L(s) = 1 | + (1.22 + 0.707i)2-s + 4.02i·3-s + (0.999 + 1.73i)4-s + (4.59 + 7.96i)5-s + (−2.84 + 4.93i)6-s + (−5.39 − 4.45i)7-s + 2.82i·8-s − 7.23·9-s + 13.0i·10-s − 17.1i·11-s + (−6.97 + 4.02i)12-s + (9.51 − 8.85i)13-s + (−3.46 − 9.27i)14-s + (−32.0 + 18.5i)15-s + (−2.00 + 3.46i)16-s + (3.18 − 1.83i)17-s + ⋯ |
L(s) = 1 | + (0.612 + 0.353i)2-s + 1.34i·3-s + (0.249 + 0.433i)4-s + (0.919 + 1.59i)5-s + (−0.474 + 0.822i)6-s + (−0.771 − 0.636i)7-s + 0.353i·8-s − 0.803·9-s + 1.30i·10-s − 1.56i·11-s + (−0.581 + 0.335i)12-s + (0.731 − 0.681i)13-s + (−0.247 − 0.662i)14-s + (−2.13 + 1.23i)15-s + (−0.125 + 0.216i)16-s + (0.187 − 0.108i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 182 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.642 - 0.766i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 182 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.642 - 0.766i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.955199 + 2.04612i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.955199 + 2.04612i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.22 - 0.707i)T \) |
| 7 | \( 1 + (5.39 + 4.45i)T \) |
| 13 | \( 1 + (-9.51 + 8.85i)T \) |
good | 3 | \( 1 - 4.02iT - 9T^{2} \) |
| 5 | \( 1 + (-4.59 - 7.96i)T + (-12.5 + 21.6i)T^{2} \) |
| 11 | \( 1 + 17.1iT - 121T^{2} \) |
| 17 | \( 1 + (-3.18 + 1.83i)T + (144.5 - 250. i)T^{2} \) |
| 19 | \( 1 - 17.2T + 361T^{2} \) |
| 23 | \( 1 + (3.50 - 6.06i)T + (-264.5 - 458. i)T^{2} \) |
| 29 | \( 1 + (-0.359 - 0.623i)T + (-420.5 + 728. i)T^{2} \) |
| 31 | \( 1 + (22.2 - 38.4i)T + (-480.5 - 832. i)T^{2} \) |
| 37 | \( 1 + (-26.4 - 15.2i)T + (684.5 + 1.18e3i)T^{2} \) |
| 41 | \( 1 + (16.2 + 28.1i)T + (-840.5 + 1.45e3i)T^{2} \) |
| 43 | \( 1 + (-26.8 + 46.4i)T + (-924.5 - 1.60e3i)T^{2} \) |
| 47 | \( 1 + (36.6 + 63.5i)T + (-1.10e3 + 1.91e3i)T^{2} \) |
| 53 | \( 1 + (4.39 - 7.62i)T + (-1.40e3 - 2.43e3i)T^{2} \) |
| 59 | \( 1 + (6.58 + 11.4i)T + (-1.74e3 + 3.01e3i)T^{2} \) |
| 61 | \( 1 - 11.6iT - 3.72e3T^{2} \) |
| 67 | \( 1 + 27.7iT - 4.48e3T^{2} \) |
| 71 | \( 1 + (25.6 + 14.7i)T + (2.52e3 + 4.36e3i)T^{2} \) |
| 73 | \( 1 + (30.1 - 52.1i)T + (-2.66e3 - 4.61e3i)T^{2} \) |
| 79 | \( 1 + (66.3 + 114. i)T + (-3.12e3 + 5.40e3i)T^{2} \) |
| 83 | \( 1 - 108.T + 6.88e3T^{2} \) |
| 89 | \( 1 + (-48.6 + 84.2i)T + (-3.96e3 - 6.85e3i)T^{2} \) |
| 97 | \( 1 + (-39.5 + 68.5i)T + (-4.70e3 - 8.14e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.26306514178071269586454063631, −11.40715161821027659722073022557, −10.58904183294868373898242444973, −10.14952230836060954263207581163, −8.957216768774234566870326368862, −7.30054426167968013568624582682, −6.19096050940188204403581575337, −5.44831016058329197444665695078, −3.42683101693864448644433377100, −3.30399843619337399645263370641,
1.29914256771974732590517414297, 2.25340215411286514550859949257, 4.46823823905437262286308240755, 5.71830025777063944535852063185, 6.50278615575196987433036858277, 7.84487656937696425651513819008, 9.260487470417592573495067082334, 9.744868041222793161386386317805, 11.68897691165237307380963079792, 12.43846026043508612635075147635