Properties

Label 182.3.k.a.101.17
Level $182$
Weight $3$
Character 182.101
Analytic conductor $4.959$
Analytic rank $0$
Dimension $36$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [182,3,Mod(101,182)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(182, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([1, 5]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("182.101");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 182 = 2 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 182.k (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.95914081136\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(18\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 101.17
Character \(\chi\) \(=\) 182.101
Dual form 182.3.k.a.173.11

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.22474 + 0.707107i) q^{2} +4.02925i q^{3} +(1.00000 + 1.73205i) q^{4} +(4.59702 + 7.96227i) q^{5} +(-2.84911 + 4.93480i) q^{6} +(-5.39829 - 4.45628i) q^{7} +2.82843i q^{8} -7.23484 q^{9} +13.0023i q^{10} -17.1732i q^{11} +(-6.97886 + 4.02925i) q^{12} +(9.51338 - 8.85977i) q^{13} +(-3.46047 - 9.27497i) q^{14} +(-32.0819 + 18.5225i) q^{15} +(-2.00000 + 3.46410i) q^{16} +(3.18575 - 1.83929i) q^{17} +(-8.86083 - 5.11580i) q^{18} +17.2294 q^{19} +(-9.19403 + 15.9245i) q^{20} +(17.9554 - 21.7511i) q^{21} +(12.1433 - 21.0328i) q^{22} +(-3.50087 + 6.06369i) q^{23} -11.3964 q^{24} +(-29.7651 + 51.5547i) q^{25} +(17.9163 - 4.12398i) q^{26} +7.11227i q^{27} +(2.32020 - 13.8064i) q^{28} +(0.359781 + 0.623160i) q^{29} -52.3896 q^{30} +(-22.2101 + 38.4690i) q^{31} +(-4.89898 + 2.82843i) q^{32} +69.1951 q^{33} +5.20230 q^{34} +(10.6660 - 63.4682i) q^{35} +(-7.23484 - 12.5311i) q^{36} +(26.4251 + 15.2565i) q^{37} +(21.1016 + 12.1830i) q^{38} +(35.6982 + 38.3318i) q^{39} +(-22.5207 + 13.0023i) q^{40} +(-16.2530 - 28.1511i) q^{41} +(37.3712 - 13.9431i) q^{42} +(26.8250 - 46.4622i) q^{43} +(29.7449 - 17.1732i) q^{44} +(-33.2587 - 57.6057i) q^{45} +(-8.57536 + 4.95098i) q^{46} +(-36.6987 - 63.5641i) q^{47} +(-13.9577 - 8.05850i) q^{48} +(9.28318 + 48.1126i) q^{49} +(-72.9093 + 42.0942i) q^{50} +(7.41096 + 12.8362i) q^{51} +(24.8590 + 7.61789i) q^{52} +(-4.39981 + 7.62069i) q^{53} +(-5.02914 + 8.71072i) q^{54} +(136.738 - 78.9455i) q^{55} +(12.6043 - 15.2687i) q^{56} +69.4215i q^{57} +1.01762i q^{58} +(-6.58394 - 11.4037i) q^{59} +(-64.1639 - 37.0450i) q^{60} +11.6030i q^{61} +(-54.4034 + 31.4098i) q^{62} +(39.0558 + 32.2405i) q^{63} -8.00000 q^{64} +(114.277 + 35.0196i) q^{65} +(84.7464 + 48.9283i) q^{66} -27.7832i q^{67} +(6.37150 + 3.67858i) q^{68} +(-24.4321 - 14.1059i) q^{69} +(57.9420 - 70.1904i) q^{70} +(-25.6313 - 14.7983i) q^{71} -20.4632i q^{72} +(-30.1279 + 52.1831i) q^{73} +(21.5760 + 37.3707i) q^{74} +(-207.727 - 119.931i) q^{75} +(17.2294 + 29.8422i) q^{76} +(-76.5286 + 92.7060i) q^{77} +(16.6165 + 72.1891i) q^{78} +(-66.3791 - 114.972i) q^{79} -36.7761 q^{80} -93.7707 q^{81} -45.9706i q^{82} +108.148 q^{83} +(55.6294 + 9.34868i) q^{84} +(29.2899 + 16.9105i) q^{85} +(65.7075 - 37.9363i) q^{86} +(-2.51087 + 1.44965i) q^{87} +48.5732 q^{88} +(48.6213 - 84.2145i) q^{89} -94.0697i q^{90} +(-90.8376 + 5.43338i) q^{91} -14.0035 q^{92} +(-155.001 - 89.4900i) q^{93} -103.800i q^{94} +(79.2038 + 137.185i) q^{95} +(-11.3964 - 19.7392i) q^{96} +(39.5728 - 68.5420i) q^{97} +(-22.6512 + 65.4899i) q^{98} +124.245i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q + 36 q^{4} + 10 q^{7} - 88 q^{9} - 12 q^{12} - 4 q^{13} - 12 q^{14} + 60 q^{15} - 72 q^{16} + 24 q^{17} - 24 q^{18} + 100 q^{19} - 42 q^{21} + 12 q^{22} + 28 q^{23} - 82 q^{25} + 120 q^{26} + 4 q^{28}+ \cdots + 96 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/182\mathbb{Z}\right)^\times\).

\(n\) \(15\) \(157\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.22474 + 0.707107i 0.612372 + 0.353553i
\(3\) 4.02925i 1.34308i 0.740967 + 0.671541i \(0.234367\pi\)
−0.740967 + 0.671541i \(0.765633\pi\)
\(4\) 1.00000 + 1.73205i 0.250000 + 0.433013i
\(5\) 4.59702 + 7.96227i 0.919403 + 1.59245i 0.800324 + 0.599568i \(0.204661\pi\)
0.119080 + 0.992885i \(0.462006\pi\)
\(6\) −2.84911 + 4.93480i −0.474851 + 0.822467i
\(7\) −5.39829 4.45628i −0.771185 0.636611i
\(8\) 2.82843i 0.353553i
\(9\) −7.23484 −0.803871
\(10\) 13.0023i 1.30023i
\(11\) 17.1732i 1.56120i −0.625030 0.780600i \(-0.714913\pi\)
0.625030 0.780600i \(-0.285087\pi\)
\(12\) −6.97886 + 4.02925i −0.581572 + 0.335771i
\(13\) 9.51338 8.85977i 0.731799 0.681521i
\(14\) −3.46047 9.27497i −0.247176 0.662498i
\(15\) −32.0819 + 18.5225i −2.13880 + 1.23483i
\(16\) −2.00000 + 3.46410i −0.125000 + 0.216506i
\(17\) 3.18575 1.83929i 0.187397 0.108194i −0.403366 0.915039i \(-0.632160\pi\)
0.590763 + 0.806845i \(0.298827\pi\)
\(18\) −8.86083 5.11580i −0.492268 0.284211i
\(19\) 17.2294 0.906810 0.453405 0.891305i \(-0.350209\pi\)
0.453405 + 0.891305i \(0.350209\pi\)
\(20\) −9.19403 + 15.9245i −0.459702 + 0.796227i
\(21\) 17.9554 21.7511i 0.855021 1.03577i
\(22\) 12.1433 21.0328i 0.551968 0.956036i
\(23\) −3.50087 + 6.06369i −0.152212 + 0.263639i −0.932040 0.362355i \(-0.881973\pi\)
0.779828 + 0.625993i \(0.215306\pi\)
\(24\) −11.3964 −0.474851
\(25\) −29.7651 + 51.5547i −1.19060 + 2.06219i
\(26\) 17.9163 4.12398i 0.689087 0.158615i
\(27\) 7.11227i 0.263417i
\(28\) 2.32020 13.8064i 0.0828644 0.493086i
\(29\) 0.359781 + 0.623160i 0.0124063 + 0.0214883i 0.872162 0.489217i \(-0.162718\pi\)
−0.859756 + 0.510706i \(0.829384\pi\)
\(30\) −52.3896 −1.74632
\(31\) −22.2101 + 38.4690i −0.716455 + 1.24094i 0.245941 + 0.969285i \(0.420903\pi\)
−0.962396 + 0.271651i \(0.912430\pi\)
\(32\) −4.89898 + 2.82843i −0.153093 + 0.0883883i
\(33\) 69.1951 2.09682
\(34\) 5.20230 0.153009
\(35\) 10.6660 63.4682i 0.304743 1.81338i
\(36\) −7.23484 12.5311i −0.200968 0.348086i
\(37\) 26.4251 + 15.2565i 0.714191 + 0.412339i 0.812611 0.582806i \(-0.198045\pi\)
−0.0984196 + 0.995145i \(0.531379\pi\)
\(38\) 21.1016 + 12.1830i 0.555305 + 0.320606i
\(39\) 35.6982 + 38.3318i 0.915339 + 0.982866i
\(40\) −22.5207 + 13.0023i −0.563017 + 0.325058i
\(41\) −16.2530 28.1511i −0.396416 0.686612i 0.596865 0.802342i \(-0.296413\pi\)
−0.993281 + 0.115729i \(0.963079\pi\)
\(42\) 37.3712 13.9431i 0.889790 0.331978i
\(43\) 26.8250 46.4622i 0.623837 1.08052i −0.364928 0.931036i \(-0.618906\pi\)
0.988765 0.149481i \(-0.0477604\pi\)
\(44\) 29.7449 17.1732i 0.676020 0.390300i
\(45\) −33.2587 57.6057i −0.739082 1.28013i
\(46\) −8.57536 + 4.95098i −0.186421 + 0.107630i
\(47\) −36.6987 63.5641i −0.780824 1.35243i −0.931462 0.363838i \(-0.881466\pi\)
0.150638 0.988589i \(-0.451867\pi\)
\(48\) −13.9577 8.05850i −0.290786 0.167885i
\(49\) 9.28318 + 48.1126i 0.189453 + 0.981890i
\(50\) −72.9093 + 42.0942i −1.45819 + 0.841884i
\(51\) 7.41096 + 12.8362i 0.145313 + 0.251690i
\(52\) 24.8590 + 7.61789i 0.478057 + 0.146498i
\(53\) −4.39981 + 7.62069i −0.0830153 + 0.143787i −0.904544 0.426381i \(-0.859788\pi\)
0.821528 + 0.570167i \(0.193122\pi\)
\(54\) −5.02914 + 8.71072i −0.0931321 + 0.161310i
\(55\) 136.738 78.9455i 2.48614 1.43537i
\(56\) 12.6043 15.2687i 0.225076 0.272655i
\(57\) 69.4215i 1.21792i
\(58\) 1.01762i 0.0175451i
\(59\) −6.58394 11.4037i −0.111592 0.193283i 0.804820 0.593519i \(-0.202262\pi\)
−0.916412 + 0.400235i \(0.868928\pi\)
\(60\) −64.1639 37.0450i −1.06940 0.617417i
\(61\) 11.6030i 0.190212i 0.995467 + 0.0951062i \(0.0303191\pi\)
−0.995467 + 0.0951062i \(0.969681\pi\)
\(62\) −54.4034 + 31.4098i −0.877474 + 0.506610i
\(63\) 39.0558 + 32.2405i 0.619933 + 0.511753i
\(64\) −8.00000 −0.125000
\(65\) 114.277 + 35.0196i 1.75811 + 0.538763i
\(66\) 84.7464 + 48.9283i 1.28404 + 0.741338i
\(67\) 27.7832i 0.414675i −0.978269 0.207338i \(-0.933520\pi\)
0.978269 0.207338i \(-0.0664798\pi\)
\(68\) 6.37150 + 3.67858i 0.0936985 + 0.0540968i
\(69\) −24.4321 14.1059i −0.354089 0.204433i
\(70\) 57.9420 70.1904i 0.827742 1.00272i
\(71\) −25.6313 14.7983i −0.361005 0.208426i 0.308517 0.951219i \(-0.400167\pi\)
−0.669521 + 0.742793i \(0.733501\pi\)
\(72\) 20.4632i 0.284211i
\(73\) −30.1279 + 52.1831i −0.412711 + 0.714836i −0.995185 0.0980129i \(-0.968751\pi\)
0.582474 + 0.812849i \(0.302085\pi\)
\(74\) 21.5760 + 37.3707i 0.291567 + 0.505010i
\(75\) −207.727 119.931i −2.76969 1.59908i
\(76\) 17.2294 + 29.8422i 0.226702 + 0.392660i
\(77\) −76.5286 + 92.7060i −0.993878 + 1.20397i
\(78\) 16.6165 + 72.1891i 0.213033 + 0.925501i
\(79\) −66.3791 114.972i −0.840242 1.45534i −0.889690 0.456565i \(-0.849080\pi\)
0.0494485 0.998777i \(-0.484254\pi\)
\(80\) −36.7761 −0.459702
\(81\) −93.7707 −1.15766
\(82\) 45.9706i 0.560617i
\(83\) 108.148 1.30299 0.651493 0.758654i \(-0.274143\pi\)
0.651493 + 0.758654i \(0.274143\pi\)
\(84\) 55.6294 + 9.34868i 0.662255 + 0.111294i
\(85\) 29.2899 + 16.9105i 0.344587 + 0.198947i
\(86\) 65.7075 37.9363i 0.764041 0.441119i
\(87\) −2.51087 + 1.44965i −0.0288605 + 0.0166626i
\(88\) 48.5732 0.551968
\(89\) 48.6213 84.2145i 0.546307 0.946231i −0.452217 0.891908i \(-0.649367\pi\)
0.998523 0.0543228i \(-0.0173000\pi\)
\(90\) 94.0697i 1.04522i
\(91\) −90.8376 + 5.43338i −0.998216 + 0.0597074i
\(92\) −14.0035 −0.152212
\(93\) −155.001 89.4900i −1.66668 0.962258i
\(94\) 103.800i 1.10425i
\(95\) 79.2038 + 137.185i 0.833724 + 1.44405i
\(96\) −11.3964 19.7392i −0.118713 0.205617i
\(97\) 39.5728 68.5420i 0.407967 0.706619i −0.586695 0.809808i \(-0.699571\pi\)
0.994662 + 0.103189i \(0.0329046\pi\)
\(98\) −22.6512 + 65.4899i −0.231135 + 0.668264i
\(99\) 124.245i 1.25500i
\(100\) −119.060 −1.19060
\(101\) 11.0336i 0.109243i −0.998507 0.0546216i \(-0.982605\pi\)
0.998507 0.0546216i \(-0.0173952\pi\)
\(102\) 20.9614i 0.205504i
\(103\) 139.106 80.3127i 1.35054 0.779735i 0.362215 0.932094i \(-0.382020\pi\)
0.988325 + 0.152360i \(0.0486872\pi\)
\(104\) 25.0592 + 26.9079i 0.240954 + 0.258730i
\(105\) 255.729 + 42.9760i 2.43552 + 0.409296i
\(106\) −10.7773 + 6.22227i −0.101673 + 0.0587007i
\(107\) −67.0302 + 116.100i −0.626450 + 1.08504i 0.361808 + 0.932253i \(0.382160\pi\)
−0.988258 + 0.152791i \(0.951174\pi\)
\(108\) −12.3188 + 7.11227i −0.114063 + 0.0658544i
\(109\) 53.7515 + 31.0334i 0.493133 + 0.284710i 0.725873 0.687829i \(-0.241436\pi\)
−0.232740 + 0.972539i \(0.574769\pi\)
\(110\) 223.292 2.02992
\(111\) −61.4723 + 106.473i −0.553805 + 0.959218i
\(112\) 26.2336 9.78769i 0.234228 0.0873901i
\(113\) −15.4838 + 26.8187i −0.137024 + 0.237333i −0.926369 0.376617i \(-0.877087\pi\)
0.789345 + 0.613950i \(0.210421\pi\)
\(114\) −49.0884 + 85.0236i −0.430600 + 0.745821i
\(115\) −64.3743 −0.559777
\(116\) −0.719563 + 1.24632i −0.00620313 + 0.0107441i
\(117\) −68.8278 + 64.0990i −0.588272 + 0.547855i
\(118\) 18.6222i 0.157815i
\(119\) −25.3940 4.26753i −0.213395 0.0358616i
\(120\) −52.3896 90.7414i −0.436580 0.756179i
\(121\) −173.919 −1.43735
\(122\) −8.20453 + 14.2107i −0.0672502 + 0.116481i
\(123\) 113.428 65.4875i 0.922177 0.532419i
\(124\) −88.8404 −0.716455
\(125\) −317.472 −2.53978
\(126\) 25.0359 + 67.1029i 0.198698 + 0.532563i
\(127\) 24.8316 + 43.0096i 0.195524 + 0.338658i 0.947072 0.321020i \(-0.104026\pi\)
−0.751548 + 0.659678i \(0.770692\pi\)
\(128\) −9.79796 5.65685i −0.0765466 0.0441942i
\(129\) 187.208 + 108.085i 1.45122 + 0.837865i
\(130\) 115.198 + 123.696i 0.886135 + 0.951508i
\(131\) −148.863 + 85.9460i −1.13636 + 0.656076i −0.945526 0.325547i \(-0.894452\pi\)
−0.190831 + 0.981623i \(0.561118\pi\)
\(132\) 69.1951 + 119.849i 0.524205 + 0.907950i
\(133\) −93.0093 76.7789i −0.699318 0.577285i
\(134\) 19.6457 34.0274i 0.146610 0.253936i
\(135\) −56.6298 + 32.6952i −0.419480 + 0.242187i
\(136\) 5.20230 + 9.01066i 0.0382522 + 0.0662548i
\(137\) 37.7134 21.7738i 0.275280 0.158933i −0.356005 0.934484i \(-0.615861\pi\)
0.631285 + 0.775551i \(0.282528\pi\)
\(138\) −19.9487 34.5522i −0.144556 0.250379i
\(139\) 21.7494 + 12.5570i 0.156471 + 0.0903384i 0.576191 0.817315i \(-0.304538\pi\)
−0.419720 + 0.907654i \(0.637872\pi\)
\(140\) 120.596 44.9942i 0.861402 0.321387i
\(141\) 256.115 147.868i 1.81642 1.04871i
\(142\) −20.9279 36.2482i −0.147380 0.255269i
\(143\) −152.151 163.375i −1.06399 1.14248i
\(144\) 14.4697 25.0622i 0.100484 0.174043i
\(145\) −3.30784 + 5.72935i −0.0228127 + 0.0395128i
\(146\) −73.7980 + 42.6073i −0.505466 + 0.291831i
\(147\) −193.858 + 37.4042i −1.31876 + 0.254450i
\(148\) 61.0261i 0.412339i
\(149\) 154.197i 1.03488i 0.855719 + 0.517441i \(0.173115\pi\)
−0.855719 + 0.517441i \(0.826885\pi\)
\(150\) −169.608 293.770i −1.13072 1.95847i
\(151\) 38.2961 + 22.1103i 0.253617 + 0.146426i 0.621419 0.783478i \(-0.286556\pi\)
−0.367802 + 0.929904i \(0.619890\pi\)
\(152\) 48.7321i 0.320606i
\(153\) −23.0484 + 13.3070i −0.150643 + 0.0869738i
\(154\) −159.281 + 59.4274i −1.03429 + 0.385892i
\(155\) −408.401 −2.63484
\(156\) −30.6944 + 100.163i −0.196759 + 0.642070i
\(157\) 112.372 + 64.8778i 0.715743 + 0.413235i 0.813184 0.582007i \(-0.197732\pi\)
−0.0974406 + 0.995241i \(0.531066\pi\)
\(158\) 187.748i 1.18828i
\(159\) −30.7057 17.7279i −0.193117 0.111496i
\(160\) −45.0414 26.0046i −0.281509 0.162529i
\(161\) 45.9203 17.1327i 0.285219 0.106414i
\(162\) −114.845 66.3059i −0.708921 0.409295i
\(163\) 214.343i 1.31499i −0.753460 0.657494i \(-0.771617\pi\)
0.753460 0.657494i \(-0.228383\pi\)
\(164\) 32.5061 56.3022i 0.198208 0.343306i
\(165\) 318.091 + 550.950i 1.92782 + 3.33909i
\(166\) 132.454 + 76.4721i 0.797913 + 0.460675i
\(167\) 70.0407 + 121.314i 0.419405 + 0.726431i 0.995880 0.0906838i \(-0.0289053\pi\)
−0.576474 + 0.817115i \(0.695572\pi\)
\(168\) 61.5213 + 50.7857i 0.366198 + 0.302296i
\(169\) 12.0089 168.573i 0.0710587 0.997472i
\(170\) 23.9151 + 41.4221i 0.140677 + 0.243660i
\(171\) −124.652 −0.728958
\(172\) 107.300 0.623837
\(173\) 302.316i 1.74749i −0.486383 0.873746i \(-0.661684\pi\)
0.486383 0.873746i \(-0.338316\pi\)
\(174\) −4.10023 −0.0235645
\(175\) 390.423 145.666i 2.23099 0.832376i
\(176\) 59.4897 + 34.3464i 0.338010 + 0.195150i
\(177\) 45.9484 26.5283i 0.259596 0.149878i
\(178\) 119.097 68.7609i 0.669086 0.386297i
\(179\) −183.417 −1.02468 −0.512339 0.858783i \(-0.671221\pi\)
−0.512339 + 0.858783i \(0.671221\pi\)
\(180\) 66.5173 115.211i 0.369541 0.640063i
\(181\) 220.794i 1.21986i 0.792456 + 0.609929i \(0.208802\pi\)
−0.792456 + 0.609929i \(0.791198\pi\)
\(182\) −115.095 57.5774i −0.632390 0.316359i
\(183\) −46.7512 −0.255471
\(184\) −17.1507 9.90197i −0.0932104 0.0538150i
\(185\) 280.538i 1.51642i
\(186\) −126.558 219.205i −0.680419 1.17852i
\(187\) −31.5866 54.7095i −0.168912 0.292564i
\(188\) 73.3975 127.128i 0.390412 0.676214i
\(189\) 31.6943 38.3941i 0.167694 0.203144i
\(190\) 224.022i 1.17906i
\(191\) −9.41722 −0.0493048 −0.0246524 0.999696i \(-0.507848\pi\)
−0.0246524 + 0.999696i \(0.507848\pi\)
\(192\) 32.2340i 0.167885i
\(193\) 34.3839i 0.178155i 0.996025 + 0.0890774i \(0.0283919\pi\)
−0.996025 + 0.0890774i \(0.971608\pi\)
\(194\) 96.9331 55.9643i 0.499655 0.288476i
\(195\) −141.103 + 460.450i −0.723603 + 2.36128i
\(196\) −74.0503 + 64.1915i −0.377808 + 0.327508i
\(197\) 100.680 58.1276i 0.511065 0.295064i −0.222206 0.975000i \(-0.571326\pi\)
0.733271 + 0.679936i \(0.237992\pi\)
\(198\) −87.8548 + 152.169i −0.443711 + 0.768530i
\(199\) −86.5735 + 49.9833i −0.435043 + 0.251172i −0.701493 0.712677i \(-0.747483\pi\)
0.266450 + 0.963849i \(0.414149\pi\)
\(200\) −145.819 84.1884i −0.729093 0.420942i
\(201\) 111.946 0.556943
\(202\) 7.80190 13.5133i 0.0386233 0.0668975i
\(203\) 0.834767 4.96729i 0.00411215 0.0244694i
\(204\) −14.8219 + 25.6723i −0.0726565 + 0.125845i
\(205\) 149.431 258.822i 0.728932 1.26255i
\(206\) 227.159 1.10271
\(207\) 25.3283 43.8698i 0.122359 0.211932i
\(208\) 11.6644 + 50.6749i 0.0560787 + 0.243629i
\(209\) 295.884i 1.41571i
\(210\) 282.814 + 233.463i 1.34674 + 1.11173i
\(211\) −160.266 277.589i −0.759555 1.31559i −0.943078 0.332573i \(-0.892083\pi\)
0.183522 0.983016i \(-0.441250\pi\)
\(212\) −17.5992 −0.0830153
\(213\) 59.6259 103.275i 0.279934 0.484859i
\(214\) −164.190 + 94.7950i −0.767242 + 0.442967i
\(215\) 493.260 2.29423
\(216\) −20.1165 −0.0931321
\(217\) 291.325 108.693i 1.34251 0.500888i
\(218\) 43.8879 + 76.0161i 0.201321 + 0.348698i
\(219\) −210.258 121.393i −0.960084 0.554305i
\(220\) 273.475 + 157.891i 1.24307 + 0.717687i
\(221\) 14.0115 45.7229i 0.0634006 0.206891i
\(222\) −150.576 + 86.9350i −0.678270 + 0.391599i
\(223\) 158.432 + 274.412i 0.710458 + 1.23055i 0.964686 + 0.263404i \(0.0848453\pi\)
−0.254228 + 0.967144i \(0.581821\pi\)
\(224\) 39.0504 + 6.56253i 0.174332 + 0.0292970i
\(225\) 215.346 372.990i 0.957092 1.65773i
\(226\) −37.9273 + 21.8973i −0.167820 + 0.0968909i
\(227\) 70.5513 + 122.198i 0.310799 + 0.538319i 0.978535 0.206078i \(-0.0660702\pi\)
−0.667737 + 0.744397i \(0.732737\pi\)
\(228\) −120.241 + 69.4215i −0.527375 + 0.304480i
\(229\) 38.3046 + 66.3454i 0.167269 + 0.289718i 0.937459 0.348097i \(-0.113172\pi\)
−0.770190 + 0.637815i \(0.779839\pi\)
\(230\) −78.8421 45.5195i −0.342792 0.197911i
\(231\) −373.536 308.353i −1.61704 1.33486i
\(232\) −1.76256 + 1.01762i −0.00759725 + 0.00438627i
\(233\) −137.436 238.046i −0.589853 1.02166i −0.994251 0.107073i \(-0.965852\pi\)
0.404398 0.914583i \(-0.367481\pi\)
\(234\) −129.621 + 29.8363i −0.553937 + 0.127506i
\(235\) 337.409 584.410i 1.43578 2.48685i
\(236\) 13.1679 22.8074i 0.0557961 0.0966417i
\(237\) 463.251 267.458i 1.95464 1.12851i
\(238\) −28.0836 23.1829i −0.117998 0.0974072i
\(239\) 177.253i 0.741646i 0.928704 + 0.370823i \(0.120924\pi\)
−0.928704 + 0.370823i \(0.879076\pi\)
\(240\) 148.180i 0.617417i
\(241\) −159.932 277.010i −0.663617 1.14942i −0.979658 0.200673i \(-0.935687\pi\)
0.316041 0.948746i \(-0.397646\pi\)
\(242\) −213.007 122.979i −0.880192 0.508179i
\(243\) 313.815i 1.29142i
\(244\) −20.0969 + 11.6030i −0.0823644 + 0.0475531i
\(245\) −340.410 + 295.090i −1.38943 + 1.20445i
\(246\) 185.227 0.752954
\(247\) 163.910 152.648i 0.663602 0.618010i
\(248\) −108.807 62.8196i −0.438737 0.253305i
\(249\) 435.755i 1.75002i
\(250\) −388.822 224.487i −1.55529 0.897946i
\(251\) −27.6527 15.9653i −0.110170 0.0636067i 0.443902 0.896075i \(-0.353594\pi\)
−0.554073 + 0.832468i \(0.686927\pi\)
\(252\) −16.7863 + 99.8871i −0.0666123 + 0.396377i
\(253\) 104.133 + 60.1212i 0.411593 + 0.237633i
\(254\) 70.2344i 0.276513i
\(255\) −68.1366 + 118.016i −0.267203 + 0.462808i
\(256\) −8.00000 13.8564i −0.0312500 0.0541266i
\(257\) 31.7225 + 18.3150i 0.123434 + 0.0712646i 0.560446 0.828191i \(-0.310630\pi\)
−0.437012 + 0.899456i \(0.643963\pi\)
\(258\) 152.855 + 264.752i 0.592460 + 1.02617i
\(259\) −74.6631 200.117i −0.288274 0.772652i
\(260\) 53.6213 + 232.953i 0.206236 + 0.895974i
\(261\) −2.60296 4.50846i −0.00997303 0.0172738i
\(262\) −243.092 −0.927832
\(263\) −422.407 −1.60611 −0.803056 0.595904i \(-0.796794\pi\)
−0.803056 + 0.595904i \(0.796794\pi\)
\(264\) 195.713i 0.741338i
\(265\) −80.9040 −0.305298
\(266\) −59.6218 159.802i −0.224142 0.600760i
\(267\) 339.321 + 195.907i 1.27087 + 0.733735i
\(268\) 48.1220 27.7832i 0.179560 0.103669i
\(269\) −385.918 + 222.810i −1.43464 + 0.828290i −0.997470 0.0710895i \(-0.977352\pi\)
−0.437170 + 0.899379i \(0.644019\pi\)
\(270\) −92.4761 −0.342504
\(271\) −184.235 + 319.104i −0.679833 + 1.17750i 0.295198 + 0.955436i \(0.404614\pi\)
−0.975031 + 0.222069i \(0.928719\pi\)
\(272\) 14.7143i 0.0540968i
\(273\) −21.8924 366.007i −0.0801920 1.34069i
\(274\) 61.5857 0.224765
\(275\) 885.359 + 511.162i 3.21949 + 1.85877i
\(276\) 56.4236i 0.204433i
\(277\) −166.583 288.530i −0.601382 1.04162i −0.992612 0.121331i \(-0.961284\pi\)
0.391230 0.920293i \(-0.372050\pi\)
\(278\) 17.7583 + 30.7583i 0.0638789 + 0.110641i
\(279\) 160.686 278.317i 0.575937 0.997552i
\(280\) 179.515 + 30.1681i 0.641126 + 0.107743i
\(281\) 289.853i 1.03151i −0.856738 0.515753i \(-0.827512\pi\)
0.856738 0.515753i \(-0.172488\pi\)
\(282\) 418.235 1.48310
\(283\) 15.5507i 0.0549494i 0.999622 + 0.0274747i \(0.00874658\pi\)
−0.999622 + 0.0274747i \(0.991253\pi\)
\(284\) 59.1930i 0.208426i
\(285\) −552.752 + 319.132i −1.93948 + 1.11976i
\(286\) −70.8220 307.680i −0.247629 1.07580i
\(287\) −37.7104 + 224.396i −0.131395 + 0.781868i
\(288\) 35.4433 20.4632i 0.123067 0.0710528i
\(289\) −137.734 + 238.562i −0.476588 + 0.825475i
\(290\) −8.10253 + 4.67800i −0.0279397 + 0.0161310i
\(291\) 276.173 + 159.448i 0.949048 + 0.547933i
\(292\) −120.512 −0.412711
\(293\) −126.969 + 219.916i −0.433340 + 0.750566i −0.997159 0.0753321i \(-0.975998\pi\)
0.563819 + 0.825899i \(0.309332\pi\)
\(294\) −263.875 91.2674i −0.897534 0.310433i
\(295\) 60.5330 104.846i 0.205197 0.355411i
\(296\) −43.1520 + 74.7414i −0.145784 + 0.252505i
\(297\) 122.141 0.411248
\(298\) −109.034 + 188.852i −0.365886 + 0.633733i
\(299\) 20.4178 + 88.7032i 0.0682868 + 0.296666i
\(300\) 479.724i 1.59908i
\(301\) −351.858 + 131.277i −1.16896 + 0.436137i
\(302\) 31.2687 + 54.1589i 0.103539 + 0.179334i
\(303\) 44.4569 0.146723
\(304\) −34.4588 + 59.6843i −0.113351 + 0.196330i
\(305\) −92.3858 + 53.3390i −0.302904 + 0.174882i
\(306\) −37.6378 −0.122999
\(307\) 272.611 0.887982 0.443991 0.896031i \(-0.353562\pi\)
0.443991 + 0.896031i \(0.353562\pi\)
\(308\) −237.100 39.8454i −0.769806 0.129368i
\(309\) 323.600 + 560.491i 1.04725 + 1.81389i
\(310\) −500.187 288.783i −1.61350 0.931558i
\(311\) −250.624 144.698i −0.805866 0.465267i 0.0396525 0.999214i \(-0.487375\pi\)
−0.845518 + 0.533947i \(0.820708\pi\)
\(312\) −108.419 + 100.970i −0.347496 + 0.323621i
\(313\) 248.246 143.325i 0.793117 0.457906i −0.0479417 0.998850i \(-0.515266\pi\)
0.841059 + 0.540944i \(0.181933\pi\)
\(314\) 91.7511 + 158.918i 0.292201 + 0.506107i
\(315\) −77.1669 + 459.182i −0.244974 + 1.45772i
\(316\) 132.758 229.944i 0.420121 0.727671i
\(317\) −72.1894 + 41.6786i −0.227727 + 0.131478i −0.609523 0.792768i \(-0.708639\pi\)
0.381796 + 0.924247i \(0.375306\pi\)
\(318\) −25.0711 43.4244i −0.0788399 0.136555i
\(319\) 10.7017 6.17860i 0.0335475 0.0193687i
\(320\) −36.7761 63.6981i −0.114925 0.199057i
\(321\) −467.794 270.081i −1.45730 0.841375i
\(322\) 68.3553 + 11.4873i 0.212283 + 0.0356748i
\(323\) 54.8885 31.6899i 0.169933 0.0981111i
\(324\) −93.7707 162.416i −0.289416 0.501283i
\(325\) 173.596 + 754.172i 0.534141 + 2.32053i
\(326\) 151.563 262.515i 0.464918 0.805262i
\(327\) −125.041 + 216.578i −0.382389 + 0.662318i
\(328\) 79.6233 45.9706i 0.242754 0.140154i
\(329\) −85.1486 + 506.677i −0.258810 + 1.54005i
\(330\) 899.697i 2.72636i
\(331\) 299.299i 0.904225i 0.891961 + 0.452113i \(0.149329\pi\)
−0.891961 + 0.452113i \(0.850671\pi\)
\(332\) 108.148 + 187.318i 0.325747 + 0.564210i
\(333\) −191.181 110.379i −0.574118 0.331467i
\(334\) 198.105i 0.593129i
\(335\) 221.217 127.720i 0.660351 0.381254i
\(336\) 39.4370 + 105.702i 0.117372 + 0.314588i
\(337\) −605.486 −1.79669 −0.898347 0.439286i \(-0.855232\pi\)
−0.898347 + 0.439286i \(0.855232\pi\)
\(338\) 133.907 197.967i 0.396174 0.585701i
\(339\) −108.059 62.3879i −0.318758 0.184035i
\(340\) 67.6421i 0.198947i
\(341\) 660.636 + 381.419i 1.93735 + 1.11853i
\(342\) −152.667 88.1421i −0.446394 0.257726i
\(343\) 164.290 301.094i 0.478979 0.877826i
\(344\) 131.415 + 75.8725i 0.382021 + 0.220560i
\(345\) 259.380i 0.751826i
\(346\) 213.770 370.260i 0.617832 1.07012i
\(347\) −12.6363 21.8868i −0.0364159 0.0630742i 0.847243 0.531205i \(-0.178261\pi\)
−0.883659 + 0.468131i \(0.844927\pi\)
\(348\) −5.02173 2.89930i −0.0144303 0.00833131i
\(349\) 276.022 + 478.084i 0.790894 + 1.36987i 0.925414 + 0.378958i \(0.123717\pi\)
−0.134520 + 0.990911i \(0.542949\pi\)
\(350\) 581.170 + 97.6672i 1.66048 + 0.279049i
\(351\) 63.0131 + 67.6618i 0.179524 + 0.192769i
\(352\) 48.5732 + 84.1312i 0.137992 + 0.239009i
\(353\) 150.830 0.427279 0.213640 0.976913i \(-0.431468\pi\)
0.213640 + 0.976913i \(0.431468\pi\)
\(354\) 75.0335 0.211959
\(355\) 272.111i 0.766511i
\(356\) 194.485 0.546307
\(357\) 17.1950 102.319i 0.0481651 0.286607i
\(358\) −224.640 129.696i −0.627485 0.362279i
\(359\) 53.1461 30.6839i 0.148039 0.0854705i −0.424151 0.905592i \(-0.639427\pi\)
0.572190 + 0.820121i \(0.306094\pi\)
\(360\) 162.934 94.0697i 0.452593 0.261305i
\(361\) −64.1483 −0.177696
\(362\) −156.125 + 270.417i −0.431285 + 0.747007i
\(363\) 700.763i 1.93048i
\(364\) −100.249 151.902i −0.275408 0.417313i
\(365\) −553.994 −1.51779
\(366\) −57.2583 33.0581i −0.156443 0.0903226i
\(367\) 412.194i 1.12314i 0.827428 + 0.561572i \(0.189803\pi\)
−0.827428 + 0.561572i \(0.810197\pi\)
\(368\) −14.0035 24.2548i −0.0380530 0.0659097i
\(369\) 117.588 + 203.669i 0.318667 + 0.551948i
\(370\) −198.370 + 343.588i −0.536136 + 0.928615i
\(371\) 57.7114 21.5320i 0.155556 0.0580377i
\(372\) 357.960i 0.962258i
\(373\) 167.917 0.450179 0.225089 0.974338i \(-0.427733\pi\)
0.225089 + 0.974338i \(0.427733\pi\)
\(374\) 89.3403i 0.238878i
\(375\) 1279.17i 3.41113i
\(376\) 179.786 103.800i 0.478155 0.276063i
\(377\) 8.94379 + 2.74078i 0.0237236 + 0.00726996i
\(378\) 65.9661 24.6118i 0.174514 0.0651106i
\(379\) −180.041 + 103.947i −0.475042 + 0.274266i −0.718348 0.695684i \(-0.755101\pi\)
0.243306 + 0.969950i \(0.421768\pi\)
\(380\) −158.408 + 274.370i −0.416862 + 0.722026i
\(381\) −173.296 + 100.053i −0.454846 + 0.262605i
\(382\) −11.5337 6.65898i −0.0301929 0.0174319i
\(383\) −506.267 −1.32185 −0.660924 0.750453i \(-0.729835\pi\)
−0.660924 + 0.750453i \(0.729835\pi\)
\(384\) 22.7929 39.4784i 0.0593564 0.102808i
\(385\) −1089.95 183.170i −2.83105 0.475766i
\(386\) −24.3131 + 42.1115i −0.0629873 + 0.109097i
\(387\) −194.074 + 336.147i −0.501484 + 0.868596i
\(388\) 158.291 0.407967
\(389\) −132.829 + 230.066i −0.341462 + 0.591429i −0.984704 0.174233i \(-0.944255\pi\)
0.643243 + 0.765662i \(0.277589\pi\)
\(390\) −498.402 + 464.160i −1.27795 + 1.19015i
\(391\) 25.7565i 0.0658735i
\(392\) −136.083 + 26.2568i −0.347150 + 0.0669816i
\(393\) −346.298 599.805i −0.881165 1.52622i
\(394\) 164.410 0.417283
\(395\) 610.292 1057.06i 1.54504 2.67609i
\(396\) −215.199 + 124.245i −0.543433 + 0.313751i
\(397\) 196.496 0.494951 0.247476 0.968894i \(-0.420399\pi\)
0.247476 + 0.968894i \(0.420399\pi\)
\(398\) −141.374 −0.355211
\(399\) 309.361 374.758i 0.775342 0.939242i
\(400\) −119.060 206.219i −0.297651 0.515547i
\(401\) −15.8779 9.16713i −0.0395958 0.0228607i 0.480071 0.877229i \(-0.340611\pi\)
−0.519667 + 0.854369i \(0.673944\pi\)
\(402\) 137.105 + 79.1574i 0.341056 + 0.196909i
\(403\) 129.533 + 562.747i 0.321423 + 1.39639i
\(404\) 19.1107 11.0336i 0.0473037 0.0273108i
\(405\) −431.065 746.627i −1.06436 1.84352i
\(406\) 4.53478 5.49339i 0.0111694 0.0135305i
\(407\) 262.004 453.804i 0.643743 1.11500i
\(408\) −36.3062 + 20.9614i −0.0889857 + 0.0513759i
\(409\) 27.6031 + 47.8100i 0.0674893 + 0.116895i 0.897795 0.440413i \(-0.145168\pi\)
−0.830306 + 0.557307i \(0.811834\pi\)
\(410\) 366.030 211.327i 0.892755 0.515433i
\(411\) 87.7321 + 151.957i 0.213460 + 0.369724i
\(412\) 278.211 + 160.625i 0.675270 + 0.389867i
\(413\) −15.2761 + 90.9005i −0.0369881 + 0.220098i
\(414\) 62.0413 35.8196i 0.149858 0.0865207i
\(415\) 497.158 + 861.102i 1.19797 + 2.07495i
\(416\) −21.5467 + 70.3117i −0.0517948 + 0.169019i
\(417\) −50.5954 + 87.6338i −0.121332 + 0.210153i
\(418\) 209.221 362.382i 0.500530 0.866943i
\(419\) −595.399 + 343.754i −1.42100 + 0.820415i −0.996384 0.0849586i \(-0.972924\pi\)
−0.424616 + 0.905374i \(0.639591\pi\)
\(420\) 181.293 + 485.912i 0.431649 + 1.15693i
\(421\) 584.326i 1.38795i −0.720001 0.693973i \(-0.755859\pi\)
0.720001 0.693973i \(-0.244141\pi\)
\(422\) 453.301i 1.07417i
\(423\) 265.509 + 459.876i 0.627682 + 1.08718i
\(424\) −21.5546 12.4445i −0.0508363 0.0293503i
\(425\) 218.987i 0.515263i
\(426\) 146.053 84.3237i 0.342847 0.197943i
\(427\) 51.7060 62.6362i 0.121091 0.146689i
\(428\) −268.121 −0.626450
\(429\) 658.280 613.053i 1.53445 1.42903i
\(430\) 604.117 + 348.787i 1.40492 + 0.811133i
\(431\) 3.28529i 0.00762248i 0.999993 + 0.00381124i \(0.00121316\pi\)
−0.999993 + 0.00381124i \(0.998787\pi\)
\(432\) −24.6376 14.2245i −0.0570315 0.0329272i
\(433\) −244.440 141.128i −0.564527 0.325930i 0.190434 0.981700i \(-0.439011\pi\)
−0.754960 + 0.655770i \(0.772344\pi\)
\(434\) 433.656 + 72.8772i 0.999208 + 0.167920i
\(435\) −23.0850 13.3281i −0.0530689 0.0306393i
\(436\) 124.134i 0.284710i
\(437\) −60.3179 + 104.474i −0.138027 + 0.239070i
\(438\) −171.675 297.350i −0.391953 0.678882i
\(439\) 303.629 + 175.300i 0.691638 + 0.399317i 0.804225 0.594325i \(-0.202581\pi\)
−0.112588 + 0.993642i \(0.535914\pi\)
\(440\) 223.292 + 386.752i 0.507481 + 0.878983i
\(441\) −67.1623 348.087i −0.152295 0.789313i
\(442\) 49.4915 46.0912i 0.111972 0.104279i
\(443\) 15.8959 + 27.5325i 0.0358824 + 0.0621501i 0.883409 0.468603i \(-0.155243\pi\)
−0.847527 + 0.530753i \(0.821909\pi\)
\(444\) −245.889 −0.553805
\(445\) 894.051 2.00910
\(446\) 448.113i 1.00474i
\(447\) −621.299 −1.38993
\(448\) 43.1864 + 35.6502i 0.0963981 + 0.0795764i
\(449\) −271.586 156.800i −0.604868 0.349221i 0.166086 0.986111i \(-0.446887\pi\)
−0.770954 + 0.636891i \(0.780220\pi\)
\(450\) 527.487 304.545i 1.17219 0.676767i
\(451\) −483.445 + 279.117i −1.07194 + 0.618885i
\(452\) −61.9350 −0.137024
\(453\) −89.0878 + 154.305i −0.196662 + 0.340628i
\(454\) 199.549i 0.439536i
\(455\) −460.844 698.296i −1.01284 1.53472i
\(456\) −196.354 −0.430600
\(457\) 84.0335 + 48.5168i 0.183881 + 0.106164i 0.589115 0.808049i \(-0.299477\pi\)
−0.405234 + 0.914213i \(0.632810\pi\)
\(458\) 108.342i 0.236554i
\(459\) 13.0815 + 22.6579i 0.0285001 + 0.0493636i
\(460\) −64.3743 111.500i −0.139944 0.242390i
\(461\) 244.363 423.249i 0.530071 0.918110i −0.469314 0.883032i \(-0.655499\pi\)
0.999385 0.0350783i \(-0.0111681\pi\)
\(462\) −239.448 641.783i −0.518285 1.38914i
\(463\) 570.309i 1.23177i 0.787837 + 0.615884i \(0.211201\pi\)
−0.787837 + 0.615884i \(0.788799\pi\)
\(464\) −2.87825 −0.00620313
\(465\) 1645.55i 3.53881i
\(466\) 388.727i 0.834178i
\(467\) −92.0182 + 53.1267i −0.197041 + 0.113762i −0.595275 0.803522i \(-0.702957\pi\)
0.398233 + 0.917284i \(0.369623\pi\)
\(468\) −179.851 55.1142i −0.384296 0.117765i
\(469\) −123.810 + 149.982i −0.263987 + 0.319791i
\(470\) 826.481 477.169i 1.75847 1.01525i
\(471\) −261.409 + 452.773i −0.555008 + 0.961303i
\(472\) 32.2546 18.6222i 0.0683360 0.0394538i
\(473\) −797.906 460.671i −1.68690 0.973935i
\(474\) 756.485 1.59596
\(475\) −512.835 + 888.255i −1.07965 + 1.87001i
\(476\) −18.0024 48.2512i −0.0378202 0.101368i
\(477\) 31.8319 55.1345i 0.0667336 0.115586i
\(478\) −125.337 + 217.090i −0.262211 + 0.454163i
\(479\) 33.2438 0.0694024 0.0347012 0.999398i \(-0.488952\pi\)
0.0347012 + 0.999398i \(0.488952\pi\)
\(480\) 104.779 181.483i 0.218290 0.378089i
\(481\) 386.561 88.9790i 0.803662 0.184987i
\(482\) 452.355i 0.938497i
\(483\) 69.0320 + 185.024i 0.142923 + 0.383073i
\(484\) −173.919 301.237i −0.359337 0.622390i
\(485\) 727.667 1.50034
\(486\) 221.901 384.343i 0.456586 0.790829i
\(487\) 311.789 180.011i 0.640223 0.369633i −0.144477 0.989508i \(-0.546150\pi\)
0.784701 + 0.619875i \(0.212817\pi\)
\(488\) −32.8181 −0.0672502
\(489\) 863.641 1.76614
\(490\) −625.576 + 120.703i −1.27669 + 0.246332i
\(491\) 242.721 + 420.404i 0.494339 + 0.856221i 0.999979 0.00652400i \(-0.00207667\pi\)
−0.505639 + 0.862745i \(0.668743\pi\)
\(492\) 226.856 + 130.975i 0.461088 + 0.266210i
\(493\) 2.29235 + 1.32349i 0.00464979 + 0.00268456i
\(494\) 308.686 71.0536i 0.624871 0.143833i
\(495\) −989.275 + 571.158i −1.99854 + 1.15385i
\(496\) −88.8404 153.876i −0.179114 0.310234i
\(497\) 72.4204 + 194.106i 0.145715 + 0.390555i
\(498\) −308.125 + 533.688i −0.618725 + 1.07166i
\(499\) 295.490 170.601i 0.592164 0.341886i −0.173789 0.984783i \(-0.555601\pi\)
0.765953 + 0.642897i \(0.222268\pi\)
\(500\) −317.472 549.878i −0.634944 1.09976i
\(501\) −488.804 + 282.211i −0.975657 + 0.563296i
\(502\) −22.5783 39.1068i −0.0449767 0.0779020i
\(503\) 227.952 + 131.608i 0.453184 + 0.261646i 0.709174 0.705034i \(-0.249068\pi\)
−0.255990 + 0.966679i \(0.582401\pi\)
\(504\) −91.1898 + 110.466i −0.180932 + 0.219180i
\(505\) 87.8521 50.7214i 0.173965 0.100438i
\(506\) 85.0243 + 147.266i 0.168032 + 0.291040i
\(507\) 679.222 + 48.3869i 1.33969 + 0.0954378i
\(508\) −49.6632 + 86.0192i −0.0977622 + 0.169329i
\(509\) 79.9178 138.422i 0.157009 0.271948i −0.776779 0.629773i \(-0.783148\pi\)
0.933789 + 0.357824i \(0.116481\pi\)
\(510\) −166.900 + 96.3598i −0.327255 + 0.188941i
\(511\) 395.181 147.441i 0.773349 0.288535i
\(512\) 22.6274i 0.0441942i
\(513\) 122.540i 0.238869i
\(514\) 25.9013 + 44.8624i 0.0503917 + 0.0872810i
\(515\) 1278.94 + 738.397i 2.48338 + 1.43378i
\(516\) 432.338i 0.837865i
\(517\) −1091.60 + 630.235i −2.11141 + 1.21902i
\(518\) 50.0607 297.887i 0.0966423 0.575071i
\(519\) 1218.11 2.34703
\(520\) −99.0503 + 323.224i −0.190481 + 0.621585i
\(521\) 676.625 + 390.650i 1.29870 + 0.749808i 0.980180 0.198107i \(-0.0634793\pi\)
0.318525 + 0.947915i \(0.396813\pi\)
\(522\) 7.36229i 0.0141040i
\(523\) −719.435 415.366i −1.37559 0.794199i −0.383967 0.923347i \(-0.625442\pi\)
−0.991625 + 0.129148i \(0.958776\pi\)
\(524\) −297.726 171.892i −0.568179 0.328038i
\(525\) 586.924 + 1573.11i 1.11795 + 2.99640i
\(526\) −517.341 298.687i −0.983538 0.567846i
\(527\) 163.403i 0.310063i
\(528\) −138.390 + 239.699i −0.262103 + 0.453975i
\(529\) 239.988 + 415.671i 0.453663 + 0.785767i
\(530\) −99.0867 57.2078i −0.186956 0.107939i
\(531\) 47.6338 + 82.5041i 0.0897058 + 0.155375i
\(532\) 39.9757 237.876i 0.0751423 0.447135i
\(533\) −404.034 123.814i −0.758037 0.232296i
\(534\) 277.055 + 479.873i 0.518829 + 0.898638i
\(535\) −1232.56 −2.30384
\(536\) 78.5828 0.146610
\(537\) 739.034i 1.37623i
\(538\) −630.202 −1.17138
\(539\) 826.248 159.422i 1.53293 0.295774i
\(540\) −113.260 65.3904i −0.209740 0.121093i
\(541\) −55.8428 + 32.2408i −0.103221 + 0.0595949i −0.550722 0.834689i \(-0.685648\pi\)
0.447501 + 0.894284i \(0.352314\pi\)
\(542\) −451.281 + 260.547i −0.832621 + 0.480714i
\(543\) −889.635 −1.63837
\(544\) −10.4046 + 18.0213i −0.0191261 + 0.0331274i
\(545\) 570.645i 1.04705i
\(546\) 231.994 463.746i 0.424897 0.849352i
\(547\) −196.545 −0.359314 −0.179657 0.983729i \(-0.557499\pi\)
−0.179657 + 0.983729i \(0.557499\pi\)
\(548\) 75.4267 + 43.5477i 0.137640 + 0.0794665i
\(549\) 83.9455i 0.152906i
\(550\) 722.893 + 1252.09i 1.31435 + 2.27652i
\(551\) 6.19881 + 10.7367i 0.0112501 + 0.0194858i
\(552\) 39.8975 69.1045i 0.0722781 0.125189i
\(553\) −154.013 + 916.456i −0.278505 + 1.65724i
\(554\) 471.167i 0.850483i
\(555\) −1130.36 −2.03668
\(556\) 50.2281i 0.0903384i
\(557\) 448.600i 0.805386i −0.915335 0.402693i \(-0.868074\pi\)
0.915335 0.402693i \(-0.131926\pi\)
\(558\) 393.600 227.245i 0.705376 0.407249i
\(559\) −156.448 679.676i −0.279872 1.21588i
\(560\) 198.528 + 163.885i 0.354515 + 0.292651i
\(561\) 220.438 127.270i 0.392938 0.226863i
\(562\) 204.957 354.996i 0.364692 0.631665i
\(563\) 448.726 259.072i 0.797027 0.460164i −0.0454038 0.998969i \(-0.514457\pi\)
0.842430 + 0.538805i \(0.181124\pi\)
\(564\) 512.231 + 295.737i 0.908211 + 0.524356i
\(565\) −284.716 −0.503923
\(566\) −10.9960 + 19.0456i −0.0194276 + 0.0336495i
\(567\) 506.202 + 417.868i 0.892772 + 0.736981i
\(568\) 41.8558 72.4964i 0.0736898 0.127634i
\(569\) 343.450 594.874i 0.603604 1.04547i −0.388667 0.921378i \(-0.627064\pi\)
0.992271 0.124094i \(-0.0396023\pi\)
\(570\) −902.640 −1.58358
\(571\) 321.533 556.911i 0.563105 0.975326i −0.434118 0.900856i \(-0.642940\pi\)
0.997223 0.0744705i \(-0.0237267\pi\)
\(572\) 130.824 426.908i 0.228713 0.746343i
\(573\) 37.9443i 0.0662205i
\(574\) −204.858 + 248.163i −0.356895 + 0.432339i
\(575\) −208.408 360.973i −0.362448 0.627779i
\(576\) 57.8787 0.100484
\(577\) 139.909 242.329i 0.242476 0.419981i −0.718943 0.695069i \(-0.755374\pi\)
0.961419 + 0.275088i \(0.0887071\pi\)
\(578\) −337.378 + 194.785i −0.583699 + 0.336999i
\(579\) −138.541 −0.239277
\(580\) −13.2314 −0.0228127
\(581\) −583.814 481.937i −1.00484 0.829496i
\(582\) 225.494 + 390.567i 0.387447 + 0.671078i
\(583\) 130.872 + 75.5589i 0.224480 + 0.129604i
\(584\) −147.596 85.2146i −0.252733 0.145915i
\(585\) −826.776 253.361i −1.41329 0.433096i
\(586\) −311.008 + 179.561i −0.530731 + 0.306417i
\(587\) −522.694 905.332i −0.890449 1.54230i −0.839338 0.543610i \(-0.817057\pi\)
−0.0511114 0.998693i \(-0.516276\pi\)
\(588\) −258.644 298.367i −0.439870 0.507427i
\(589\) −382.666 + 662.797i −0.649688 + 1.12529i
\(590\) 148.275 85.6066i 0.251313 0.145096i
\(591\) 234.210 + 405.664i 0.396295 + 0.686403i
\(592\) −105.700 + 61.0261i −0.178548 + 0.103085i
\(593\) −300.390 520.290i −0.506559 0.877387i −0.999971 0.00759089i \(-0.997584\pi\)
0.493412 0.869796i \(-0.335750\pi\)
\(594\) 149.591 + 86.3664i 0.251837 + 0.145398i
\(595\) −82.7574 221.812i −0.139088 0.372793i
\(596\) −267.078 + 154.197i −0.448117 + 0.258720i
\(597\) −201.395 348.826i −0.337345 0.584299i
\(598\) −37.7161 + 123.076i −0.0630703 + 0.205813i
\(599\) −158.885 + 275.197i −0.265251 + 0.459428i −0.967629 0.252376i \(-0.918788\pi\)
0.702378 + 0.711804i \(0.252121\pi\)
\(600\) 339.216 587.540i 0.565360 0.979233i
\(601\) 906.763 523.520i 1.50876 0.871082i 0.508810 0.860879i \(-0.330086\pi\)
0.999948 0.0102029i \(-0.00324774\pi\)
\(602\) −523.763 88.0199i −0.870038 0.146212i
\(603\) 201.007i 0.333345i
\(604\) 88.4411i 0.146426i
\(605\) −799.509 1384.79i −1.32150 2.28891i
\(606\) 54.4484 + 31.4358i 0.0898489 + 0.0518743i
\(607\) 119.972i 0.197647i 0.995105 + 0.0988235i \(0.0315079\pi\)
−0.995105 + 0.0988235i \(0.968492\pi\)
\(608\) −84.4064 + 48.7321i −0.138826 + 0.0801514i
\(609\) 20.0144 + 3.36348i 0.0328644 + 0.00552296i
\(610\) −150.865 −0.247320
\(611\) −912.292 279.567i −1.49311 0.457556i
\(612\) −46.0967 26.6140i −0.0753215 0.0434869i
\(613\) 13.3868i 0.0218381i −0.999940 0.0109191i \(-0.996524\pi\)
0.999940 0.0109191i \(-0.00347572\pi\)
\(614\) 333.878 + 192.765i 0.543776 + 0.313949i
\(615\) 1042.86 + 602.095i 1.69570 + 0.979016i
\(616\) −262.212 216.456i −0.425669 0.351389i
\(617\) 602.948 + 348.112i 0.977225 + 0.564201i 0.901431 0.432923i \(-0.142518\pi\)
0.0757935 + 0.997124i \(0.475851\pi\)
\(618\) 915.278i 1.48103i
\(619\) −459.302 + 795.534i −0.742006 + 1.28519i 0.209574 + 0.977793i \(0.432792\pi\)
−0.951580 + 0.307400i \(0.900541\pi\)
\(620\) −408.401 707.371i −0.658711 1.14092i
\(621\) −43.1266 24.8992i −0.0694471 0.0400953i
\(622\) −204.634 354.436i −0.328993 0.569833i
\(623\) −637.755 + 237.945i −1.02368 + 0.381934i
\(624\) −204.182 + 46.9987i −0.327214 + 0.0753184i
\(625\) −715.296 1238.93i −1.14447 1.98229i
\(626\) 405.383 0.647577
\(627\) 1192.19 1.90142
\(628\) 259.511i 0.413235i
\(629\) 112.245 0.178450
\(630\) −419.201 + 507.816i −0.665398 + 0.806057i
\(631\) 610.860 + 352.680i 0.968082 + 0.558922i 0.898651 0.438664i \(-0.144548\pi\)
0.0694309 + 0.997587i \(0.477882\pi\)
\(632\) 325.190 187.748i 0.514541 0.297070i
\(633\) 1118.48 645.752i 1.76694 1.02015i
\(634\) −117.885 −0.185938
\(635\) −228.302 + 395.431i −0.359531 + 0.622727i
\(636\) 70.9117i 0.111496i
\(637\) 514.581 + 375.467i 0.807820 + 0.589430i
\(638\) 17.4757 0.0273914
\(639\) 185.439 + 107.063i 0.290201 + 0.167548i
\(640\) 104.019i 0.162529i
\(641\) −396.497 686.753i −0.618560 1.07138i −0.989749 0.142820i \(-0.954383\pi\)
0.371188 0.928558i \(-0.378950\pi\)
\(642\) −381.953 661.561i −0.594942 1.03047i
\(643\) 420.524 728.369i 0.654003 1.13277i −0.328140 0.944629i \(-0.606422\pi\)
0.982143 0.188137i \(-0.0602450\pi\)
\(644\) 75.5950 + 62.4035i 0.117384 + 0.0968998i
\(645\) 1987.47i 3.08134i
\(646\) 89.6325 0.138750
\(647\) 598.987i 0.925791i 0.886413 + 0.462896i \(0.153189\pi\)
−0.886413 + 0.462896i \(0.846811\pi\)
\(648\) 265.223i 0.409295i
\(649\) −195.839 + 113.067i −0.301754 + 0.174218i
\(650\) −320.669 + 1046.42i −0.493337 + 1.60987i
\(651\) 437.950 + 1173.82i 0.672734 + 1.80311i
\(652\) 371.253 214.343i 0.569406 0.328747i
\(653\) 206.768 358.132i 0.316643 0.548442i −0.663142 0.748493i \(-0.730778\pi\)
0.979785 + 0.200052i \(0.0641110\pi\)
\(654\) −306.288 + 176.835i −0.468330 + 0.270390i
\(655\) −1368.65 790.190i −2.08954 1.20640i
\(656\) 130.024 0.198208
\(657\) 217.970 377.536i 0.331766 0.574636i
\(658\) −462.560 + 560.341i −0.702979 + 0.851583i
\(659\) 9.17613 15.8935i 0.0139243 0.0241176i −0.858979 0.512010i \(-0.828901\pi\)
0.872904 + 0.487893i \(0.162234\pi\)
\(660\) −636.182 + 1101.90i −0.963912 + 1.66955i
\(661\) 975.962 1.47649 0.738246 0.674531i \(-0.235654\pi\)
0.738246 + 0.674531i \(0.235654\pi\)
\(662\) −211.636 + 366.564i −0.319692 + 0.553723i
\(663\) 184.229 + 56.4559i 0.277872 + 0.0851522i
\(664\) 305.888i 0.460675i
\(665\) 183.769 1093.52i 0.276344 1.64439i
\(666\) −156.099 270.371i −0.234383 0.405963i
\(667\) −5.03820 −0.00755352
\(668\) −140.081 + 242.628i −0.209703 + 0.363216i
\(669\) −1105.68 + 638.362i −1.65273 + 0.954203i
\(670\) 361.247 0.539174
\(671\) 199.260 0.296960
\(672\) −26.4421 + 157.344i −0.0393483 + 0.234142i
\(673\) 478.681 + 829.100i 0.711264 + 1.23195i 0.964383 + 0.264511i \(0.0852104\pi\)
−0.253119 + 0.967435i \(0.581456\pi\)
\(674\) −741.566 428.143i −1.10025 0.635227i
\(675\) −366.671 211.698i −0.543216 0.313626i
\(676\) 303.986 147.773i 0.449683 0.218599i
\(677\) −973.555 + 562.082i −1.43804 + 0.830255i −0.997714 0.0675817i \(-0.978472\pi\)
−0.440329 + 0.897836i \(0.645138\pi\)
\(678\) −88.2298 152.819i −0.130132 0.225396i
\(679\) −519.068 + 193.663i −0.764459 + 0.285218i
\(680\) −47.8302 + 82.8443i −0.0703385 + 0.121830i
\(681\) −492.368 + 284.269i −0.723007 + 0.417428i
\(682\) 539.407 + 934.281i 0.790920 + 1.36991i
\(683\) 344.216 198.733i 0.503976 0.290971i −0.226378 0.974040i \(-0.572688\pi\)
0.730354 + 0.683069i \(0.239355\pi\)
\(684\) −124.652 215.903i −0.182240 0.315648i
\(685\) 346.738 + 200.189i 0.506187 + 0.292247i
\(686\) 414.119 252.593i 0.603672 0.368212i
\(687\) −267.322 + 154.339i −0.389115 + 0.224656i
\(688\) 107.300 + 185.849i 0.155959 + 0.270129i
\(689\) 25.6605 + 111.480i 0.0372431 + 0.161800i
\(690\) 183.409 317.674i 0.265811 0.460398i
\(691\) −211.040 + 365.532i −0.305413 + 0.528990i −0.977353 0.211615i \(-0.932128\pi\)
0.671940 + 0.740605i \(0.265461\pi\)
\(692\) 523.627 302.316i 0.756686 0.436873i
\(693\) 553.672 670.713i 0.798950 0.967840i
\(694\) 35.7409i 0.0514999i
\(695\) 230.900i 0.332230i
\(696\) −4.10023 7.10180i −0.00589113 0.0102037i
\(697\) −103.556 59.7882i −0.148574 0.0857793i
\(698\) 780.708i 1.11849i
\(699\) 959.146 553.763i 1.37217 0.792222i
\(700\) 642.723 + 530.566i 0.918176 + 0.757952i
\(701\) 253.930 0.362240 0.181120 0.983461i \(-0.442028\pi\)
0.181120 + 0.983461i \(0.442028\pi\)
\(702\) 29.3309 + 127.425i 0.0417819 + 0.181518i
\(703\) 455.288 + 262.861i 0.647636 + 0.373913i
\(704\) 137.386i 0.195150i
\(705\) 2354.73 + 1359.51i 3.34005 + 1.92838i
\(706\) 184.728 + 106.653i 0.261654 + 0.151066i
\(707\) −49.1686 + 59.5624i −0.0695454 + 0.0842467i
\(708\) 91.8969 + 53.0567i 0.129798 + 0.0749388i
\(709\) 901.522i 1.27154i 0.771878 + 0.635770i \(0.219317\pi\)
−0.771878 + 0.635770i \(0.780683\pi\)
\(710\) 192.412 333.267i 0.271003 0.469390i
\(711\) 480.242 + 831.804i 0.675446 + 1.16991i
\(712\) 238.195 + 137.522i 0.334543 + 0.193149i
\(713\) −155.509 269.350i −0.218106 0.377770i
\(714\) 93.4097 113.156i 0.130826 0.158481i
\(715\) 601.398 1962.50i 0.841117 2.74476i
\(716\) −183.417 317.688i −0.256170 0.443699i
\(717\) −714.197 −0.996091
\(718\) 86.7872 0.120874
\(719\) 1087.25i 1.51217i 0.654474 + 0.756085i \(0.272890\pi\)
−0.654474 + 0.756085i \(0.727110\pi\)
\(720\) 266.069 0.369541
\(721\) −1108.83 186.342i −1.53790 0.258449i
\(722\) −78.5653 45.3597i −0.108816 0.0628251i
\(723\) 1116.14 644.405i 1.54376 0.891293i
\(724\) −382.427 + 220.794i −0.528214 + 0.304964i
\(725\) −42.8357 −0.0590838
\(726\) 495.514 858.256i 0.682527 1.18217i
\(727\) 202.930i 0.279133i 0.990213 + 0.139566i \(0.0445709\pi\)
−0.990213 + 0.139566i \(0.955429\pi\)
\(728\) −15.3679 256.928i −0.0211098 0.352923i
\(729\) 420.502 0.576820
\(730\) −678.501 391.733i −0.929453 0.536620i
\(731\) 197.356i 0.269981i
\(732\) −46.7512 80.9754i −0.0638678 0.110622i
\(733\) −270.224 468.041i −0.368654 0.638528i 0.620701 0.784047i \(-0.286848\pi\)
−0.989355 + 0.145519i \(0.953515\pi\)
\(734\) −291.465 + 504.832i −0.397091 + 0.687782i
\(735\) −1188.99 1371.60i −1.61767 1.86612i
\(736\) 39.6079i 0.0538150i
\(737\) −477.127 −0.647391
\(738\) 332.590i 0.450663i
\(739\) 622.249i 0.842014i 0.907057 + 0.421007i \(0.138323\pi\)
−0.907057 + 0.421007i \(0.861677\pi\)
\(740\) −485.906 + 280.538i −0.656630 + 0.379105i
\(741\) 615.058 + 660.433i 0.830038 + 0.891273i
\(742\) 85.9072 + 14.4369i 0.115778 + 0.0194568i
\(743\) 330.453 190.787i 0.444755 0.256780i −0.260857 0.965377i \(-0.584005\pi\)
0.705613 + 0.708598i \(0.250672\pi\)
\(744\) 253.116 438.410i 0.340209 0.589260i
\(745\) −1227.76 + 708.847i −1.64800 + 0.951473i
\(746\) 205.655 + 118.735i 0.275677 + 0.159162i
\(747\) −782.433 −1.04743
\(748\) 63.1731 109.419i 0.0844560 0.146282i
\(749\) 879.221 328.035i 1.17386 0.437964i
\(750\) 904.512 1566.66i 1.20602 2.08888i
\(751\) 120.903 209.410i 0.160989 0.278842i −0.774234 0.632899i \(-0.781865\pi\)
0.935224 + 0.354057i \(0.115198\pi\)
\(752\) 293.590 0.390412
\(753\) 64.3281 111.420i 0.0854291 0.147968i
\(754\) 9.01584 + 9.68097i 0.0119573 + 0.0128395i
\(755\) 406.565i 0.538497i
\(756\) 98.1949 + 16.5019i 0.129887 + 0.0218279i
\(757\) −277.724 481.032i −0.366874 0.635445i 0.622201 0.782858i \(-0.286239\pi\)
−0.989075 + 0.147413i \(0.952905\pi\)
\(758\) −294.006 −0.387870
\(759\) −242.243 + 419.578i −0.319161 + 0.552804i
\(760\) −388.018 + 224.022i −0.510549 + 0.294766i
\(761\) 901.772 1.18498 0.592492 0.805577i \(-0.298144\pi\)
0.592492 + 0.805577i \(0.298144\pi\)
\(762\) −282.992 −0.371380
\(763\) −151.873 407.059i −0.199047 0.533498i
\(764\) −9.41722 16.3111i −0.0123262 0.0213496i
\(765\) −211.907 122.345i −0.277003 0.159928i
\(766\) −620.048 357.985i −0.809463 0.467343i
\(767\) −163.670 50.1558i −0.213390 0.0653921i
\(768\) 55.8309 32.2340i 0.0726965 0.0419713i
\(769\) −27.1659 47.0527i −0.0353263 0.0611869i 0.847822 0.530281i \(-0.177914\pi\)
−0.883148 + 0.469094i \(0.844580\pi\)
\(770\) −1205.39 995.050i −1.56545 1.29227i
\(771\) −73.7957 + 127.818i −0.0957143 + 0.165782i
\(772\) −59.5546 + 34.3839i −0.0771433 + 0.0445387i
\(773\) −242.452 419.939i −0.313651 0.543259i 0.665499 0.746399i \(-0.268219\pi\)
−0.979150 + 0.203140i \(0.934885\pi\)
\(774\) −475.383 + 274.463i −0.614190 + 0.354603i
\(775\) −1322.17 2290.07i −1.70603 2.95493i
\(776\) 193.866 + 111.929i 0.249828 + 0.144238i
\(777\) 806.320 300.836i 1.03773 0.387176i
\(778\) −325.362 + 187.848i −0.418203 + 0.241450i
\(779\) −280.030 485.026i −0.359474 0.622627i
\(780\) −938.626 + 216.054i −1.20337 + 0.276992i
\(781\) −254.134 + 440.172i −0.325395 + 0.563601i
\(782\) −18.2126 + 31.5452i −0.0232898 + 0.0403391i
\(783\) −4.43208 + 2.55886i −0.00566038 + 0.00326802i
\(784\) −185.233 64.0673i −0.236267 0.0817185i
\(785\) 1192.98i 1.51972i
\(786\) 979.478i 1.24615i
\(787\) −308.817 534.888i −0.392398 0.679654i 0.600367 0.799725i \(-0.295021\pi\)
−0.992765 + 0.120071i \(0.961688\pi\)
\(788\) 201.360 + 116.255i 0.255533 + 0.147532i
\(789\) 1701.98i 2.15714i
\(790\) 1494.90 863.083i 1.89228 1.09251i
\(791\) 203.097 75.7751i 0.256760 0.0957966i
\(792\) −351.419 −0.443711
\(793\) 102.800 + 110.383i 0.129634 + 0.139197i
\(794\) 240.657 + 138.943i 0.303095 + 0.174992i
\(795\) 325.982i 0.410041i
\(796\) −173.147 99.9665i −0.217521 0.125586i
\(797\) 45.6634 + 26.3638i 0.0572941 + 0.0330788i 0.528373 0.849012i \(-0.322802\pi\)
−0.471079 + 0.882091i \(0.656135\pi\)
\(798\) 643.882 240.231i 0.806870 0.301041i
\(799\) −233.826 134.999i −0.292648 0.168960i
\(800\) 336.754i 0.420942i
\(801\) −351.767 + 609.279i −0.439160 + 0.760648i
\(802\) −12.9643 22.4548i −0.0161649 0.0279985i
\(803\) 896.150 + 517.393i 1.11600 + 0.644325i
\(804\) 111.946 + 193.895i 0.139236 + 0.241163i
\(805\) 347.511 + 286.870i 0.431691 + 0.356360i
\(806\) −239.277 + 780.815i −0.296869 + 0.968753i
\(807\) −897.756 1554.96i −1.11246 1.92684i
\(808\) 31.2076 0.0386233
\(809\) −623.929 −0.771235 −0.385617 0.922659i \(-0.626011\pi\)
−0.385617 + 0.922659i \(0.626011\pi\)
\(810\) 1219.24i 1.50523i
\(811\) −10.3713 −0.0127882 −0.00639412 0.999980i \(-0.502035\pi\)
−0.00639412 + 0.999980i \(0.502035\pi\)
\(812\) 9.43836 3.52143i 0.0116236 0.00433673i
\(813\) −1285.75 742.327i −1.58149 0.913071i
\(814\) 641.775 370.529i 0.788421 0.455195i
\(815\) 1706.66 985.338i 2.09406 1.20900i
\(816\) −59.2877 −0.0726565
\(817\) 462.178 800.516i 0.565701 0.979823i
\(818\) 78.0734i 0.0954442i
\(819\) 657.196 39.3096i 0.802437 0.0479971i
\(820\) 597.724 0.728932
\(821\) 84.1426 + 48.5798i 0.102488 + 0.0591715i 0.550368 0.834922i \(-0.314487\pi\)
−0.447880 + 0.894094i \(0.647821\pi\)
\(822\) 248.144i 0.301878i
\(823\) 436.168 + 755.465i 0.529973 + 0.917940i 0.999389 + 0.0349626i \(0.0111312\pi\)
−0.469416 + 0.882977i \(0.655535\pi\)
\(824\) 227.159 + 393.450i 0.275678 + 0.477488i
\(825\) −2059.60 + 3567.33i −2.49649 + 4.32404i
\(826\) −82.9857 + 100.528i −0.100467 + 0.121705i
\(827\) 246.854i 0.298493i 0.988800 + 0.149247i \(0.0476848\pi\)
−0.988800 + 0.149247i \(0.952315\pi\)
\(828\) 101.313 0.122359
\(829\) 590.402i 0.712186i 0.934451 + 0.356093i \(0.115891\pi\)
−0.934451 + 0.356093i \(0.884109\pi\)
\(830\) 1406.17i 1.69419i
\(831\) 1162.56 671.203i 1.39899 0.807706i
\(832\) −76.1071 + 70.8782i −0.0914748 + 0.0851901i
\(833\) 118.067 + 136.200i 0.141737 + 0.163506i
\(834\) −123.933 + 71.5527i −0.148601 + 0.0857946i
\(835\) −643.956 + 1115.37i −0.771205 + 1.33577i
\(836\) 512.486 295.884i 0.613021 0.353928i
\(837\) −273.602 157.964i −0.326884 0.188727i
\(838\) −972.283 −1.16024
\(839\) −186.954 + 323.815i −0.222830 + 0.385953i −0.955666 0.294452i \(-0.904863\pi\)
0.732836 + 0.680405i \(0.238196\pi\)
\(840\) −121.555 + 723.312i −0.144708 + 0.861085i
\(841\) 420.241 727.879i 0.499692 0.865492i
\(842\) 413.181 715.650i 0.490713 0.849940i
\(843\) 1167.89 1.38540
\(844\) 320.532 555.178i 0.379778 0.657794i
\(845\) 1397.43 679.314i 1.65376 0.803921i
\(846\) 750.974i 0.887676i
\(847\) 938.867 + 775.032i 1.10846 + 0.915032i
\(848\) −17.5992 30.4828i −0.0207538 0.0359467i
\(849\) −62.6576 −0.0738016
\(850\) −154.847 + 268.203i −0.182173 + 0.315533i
\(851\) −185.022 + 106.822i −0.217417 + 0.125526i
\(852\) 238.503 0.279934
\(853\) 1444.14 1.69301 0.846506 0.532379i \(-0.178702\pi\)
0.846506 + 0.532379i \(0.178702\pi\)
\(854\) 107.617 40.1517i 0.126015 0.0470160i
\(855\) −573.026 992.511i −0.670206 1.16083i
\(856\) −328.380 189.590i −0.383621 0.221484i
\(857\) 641.919 + 370.612i 0.749031 + 0.432453i 0.825344 0.564631i \(-0.190981\pi\)
−0.0763129 + 0.997084i \(0.524315\pi\)
\(858\) 1239.72 285.359i 1.44489 0.332587i
\(859\) 898.862 518.958i 1.04641 0.604142i 0.124764 0.992186i \(-0.460183\pi\)
0.921641 + 0.388044i \(0.126849\pi\)
\(860\) 493.260 + 854.351i 0.573558 + 0.993431i
\(861\) −904.147 151.945i −1.05011 0.176474i
\(862\) −2.32305 + 4.02364i −0.00269495 + 0.00466780i
\(863\) −301.249 + 173.926i −0.349071 + 0.201536i −0.664276 0.747487i \(-0.731260\pi\)
0.315205 + 0.949024i \(0.397927\pi\)
\(864\) −20.1165 34.8429i −0.0232830 0.0403274i
\(865\) 2407.12 1389.75i 2.78280 1.60665i
\(866\) −199.584 345.690i −0.230467 0.399181i
\(867\) −961.227 554.964i −1.10868 0.640097i
\(868\) 479.587 + 395.897i 0.552519 + 0.456103i
\(869\) −1974.44 + 1139.94i −2.27208 + 1.31179i
\(870\) −18.8488 32.6471i −0.0216653 0.0375254i
\(871\) −246.153 264.312i −0.282610 0.303459i
\(872\) −87.7758 + 152.032i −0.100660 + 0.174349i
\(873\) −286.303 + 495.891i −0.327953 + 0.568030i
\(874\) −147.748 + 85.3024i −0.169048 + 0.0976000i
\(875\) 1713.81 + 1414.74i 1.95864 + 1.61685i
\(876\) 485.571i 0.554305i
\(877\) 899.673i 1.02585i 0.858433 + 0.512926i \(0.171439\pi\)
−0.858433 + 0.512926i \(0.828561\pi\)
\(878\) 247.912 + 429.396i 0.282360 + 0.489062i
\(879\) −886.096 511.588i −1.00807 0.582011i
\(880\) 631.564i 0.717687i
\(881\) 222.311 128.352i 0.252340 0.145688i −0.368495 0.929630i \(-0.620127\pi\)
0.620835 + 0.783941i \(0.286794\pi\)
\(882\) 163.878 473.809i 0.185803 0.537198i
\(883\) −774.664 −0.877309 −0.438654 0.898656i \(-0.644545\pi\)
−0.438654 + 0.898656i \(0.644545\pi\)
\(884\) 93.2059 21.4542i 0.105437 0.0242695i
\(885\) 422.451 + 243.902i 0.477346 + 0.275596i
\(886\) 44.9603i 0.0507453i
\(887\) 523.734 + 302.378i 0.590456 + 0.340900i 0.765278 0.643700i \(-0.222602\pi\)
−0.174822 + 0.984600i \(0.555935\pi\)
\(888\) −301.152 173.870i −0.339135 0.195800i
\(889\) 57.6144 342.835i 0.0648081 0.385641i
\(890\) 1094.98 + 632.190i 1.23032 + 0.710326i
\(891\) 1610.34i 1.80734i
\(892\) −316.864 + 548.825i −0.355229 + 0.615274i
\(893\) −632.297 1095.17i −0.708059 1.22639i
\(894\) −760.933 439.325i −0.851155 0.491415i
\(895\) −843.173 1460.42i −0.942093 1.63175i
\(896\) 27.6838 + 74.1998i 0.0308971 + 0.0828123i
\(897\) −357.407 + 82.2682i −0.398447 + 0.0917149i
\(898\) −221.749 384.080i −0.246936 0.427706i
\(899\) −31.9631 −0.0355541
\(900\) 861.383 0.957092
\(901\) 32.3701i 0.0359269i
\(902\) −789.462 −0.875235
\(903\) −528.949 1417.72i −0.585768 1.57001i
\(904\) −75.8546 43.7947i −0.0839100 0.0484454i
\(905\) −1758.02 + 1014.99i −1.94257 + 1.12154i
\(906\) −218.220 + 125.989i −0.240861 + 0.139061i
\(907\) −124.385 −0.137139 −0.0685696 0.997646i \(-0.521844\pi\)
−0.0685696 + 0.997646i \(0.521844\pi\)
\(908\) −141.103 + 244.397i −0.155399 + 0.269160i
\(909\) 79.8260i 0.0878174i
\(910\) −70.6465 1181.10i −0.0776335 1.29791i
\(911\) 1162.26 1.27580 0.637902 0.770117i \(-0.279802\pi\)
0.637902 + 0.770117i \(0.279802\pi\)
\(912\) −240.483 138.843i −0.263687 0.152240i
\(913\) 1857.25i 2.03422i
\(914\) 68.6131 + 118.841i 0.0750690 + 0.130023i
\(915\) −214.916 372.245i −0.234881 0.406826i
\(916\) −76.6091 + 132.691i −0.0836344 + 0.144859i
\(917\) 1186.60 + 199.412i 1.29401 + 0.217462i
\(918\) 37.0002i 0.0403052i
\(919\) 287.881 0.313255 0.156627 0.987658i \(-0.449938\pi\)
0.156627 + 0.987658i \(0.449938\pi\)
\(920\) 182.078i 0.197911i
\(921\) 1098.42i 1.19263i
\(922\) 598.564 345.581i 0.649202 0.374817i
\(923\) −374.950 + 86.3063i −0.406230 + 0.0935063i
\(924\) 160.547 955.335i 0.173752 1.03391i
\(925\) −1573.09 + 908.225i −1.70064 + 0.981864i
\(926\) −403.269 + 698.483i −0.435496 + 0.754301i
\(927\) −1006.41 + 581.049i −1.08566 + 0.626806i
\(928\) −3.52512 2.03523i −0.00379862 0.00219314i
\(929\) −1072.18 −1.15412 −0.577061 0.816701i \(-0.695800\pi\)
−0.577061 + 0.816701i \(0.695800\pi\)
\(930\) 1163.58 2015.38i 1.25116 2.16707i
\(931\) 159.943 + 828.951i 0.171797 + 0.890387i
\(932\) 274.872 476.092i 0.294927 0.510828i
\(933\) 583.024 1009.83i 0.624892 1.08234i
\(934\) −150.265 −0.160883
\(935\) 290.408 503.001i 0.310597 0.537969i
\(936\) −181.299 194.674i −0.193696 0.207985i
\(937\) 980.365i 1.04628i 0.852247 + 0.523140i \(0.175240\pi\)
−0.852247 + 0.523140i \(0.824760\pi\)
\(938\) −257.689 + 96.1430i −0.274721 + 0.102498i
\(939\) 577.491 + 1000.24i 0.615006 + 1.06522i
\(940\) 1349.64 1.43578
\(941\) −355.761 + 616.197i −0.378067 + 0.654832i −0.990781 0.135473i \(-0.956745\pi\)
0.612714 + 0.790305i \(0.290078\pi\)
\(942\) −640.318 + 369.688i −0.679744 + 0.392450i
\(943\) 227.599 0.241357
\(944\) 52.6715 0.0557961
\(945\) 451.403 + 75.8596i 0.477675 + 0.0802747i
\(946\) −651.487 1128.41i −0.688676 1.19282i
\(947\) 918.273 + 530.165i 0.969665 + 0.559836i 0.899134 0.437673i \(-0.144197\pi\)
0.0705309 + 0.997510i \(0.477531\pi\)
\(948\) 926.501 + 534.916i 0.977322 + 0.564257i
\(949\) 175.712 + 763.364i 0.185154 + 0.804387i
\(950\) −1256.18 + 725.258i −1.32230 + 0.763429i
\(951\) −167.933 290.869i −0.176586 0.305856i
\(952\) 12.0704 71.8251i 0.0126790 0.0754465i
\(953\) 241.380 418.082i 0.253284 0.438701i −0.711144 0.703046i \(-0.751823\pi\)
0.964428 + 0.264345i \(0.0851559\pi\)
\(954\) 77.9720 45.0171i 0.0817316 0.0471878i
\(955\) −43.2911 74.9824i −0.0453310 0.0785156i
\(956\) −307.012 + 177.253i −0.321142 + 0.185411i
\(957\) 24.8951 + 43.1196i 0.0260137 + 0.0450571i
\(958\) 40.7151 + 23.5069i 0.0425001 + 0.0245375i
\(959\) −300.618 50.5197i −0.313470 0.0526796i
\(960\) 256.656 148.180i 0.267350 0.154354i
\(961\) −506.076 876.550i −0.526614 0.912123i
\(962\) 536.357 + 164.364i 0.557543 + 0.170856i
\(963\) 484.953 839.963i 0.503585 0.872235i
\(964\) 319.864 554.020i 0.331809 0.574710i
\(965\) −273.774 + 158.063i −0.283703 + 0.163796i
\(966\) −46.2852 + 275.420i −0.0479142 + 0.285114i
\(967\) 477.346i 0.493636i 0.969062 + 0.246818i \(0.0793849\pi\)
−0.969062 + 0.246818i \(0.920615\pi\)
\(968\) 491.918i 0.508179i
\(969\) 127.686 + 221.159i 0.131771 + 0.228235i
\(970\) 891.206 + 514.538i 0.918769 + 0.530451i
\(971\) 718.965i 0.740437i 0.928945 + 0.370219i \(0.120717\pi\)
−0.928945 + 0.370219i \(0.879283\pi\)
\(972\) 543.543 313.815i 0.559201 0.322855i
\(973\) −61.4522 164.708i −0.0631574 0.169279i
\(974\) 509.149 0.522740
\(975\) −3038.74 + 699.460i −3.11666 + 0.717395i
\(976\) −40.1938 23.2059i −0.0411822 0.0237766i
\(977\) 314.676i 0.322084i 0.986948 + 0.161042i \(0.0514855\pi\)
−0.986948 + 0.161042i \(0.948515\pi\)
\(978\) 1057.74 + 610.686i 1.08153 + 0.624424i
\(979\) −1446.23 834.984i −1.47726 0.852894i
\(980\) −851.520 294.519i −0.868898 0.300529i
\(981\) −388.883 224.522i −0.396415 0.228870i
\(982\) 686.518i 0.699101i
\(983\) −542.737 + 940.049i −0.552123 + 0.956306i 0.445998 + 0.895034i \(0.352849\pi\)
−0.998121 + 0.0612717i \(0.980484\pi\)
\(984\) 185.227 + 320.822i 0.188239 + 0.326039i
\(985\) 925.654 + 534.427i 0.939750 + 0.542565i
\(986\) 1.87169 + 3.24187i 0.00189827 + 0.00328790i
\(987\) −2041.53 343.085i −2.06842 0.347604i
\(988\) 428.305 + 131.252i 0.433507 + 0.132846i
\(989\) 187.822 + 325.317i 0.189911 + 0.328935i
\(990\) −1615.48 −1.63180
\(991\) −143.491 −0.144794 −0.0723970 0.997376i \(-0.523065\pi\)
−0.0723970 + 0.997376i \(0.523065\pi\)
\(992\) 251.279i 0.253305i
\(993\) −1205.95 −1.21445
\(994\) −48.5570 + 288.939i −0.0488501 + 0.290683i
\(995\) −795.960 459.548i −0.799960 0.461857i
\(996\) −754.749 + 435.755i −0.757780 + 0.437505i
\(997\) −1204.50 + 695.419i −1.20813 + 0.697511i −0.962349 0.271815i \(-0.912376\pi\)
−0.245776 + 0.969327i \(0.579043\pi\)
\(998\) 482.533 0.483500
\(999\) −108.509 + 187.942i −0.108617 + 0.188130i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 182.3.k.a.101.17 36
7.5 odd 6 182.3.r.a.75.8 yes 36
13.4 even 6 182.3.r.a.17.17 yes 36
91.82 odd 6 inner 182.3.k.a.173.11 yes 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
182.3.k.a.101.17 36 1.1 even 1 trivial
182.3.k.a.173.11 yes 36 91.82 odd 6 inner
182.3.r.a.17.17 yes 36 13.4 even 6
182.3.r.a.75.8 yes 36 7.5 odd 6