53$ \( T^{4} + 2 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$59$ \( T^{4} \) Copy content Toggle raw display
$61$ \( T^{4} \) Copy content Toggle raw display
$67$ \( T^{4} \) Copy content Toggle raw display
$71$ \( T^{4} \) Copy content Toggle raw display
$73$ \( T^{4} \) Copy content Toggle raw display
$79$ \( T^{4} \) Copy content Toggle raw display
$83$ \( T^{4} \) Copy content Toggle raw display
$89$ \( T^{4} \) Copy content Toggle raw display
$97$ \( T^{4} \) Copy content Toggle raw display
show more
show less