L(s) = 1 | + (1.22 + 0.707i)2-s + 4.02i·3-s + (0.999 + 1.73i)4-s + (4.59 + 7.96i)5-s + (−2.84 + 4.93i)6-s + (−5.39 − 4.45i)7-s + 2.82i·8-s − 7.23·9-s + 13.0i·10-s − 17.1i·11-s + (−6.97 + 4.02i)12-s + (9.51 − 8.85i)13-s + (−3.46 − 9.27i)14-s + (−32.0 + 18.5i)15-s + (−2.00 + 3.46i)16-s + (3.18 − 1.83i)17-s + ⋯ |
L(s) = 1 | + (0.612 + 0.353i)2-s + 1.34i·3-s + (0.249 + 0.433i)4-s + (0.919 + 1.59i)5-s + (−0.474 + 0.822i)6-s + (−0.771 − 0.636i)7-s + 0.353i·8-s − 0.803·9-s + 1.30i·10-s − 1.56i·11-s + (−0.581 + 0.335i)12-s + (0.731 − 0.681i)13-s + (−0.247 − 0.662i)14-s + (−2.13 + 1.23i)15-s + (−0.125 + 0.216i)16-s + (0.187 − 0.108i)17-s + ⋯ |
Λ(s)=(=(182s/2ΓC(s)L(s)(−0.642−0.766i)Λ(3−s)
Λ(s)=(=(182s/2ΓC(s+1)L(s)(−0.642−0.766i)Λ(1−s)
Degree: |
2 |
Conductor: |
182
= 2⋅7⋅13
|
Sign: |
−0.642−0.766i
|
Analytic conductor: |
4.95914 |
Root analytic conductor: |
2.22691 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ182(101,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 182, ( :1), −0.642−0.766i)
|
Particular Values
L(23) |
≈ |
0.955199+2.04612i |
L(21) |
≈ |
0.955199+2.04612i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1.22−0.707i)T |
| 7 | 1+(5.39+4.45i)T |
| 13 | 1+(−9.51+8.85i)T |
good | 3 | 1−4.02iT−9T2 |
| 5 | 1+(−4.59−7.96i)T+(−12.5+21.6i)T2 |
| 11 | 1+17.1iT−121T2 |
| 17 | 1+(−3.18+1.83i)T+(144.5−250.i)T2 |
| 19 | 1−17.2T+361T2 |
| 23 | 1+(3.50−6.06i)T+(−264.5−458.i)T2 |
| 29 | 1+(−0.359−0.623i)T+(−420.5+728.i)T2 |
| 31 | 1+(22.2−38.4i)T+(−480.5−832.i)T2 |
| 37 | 1+(−26.4−15.2i)T+(684.5+1.18e3i)T2 |
| 41 | 1+(16.2+28.1i)T+(−840.5+1.45e3i)T2 |
| 43 | 1+(−26.8+46.4i)T+(−924.5−1.60e3i)T2 |
| 47 | 1+(36.6+63.5i)T+(−1.10e3+1.91e3i)T2 |
| 53 | 1+(4.39−7.62i)T+(−1.40e3−2.43e3i)T2 |
| 59 | 1+(6.58+11.4i)T+(−1.74e3+3.01e3i)T2 |
| 61 | 1−11.6iT−3.72e3T2 |
| 67 | 1+27.7iT−4.48e3T2 |
| 71 | 1+(25.6+14.7i)T+(2.52e3+4.36e3i)T2 |
| 73 | 1+(30.1−52.1i)T+(−2.66e3−4.61e3i)T2 |
| 79 | 1+(66.3+114.i)T+(−3.12e3+5.40e3i)T2 |
| 83 | 1−108.T+6.88e3T2 |
| 89 | 1+(−48.6+84.2i)T+(−3.96e3−6.85e3i)T2 |
| 97 | 1+(−39.5+68.5i)T+(−4.70e3−8.14e3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.26306514178071269586454063631, −11.40715161821027659722073022557, −10.58904183294868373898242444973, −10.14952230836060954263207581163, −8.957216768774234566870326368862, −7.30054426167968013568624582682, −6.19096050940188204403581575337, −5.44831016058329197444665695078, −3.42683101693864448644433377100, −3.30399843619337399645263370641,
1.29914256771974732590517414297, 2.25340215411286514550859949257, 4.46823823905437262286308240755, 5.71830025777063944535852063185, 6.50278615575196987433036858277, 7.84487656937696425651513819008, 9.260487470417592573495067082334, 9.744868041222793161386386317805, 11.68897691165237307380963079792, 12.43846026043508612635075147635