Properties

Label 182.3.r.a.17.17
Level $182$
Weight $3$
Character 182.17
Analytic conductor $4.959$
Analytic rank $0$
Dimension $36$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [182,3,Mod(17,182)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(182, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("182.17");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 182 = 2 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 182.r (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.95914081136\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(18\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 17.17
Character \(\chi\) \(=\) 182.17
Dual form 182.3.r.a.75.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.41421i q^{2} +(3.48943 - 2.01462i) q^{3} -2.00000 q^{4} +(-4.59702 - 7.96227i) q^{5} +(2.84911 + 4.93480i) q^{6} +(-6.55840 + 2.44692i) q^{7} -2.82843i q^{8} +(3.61742 - 6.26555i) q^{9} +(11.2603 - 6.50116i) q^{10} +(14.8724 - 8.58660i) q^{11} +(-6.97886 + 4.02925i) q^{12} +(-9.51338 - 8.85977i) q^{13} +(-3.46047 - 9.27497i) q^{14} +(-32.0819 - 18.5225i) q^{15} +4.00000 q^{16} +3.67858i q^{17} +(8.86083 + 5.11580i) q^{18} +(8.61469 - 14.9211i) q^{19} +(9.19403 + 15.9245i) q^{20} +(-17.9554 + 21.7511i) q^{21} +(12.1433 + 21.0328i) q^{22} +7.00175 q^{23} +(-5.69822 - 9.86960i) q^{24} +(-29.7651 + 51.5547i) q^{25} +(12.5296 - 13.4540i) q^{26} +7.11227i q^{27} +(13.1168 - 4.89384i) q^{28} +(0.359781 - 0.623160i) q^{29} +(26.1948 - 45.3707i) q^{30} +(22.2101 - 38.4690i) q^{31} +5.65685i q^{32} +(34.5976 - 59.9247i) q^{33} -5.20230 q^{34} +(49.6321 + 40.9712i) q^{35} +(-7.23484 + 12.5311i) q^{36} +30.5131i q^{37} +(21.1016 + 12.1830i) q^{38} +(-51.0454 - 11.7497i) q^{39} +(-22.5207 + 13.0023i) q^{40} +(16.2530 - 28.1511i) q^{41} +(-30.7607 - 25.3928i) q^{42} +(26.8250 + 46.4622i) q^{43} +(-29.7449 + 17.1732i) q^{44} -66.5173 q^{45} +9.90197i q^{46} +(36.6987 + 63.5641i) q^{47} +(13.9577 - 8.05850i) q^{48} +(37.0251 - 32.0958i) q^{49} +(-72.9093 - 42.0942i) q^{50} +(7.41096 + 12.8362i) q^{51} +(19.0268 + 17.7195i) q^{52} +(-4.39981 + 7.62069i) q^{53} -10.0583 q^{54} +(-136.738 - 78.9455i) q^{55} +(6.92094 + 18.5499i) q^{56} -69.4215i q^{57} +(0.881281 + 0.508808i) q^{58} -13.1679 q^{59} +(64.1639 + 37.0450i) q^{60} +(-10.0485 - 5.80148i) q^{61} +(54.4034 + 31.4098i) q^{62} +(-8.39315 + 49.9435i) q^{63} -8.00000 q^{64} +(-26.8107 + 116.477i) q^{65} +(84.7464 + 48.9283i) q^{66} +(24.0610 - 13.8916i) q^{67} -7.35717i q^{68} +(24.4321 - 14.1059i) q^{69} +(-57.9420 + 70.1904i) q^{70} +(-25.6313 + 14.7983i) q^{71} +(-17.7217 - 10.2316i) q^{72} +(30.1279 - 52.1831i) q^{73} -43.1520 q^{74} +239.862i q^{75} +(-17.2294 + 29.8422i) q^{76} +(-76.5286 + 92.7060i) q^{77} +(16.6165 - 72.1891i) q^{78} +(-66.3791 - 114.972i) q^{79} +(-18.3881 - 31.8491i) q^{80} +(46.8853 + 81.2078i) q^{81} +(39.8117 + 22.9853i) q^{82} -108.148 q^{83} +(35.9109 - 43.5021i) q^{84} +(29.2899 - 16.9105i) q^{85} +(-65.7075 + 37.9363i) q^{86} -2.89930i q^{87} +(-24.2866 - 42.0656i) q^{88} +97.2426 q^{89} -94.0697i q^{90} +(84.0717 + 34.8274i) q^{91} -14.0035 q^{92} -178.980i q^{93} +(-89.8932 + 51.8998i) q^{94} -158.408 q^{95} +(11.3964 + 19.7392i) q^{96} +(-39.5728 - 68.5420i) q^{97} +(45.3903 + 52.3615i) q^{98} -124.245i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q + 6 q^{3} - 72 q^{4} + 8 q^{7} + 44 q^{9} + 12 q^{11} - 12 q^{12} + 4 q^{13} - 12 q^{14} + 60 q^{15} + 144 q^{16} + 24 q^{18} + 50 q^{19} + 42 q^{21} + 12 q^{22} - 56 q^{23} - 82 q^{25} + 48 q^{26}+ \cdots - 24 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/182\mathbb{Z}\right)^\times\).

\(n\) \(15\) \(157\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.41421i 0.707107i
\(3\) 3.48943 2.01462i 1.16314 0.671541i 0.211088 0.977467i \(-0.432299\pi\)
0.952055 + 0.305926i \(0.0989659\pi\)
\(4\) −2.00000 −0.500000
\(5\) −4.59702 7.96227i −0.919403 1.59245i −0.800324 0.599568i \(-0.795339\pi\)
−0.119080 0.992885i \(-0.537994\pi\)
\(6\) 2.84911 + 4.93480i 0.474851 + 0.822467i
\(7\) −6.55840 + 2.44692i −0.936914 + 0.349560i
\(8\) 2.82843i 0.353553i
\(9\) 3.61742 6.26555i 0.401936 0.696173i
\(10\) 11.2603 6.50116i 1.12603 0.650116i
\(11\) 14.8724 8.58660i 1.35204 0.780600i 0.363505 0.931592i \(-0.381580\pi\)
0.988535 + 0.150992i \(0.0482468\pi\)
\(12\) −6.97886 + 4.02925i −0.581572 + 0.335771i
\(13\) −9.51338 8.85977i −0.731799 0.681521i
\(14\) −3.46047 9.27497i −0.247176 0.662498i
\(15\) −32.0819 18.5225i −2.13880 1.23483i
\(16\) 4.00000 0.250000
\(17\) 3.67858i 0.216387i 0.994130 + 0.108194i \(0.0345067\pi\)
−0.994130 + 0.108194i \(0.965493\pi\)
\(18\) 8.86083 + 5.11580i 0.492268 + 0.284211i
\(19\) 8.61469 14.9211i 0.453405 0.785320i −0.545190 0.838312i \(-0.683543\pi\)
0.998595 + 0.0529922i \(0.0168759\pi\)
\(20\) 9.19403 + 15.9245i 0.459702 + 0.796227i
\(21\) −17.9554 + 21.7511i −0.855021 + 1.03577i
\(22\) 12.1433 + 21.0328i 0.551968 + 0.956036i
\(23\) 7.00175 0.304424 0.152212 0.988348i \(-0.451360\pi\)
0.152212 + 0.988348i \(0.451360\pi\)
\(24\) −5.69822 9.86960i −0.237426 0.411233i
\(25\) −29.7651 + 51.5547i −1.19060 + 2.06219i
\(26\) 12.5296 13.4540i 0.481908 0.517460i
\(27\) 7.11227i 0.263417i
\(28\) 13.1168 4.89384i 0.468457 0.174780i
\(29\) 0.359781 0.623160i 0.0124063 0.0214883i −0.859756 0.510706i \(-0.829384\pi\)
0.872162 + 0.489217i \(0.162718\pi\)
\(30\) 26.1948 45.3707i 0.873160 1.51236i
\(31\) 22.2101 38.4690i 0.716455 1.24094i −0.245941 0.969285i \(-0.579097\pi\)
0.962396 0.271651i \(-0.0875696\pi\)
\(32\) 5.65685i 0.176777i
\(33\) 34.5976 59.9247i 1.04841 1.81590i
\(34\) −5.20230 −0.153009
\(35\) 49.6321 + 40.9712i 1.41806 + 1.17060i
\(36\) −7.23484 + 12.5311i −0.200968 + 0.348086i
\(37\) 30.5131i 0.824677i 0.911031 + 0.412339i \(0.135288\pi\)
−0.911031 + 0.412339i \(0.864712\pi\)
\(38\) 21.1016 + 12.1830i 0.555305 + 0.320606i
\(39\) −51.0454 11.7497i −1.30886 0.301274i
\(40\) −22.5207 + 13.0023i −0.563017 + 0.325058i
\(41\) 16.2530 28.1511i 0.396416 0.686612i −0.596865 0.802342i \(-0.703587\pi\)
0.993281 + 0.115729i \(0.0369206\pi\)
\(42\) −30.7607 25.3928i −0.732397 0.604591i
\(43\) 26.8250 + 46.4622i 0.623837 + 1.08052i 0.988765 + 0.149481i \(0.0477604\pi\)
−0.364928 + 0.931036i \(0.618906\pi\)
\(44\) −29.7449 + 17.1732i −0.676020 + 0.390300i
\(45\) −66.5173 −1.47816
\(46\) 9.90197i 0.215260i
\(47\) 36.6987 + 63.5641i 0.780824 + 1.35243i 0.931462 + 0.363838i \(0.118534\pi\)
−0.150638 + 0.988589i \(0.548133\pi\)
\(48\) 13.9577 8.05850i 0.290786 0.167885i
\(49\) 37.0251 32.0958i 0.755615 0.655016i
\(50\) −72.9093 42.0942i −1.45819 0.841884i
\(51\) 7.41096 + 12.8362i 0.145313 + 0.251690i
\(52\) 19.0268 + 17.7195i 0.365899 + 0.340760i
\(53\) −4.39981 + 7.62069i −0.0830153 + 0.143787i −0.904544 0.426381i \(-0.859788\pi\)
0.821528 + 0.570167i \(0.193122\pi\)
\(54\) −10.0583 −0.186264
\(55\) −136.738 78.9455i −2.48614 1.43537i
\(56\) 6.92094 + 18.5499i 0.123588 + 0.331249i
\(57\) 69.4215i 1.21792i
\(58\) 0.881281 + 0.508808i 0.0151945 + 0.00877255i
\(59\) −13.1679 −0.223185 −0.111592 0.993754i \(-0.535595\pi\)
−0.111592 + 0.993754i \(0.535595\pi\)
\(60\) 64.1639 + 37.0450i 1.06940 + 0.617417i
\(61\) −10.0485 5.80148i −0.164729 0.0951062i 0.415369 0.909653i \(-0.363652\pi\)
−0.580098 + 0.814547i \(0.696986\pi\)
\(62\) 54.4034 + 31.4098i 0.877474 + 0.506610i
\(63\) −8.39315 + 49.9435i −0.133225 + 0.792755i
\(64\) −8.00000 −0.125000
\(65\) −26.8107 + 116.477i −0.412472 + 1.79195i
\(66\) 84.7464 + 48.9283i 1.28404 + 0.741338i
\(67\) 24.0610 13.8916i 0.359119 0.207338i −0.309575 0.950875i \(-0.600187\pi\)
0.668694 + 0.743537i \(0.266854\pi\)
\(68\) 7.35717i 0.108194i
\(69\) 24.4321 14.1059i 0.354089 0.204433i
\(70\) −57.9420 + 70.1904i −0.827742 + 1.00272i
\(71\) −25.6313 + 14.7983i −0.361005 + 0.208426i −0.669521 0.742793i \(-0.733501\pi\)
0.308517 + 0.951219i \(0.400167\pi\)
\(72\) −17.7217 10.2316i −0.246134 0.142106i
\(73\) 30.1279 52.1831i 0.412711 0.714836i −0.582474 0.812849i \(-0.697915\pi\)
0.995185 + 0.0980129i \(0.0312486\pi\)
\(74\) −43.1520 −0.583135
\(75\) 239.862i 3.19816i
\(76\) −17.2294 + 29.8422i −0.226702 + 0.392660i
\(77\) −76.5286 + 92.7060i −0.993878 + 1.20397i
\(78\) 16.6165 72.1891i 0.213033 0.925501i
\(79\) −66.3791 114.972i −0.840242 1.45534i −0.889690 0.456565i \(-0.849080\pi\)
0.0494485 0.998777i \(-0.484254\pi\)
\(80\) −18.3881 31.8491i −0.229851 0.398113i
\(81\) 46.8853 + 81.2078i 0.578831 + 1.00257i
\(82\) 39.8117 + 22.9853i 0.485508 + 0.280308i
\(83\) −108.148 −1.30299 −0.651493 0.758654i \(-0.725857\pi\)
−0.651493 + 0.758654i \(0.725857\pi\)
\(84\) 35.9109 43.5021i 0.427511 0.517883i
\(85\) 29.2899 16.9105i 0.344587 0.198947i
\(86\) −65.7075 + 37.9363i −0.764041 + 0.441119i
\(87\) 2.89930i 0.0333253i
\(88\) −24.2866 42.0656i −0.275984 0.478018i
\(89\) 97.2426 1.09261 0.546307 0.837585i \(-0.316033\pi\)
0.546307 + 0.837585i \(0.316033\pi\)
\(90\) 94.0697i 1.04522i
\(91\) 84.0717 + 34.8274i 0.923865 + 0.382719i
\(92\) −14.0035 −0.152212
\(93\) 178.980i 1.92452i
\(94\) −89.8932 + 51.8998i −0.956310 + 0.552126i
\(95\) −158.408 −1.66745
\(96\) 11.3964 + 19.7392i 0.118713 + 0.205617i
\(97\) −39.5728 68.5420i −0.407967 0.706619i 0.586695 0.809808i \(-0.300429\pi\)
−0.994662 + 0.103189i \(0.967095\pi\)
\(98\) 45.3903 + 52.3615i 0.463166 + 0.534301i
\(99\) 124.245i 1.25500i
\(100\) 59.5302 103.109i 0.595302 1.03109i
\(101\) −9.55534 + 5.51678i −0.0946073 + 0.0546216i −0.546557 0.837422i \(-0.684062\pi\)
0.451950 + 0.892043i \(0.350729\pi\)
\(102\) −18.1531 + 10.4807i −0.177971 + 0.102752i
\(103\) 139.106 80.3127i 1.35054 0.779735i 0.362215 0.932094i \(-0.382020\pi\)
0.988325 + 0.152360i \(0.0486872\pi\)
\(104\) −25.0592 + 26.9079i −0.240954 + 0.258730i
\(105\) 255.729 + 42.9760i 2.43552 + 0.409296i
\(106\) −10.7773 6.22227i −0.101673 0.0587007i
\(107\) 134.060 1.25290 0.626450 0.779461i \(-0.284507\pi\)
0.626450 + 0.779461i \(0.284507\pi\)
\(108\) 14.2245i 0.131709i
\(109\) −53.7515 31.0334i −0.493133 0.284710i 0.232740 0.972539i \(-0.425231\pi\)
−0.725873 + 0.687829i \(0.758564\pi\)
\(110\) 111.646 193.376i 1.01496 1.75797i
\(111\) 61.4723 + 106.473i 0.553805 + 0.959218i
\(112\) −26.2336 + 9.78769i −0.234228 + 0.0873901i
\(113\) −15.4838 26.8187i −0.137024 0.237333i 0.789345 0.613950i \(-0.210421\pi\)
−0.926369 + 0.376617i \(0.877087\pi\)
\(114\) 98.1768 0.861200
\(115\) −32.1872 55.7498i −0.279888 0.484781i
\(116\) −0.719563 + 1.24632i −0.00620313 + 0.0107441i
\(117\) −89.9253 + 27.5571i −0.768592 + 0.235531i
\(118\) 18.6222i 0.157815i
\(119\) −9.00121 24.1256i −0.0756404 0.202736i
\(120\) −52.3896 + 90.7414i −0.436580 + 0.756179i
\(121\) 86.9596 150.618i 0.718674 1.24478i
\(122\) 8.20453 14.2107i 0.0672502 0.116481i
\(123\) 130.975i 1.06484i
\(124\) −44.4202 + 76.9380i −0.358227 + 0.620468i
\(125\) 317.472 2.53978
\(126\) −70.6308 11.8697i −0.560562 0.0942041i
\(127\) 24.8316 43.0096i 0.195524 0.338658i −0.751548 0.659678i \(-0.770692\pi\)
0.947072 + 0.321020i \(0.104026\pi\)
\(128\) 11.3137i 0.0883883i
\(129\) 187.208 + 108.085i 1.45122 + 0.837865i
\(130\) −164.723 37.9160i −1.26710 0.291662i
\(131\) −148.863 + 85.9460i −1.13636 + 0.656076i −0.945526 0.325547i \(-0.894452\pi\)
−0.190831 + 0.981623i \(0.561118\pi\)
\(132\) −69.1951 + 119.849i −0.524205 + 0.907950i
\(133\) −19.9878 + 118.938i −0.150285 + 0.894270i
\(134\) 19.6457 + 34.0274i 0.146610 + 0.253936i
\(135\) 56.6298 32.6952i 0.419480 0.242187i
\(136\) 10.4046 0.0765045
\(137\) 43.5477i 0.317866i −0.987289 0.158933i \(-0.949195\pi\)
0.987289 0.158933i \(-0.0508054\pi\)
\(138\) 19.9487 + 34.5522i 0.144556 + 0.250379i
\(139\) −21.7494 + 12.5570i −0.156471 + 0.0903384i −0.576191 0.817315i \(-0.695462\pi\)
0.419720 + 0.907654i \(0.362128\pi\)
\(140\) −99.2642 81.9423i −0.709030 0.585302i
\(141\) 256.115 + 147.868i 1.81642 + 1.04871i
\(142\) −20.9279 36.2482i −0.147380 0.255269i
\(143\) −217.563 50.0787i −1.52142 0.350201i
\(144\) 14.4697 25.0622i 0.100484 0.174043i
\(145\) −6.61568 −0.0456254
\(146\) 73.7980 + 42.6073i 0.505466 + 0.291831i
\(147\) 64.5358 186.588i 0.439019 1.26930i
\(148\) 61.0261i 0.412339i
\(149\) 133.539 + 77.0987i 0.896233 + 0.517441i 0.875976 0.482354i \(-0.160218\pi\)
0.0202572 + 0.999795i \(0.493551\pi\)
\(150\) −339.216 −2.26144
\(151\) −38.2961 22.1103i −0.253617 0.146426i 0.367802 0.929904i \(-0.380110\pi\)
−0.621419 + 0.783478i \(0.713444\pi\)
\(152\) −42.2032 24.3660i −0.277653 0.160303i
\(153\) 23.0484 + 13.3070i 0.150643 + 0.0869738i
\(154\) −131.106 108.228i −0.851339 0.702778i
\(155\) −408.401 −2.63484
\(156\) 102.091 + 23.4993i 0.654428 + 0.150637i
\(157\) 112.372 + 64.8778i 0.715743 + 0.413235i 0.813184 0.582007i \(-0.197732\pi\)
−0.0974406 + 0.995241i \(0.531066\pi\)
\(158\) 162.595 93.8742i 1.02908 0.594141i
\(159\) 35.4559i 0.222993i
\(160\) 45.0414 26.0046i 0.281509 0.162529i
\(161\) −45.9203 + 17.1327i −0.285219 + 0.106414i
\(162\) −114.845 + 66.3059i −0.708921 + 0.409295i
\(163\) −185.626 107.171i −1.13881 0.657494i −0.192676 0.981262i \(-0.561717\pi\)
−0.946136 + 0.323769i \(0.895050\pi\)
\(164\) −32.5061 + 56.3022i −0.198208 + 0.343306i
\(165\) −636.182 −3.85565
\(166\) 152.944i 0.921351i
\(167\) −70.0407 + 121.314i −0.419405 + 0.726431i −0.995880 0.0906838i \(-0.971095\pi\)
0.576474 + 0.817115i \(0.304428\pi\)
\(168\) 61.5213 + 50.7857i 0.366198 + 0.302296i
\(169\) 12.0089 + 168.573i 0.0710587 + 0.997472i
\(170\) 23.9151 + 41.4221i 0.140677 + 0.243660i
\(171\) −62.3259 107.952i −0.364479 0.631296i
\(172\) −53.6500 92.9245i −0.311918 0.540259i
\(173\) 261.813 + 151.158i 1.51337 + 0.873746i 0.999877 + 0.0156530i \(0.00498271\pi\)
0.513495 + 0.858093i \(0.328351\pi\)
\(174\) 4.10023 0.0235645
\(175\) 69.0611 410.949i 0.394635 2.34828i
\(176\) 59.4897 34.3464i 0.338010 0.195150i
\(177\) −45.9484 + 26.5283i −0.259596 + 0.149878i
\(178\) 137.522i 0.772594i
\(179\) 91.7087 + 158.844i 0.512339 + 0.887398i 0.999898 + 0.0143073i \(0.00455430\pi\)
−0.487558 + 0.873090i \(0.662112\pi\)
\(180\) 133.035 0.739082
\(181\) 220.794i 1.21986i 0.792456 + 0.609929i \(0.208802\pi\)
−0.792456 + 0.609929i \(0.791198\pi\)
\(182\) −49.2534 + 118.895i −0.270623 + 0.653271i
\(183\) −46.7512 −0.255471
\(184\) 19.8039i 0.107630i
\(185\) 242.953 140.269i 1.31326 0.758211i
\(186\) 253.116 1.36084
\(187\) 31.5866 + 54.7095i 0.168912 + 0.292564i
\(188\) −73.3975 127.128i −0.390412 0.676214i
\(189\) −17.4032 46.6451i −0.0920803 0.246799i
\(190\) 224.022i 1.17906i
\(191\) 4.70861 8.15555i 0.0246524 0.0426992i −0.853436 0.521198i \(-0.825485\pi\)
0.878088 + 0.478498i \(0.158819\pi\)
\(192\) −27.9154 + 16.1170i −0.145393 + 0.0839427i
\(193\) −29.7773 + 17.1919i −0.154287 + 0.0890774i −0.575156 0.818044i \(-0.695059\pi\)
0.420869 + 0.907121i \(0.361725\pi\)
\(194\) 96.9331 55.9643i 0.499655 0.288476i
\(195\) 141.103 + 460.450i 0.723603 + 2.36128i
\(196\) −74.0503 + 64.1915i −0.377808 + 0.327508i
\(197\) 100.680 + 58.1276i 0.511065 + 0.295064i 0.733271 0.679936i \(-0.237992\pi\)
−0.222206 + 0.975000i \(0.571326\pi\)
\(198\) 175.710 0.887422
\(199\) 99.9665i 0.502344i −0.967942 0.251172i \(-0.919184\pi\)
0.967942 0.251172i \(-0.0808160\pi\)
\(200\) 145.819 + 84.1884i 0.729093 + 0.420942i
\(201\) 55.9728 96.9477i 0.278471 0.482327i
\(202\) −7.80190 13.5133i −0.0386233 0.0668975i
\(203\) −0.834767 + 4.96729i −0.00411215 + 0.0244694i
\(204\) −14.8219 25.6723i −0.0726565 0.125845i
\(205\) −298.862 −1.45786
\(206\) 113.579 + 196.725i 0.551356 + 0.954976i
\(207\) 25.3283 43.8698i 0.122359 0.211932i
\(208\) −38.0535 35.4391i −0.182950 0.170380i
\(209\) 295.884i 1.41571i
\(210\) −60.7773 + 361.656i −0.289416 + 1.72217i
\(211\) −160.266 + 277.589i −0.759555 + 1.31559i 0.183522 + 0.983016i \(0.441250\pi\)
−0.943078 + 0.332573i \(0.892083\pi\)
\(212\) 8.79962 15.2414i 0.0415076 0.0718933i
\(213\) −59.6259 + 103.275i −0.279934 + 0.484859i
\(214\) 189.590i 0.885935i
\(215\) 246.630 427.175i 1.14712 1.98686i
\(216\) 20.1165 0.0931321
\(217\) −51.5320 + 306.641i −0.237474 + 1.41309i
\(218\) 43.8879 76.0161i 0.201321 0.348698i
\(219\) 242.786i 1.10861i
\(220\) 273.475 + 157.891i 1.24307 + 0.717687i
\(221\) 32.5914 34.9958i 0.147472 0.158352i
\(222\) −150.576 + 86.9350i −0.678270 + 0.391599i
\(223\) −158.432 + 274.412i −0.710458 + 1.23055i 0.254228 + 0.967144i \(0.418179\pi\)
−0.964686 + 0.263404i \(0.915155\pi\)
\(224\) −13.8419 37.0999i −0.0617941 0.165625i
\(225\) 215.346 + 372.990i 0.957092 + 1.65773i
\(226\) 37.9273 21.8973i 0.167820 0.0968909i
\(227\) 141.103 0.621597 0.310799 0.950476i \(-0.399404\pi\)
0.310799 + 0.950476i \(0.399404\pi\)
\(228\) 138.843i 0.608960i
\(229\) −38.3046 66.3454i −0.167269 0.289718i 0.770190 0.637815i \(-0.220161\pi\)
−0.937459 + 0.348097i \(0.886828\pi\)
\(230\) 78.8421 45.5195i 0.342792 0.197911i
\(231\) −80.2734 + 477.668i −0.347504 + 2.06783i
\(232\) −1.76256 1.01762i −0.00759725 0.00438627i
\(233\) −137.436 238.046i −0.589853 1.02166i −0.994251 0.107073i \(-0.965852\pi\)
0.404398 0.914583i \(-0.367481\pi\)
\(234\) −38.9716 127.174i −0.166545 0.543477i
\(235\) 337.409 584.410i 1.43578 2.48685i
\(236\) 26.3358 0.111592
\(237\) −463.251 267.458i −1.95464 1.12851i
\(238\) 34.1188 12.7296i 0.143356 0.0534858i
\(239\) 177.253i 0.741646i −0.928704 0.370823i \(-0.879076\pi\)
0.928704 0.370823i \(-0.120924\pi\)
\(240\) −128.328 74.0901i −0.534699 0.308709i
\(241\) −319.864 −1.32723 −0.663617 0.748072i \(-0.730980\pi\)
−0.663617 + 0.748072i \(0.730980\pi\)
\(242\) 213.007 + 122.979i 0.880192 + 0.508179i
\(243\) 271.772 + 156.907i 1.11840 + 0.645709i
\(244\) 20.0969 + 11.6030i 0.0823644 + 0.0475531i
\(245\) −425.760 147.259i −1.73780 0.601058i
\(246\) 185.227 0.752954
\(247\) −214.152 + 65.6258i −0.867013 + 0.265691i
\(248\) −108.807 62.8196i −0.438737 0.253305i
\(249\) −377.375 + 217.877i −1.51556 + 0.875010i
\(250\) 448.973i 1.79589i
\(251\) 27.6527 15.9653i 0.110170 0.0636067i −0.443902 0.896075i \(-0.646406\pi\)
0.554073 + 0.832468i \(0.313073\pi\)
\(252\) 16.7863 99.8871i 0.0666123 0.396377i
\(253\) 104.133 60.1212i 0.411593 0.237633i
\(254\) 60.8247 + 35.1172i 0.239467 + 0.138257i
\(255\) 68.1366 118.016i 0.267203 0.462808i
\(256\) 16.0000 0.0625000
\(257\) 36.6300i 0.142529i −0.997457 0.0712646i \(-0.977297\pi\)
0.997457 0.0712646i \(-0.0227035\pi\)
\(258\) −152.855 + 264.752i −0.592460 + 1.02617i
\(259\) −74.6631 200.117i −0.288274 0.772652i
\(260\) 53.6213 232.953i 0.206236 0.895974i
\(261\) −2.60296 4.50846i −0.00997303 0.0172738i
\(262\) −121.546 210.524i −0.463916 0.803526i
\(263\) 211.204 + 365.815i 0.803056 + 1.39093i 0.917596 + 0.397515i \(0.130127\pi\)
−0.114540 + 0.993419i \(0.536539\pi\)
\(264\) −169.493 97.8567i −0.642018 0.370669i
\(265\) 80.9040 0.305298
\(266\) −168.204 28.2671i −0.632344 0.106267i
\(267\) 339.321 195.907i 1.27087 0.733735i
\(268\) −48.1220 + 27.7832i −0.179560 + 0.103669i
\(269\) 445.620i 1.65658i −0.560300 0.828290i \(-0.689314\pi\)
0.560300 0.828290i \(-0.310686\pi\)
\(270\) 46.2380 + 80.0866i 0.171252 + 0.296617i
\(271\) −368.469 −1.35967 −0.679833 0.733367i \(-0.737948\pi\)
−0.679833 + 0.733367i \(0.737948\pi\)
\(272\) 14.7143i 0.0540968i
\(273\) 363.527 47.8451i 1.33160 0.175257i
\(274\) 61.5857 0.224765
\(275\) 1022.32i 3.71755i
\(276\) −48.8642 + 28.2118i −0.177044 + 0.102217i
\(277\) 333.166 1.20276 0.601382 0.798962i \(-0.294617\pi\)
0.601382 + 0.798962i \(0.294617\pi\)
\(278\) −17.7583 30.7583i −0.0638789 0.110641i
\(279\) −160.686 278.317i −0.575937 0.997552i
\(280\) 115.884 140.381i 0.413871 0.501360i
\(281\) 289.853i 1.03151i 0.856738 + 0.515753i \(0.172488\pi\)
−0.856738 + 0.515753i \(0.827512\pi\)
\(282\) −209.117 + 362.202i −0.741551 + 1.28440i
\(283\) 13.4673 7.77535i 0.0475876 0.0274747i −0.476017 0.879436i \(-0.657920\pi\)
0.523605 + 0.851961i \(0.324587\pi\)
\(284\) 51.2627 29.5965i 0.180502 0.104213i
\(285\) −552.752 + 319.132i −1.93948 + 1.11976i
\(286\) 70.8220 307.680i 0.247629 1.07580i
\(287\) −37.7104 + 224.396i −0.131395 + 0.781868i
\(288\) 35.4433 + 20.4632i 0.123067 + 0.0710528i
\(289\) 275.468 0.953177
\(290\) 9.35599i 0.0322620i
\(291\) −276.173 159.448i −0.949048 0.547933i
\(292\) −60.2558 + 104.366i −0.206355 + 0.357418i
\(293\) 126.969 + 219.916i 0.433340 + 0.750566i 0.997159 0.0753321i \(-0.0240017\pi\)
−0.563819 + 0.825899i \(0.690668\pi\)
\(294\) 263.875 + 91.2674i 0.897534 + 0.310433i
\(295\) 60.5330 + 104.846i 0.205197 + 0.355411i
\(296\) 86.3040 0.291567
\(297\) 61.0703 + 105.777i 0.205624 + 0.356151i
\(298\) −109.034 + 188.852i −0.365886 + 0.633733i
\(299\) −66.6103 62.0339i −0.222777 0.207471i
\(300\) 479.724i 1.59908i
\(301\) −289.618 239.079i −0.962187 0.794283i
\(302\) 31.2687 54.1589i 0.103539 0.179334i
\(303\) −22.2285 + 38.5008i −0.0733613 + 0.127065i
\(304\) 34.4588 59.6843i 0.113351 0.196330i
\(305\) 106.678i 0.349764i
\(306\) −18.8189 + 32.5953i −0.0614997 + 0.106521i
\(307\) −272.611 −0.887982 −0.443991 0.896031i \(-0.646438\pi\)
−0.443991 + 0.896031i \(0.646438\pi\)
\(308\) 153.057 185.412i 0.496939 0.601987i
\(309\) 323.600 560.491i 1.04725 1.81389i
\(310\) 577.566i 1.86312i
\(311\) −250.624 144.698i −0.805866 0.465267i 0.0396525 0.999214i \(-0.487375\pi\)
−0.845518 + 0.533947i \(0.820708\pi\)
\(312\) −33.2331 + 144.378i −0.106516 + 0.462751i
\(313\) 248.246 143.325i 0.793117 0.457906i −0.0479417 0.998850i \(-0.515266\pi\)
0.841059 + 0.540944i \(0.181933\pi\)
\(314\) −91.7511 + 158.918i −0.292201 + 0.506107i
\(315\) 436.247 162.763i 1.38491 0.516707i
\(316\) 132.758 + 229.944i 0.420121 + 0.727671i
\(317\) 72.1894 41.6786i 0.227727 0.131478i −0.381796 0.924247i \(-0.624694\pi\)
0.609523 + 0.792768i \(0.291361\pi\)
\(318\) −50.1421 −0.157680
\(319\) 12.3572i 0.0387373i
\(320\) 36.7761 + 63.6981i 0.114925 + 0.199057i
\(321\) 467.794 270.081i 1.45730 0.841375i
\(322\) −24.2293 64.9410i −0.0752464 0.201680i
\(323\) 54.8885 + 31.6899i 0.169933 + 0.0981111i
\(324\) −93.7707 162.416i −0.289416 0.501283i
\(325\) 739.930 226.747i 2.27671 0.697684i
\(326\) 151.563 262.515i 0.464918 0.805262i
\(327\) −250.083 −0.764779
\(328\) −79.6233 45.9706i −0.242754 0.140154i
\(329\) −396.221 327.079i −1.20432 0.994163i
\(330\) 899.697i 2.72636i
\(331\) 259.200 + 149.649i 0.783082 + 0.452113i 0.837521 0.546404i \(-0.184004\pi\)
−0.0544394 + 0.998517i \(0.517337\pi\)
\(332\) 216.296 0.651493
\(333\) 191.181 + 110.379i 0.574118 + 0.331467i
\(334\) −171.564 99.0525i −0.513665 0.296564i
\(335\) −221.217 127.720i −0.660351 0.381254i
\(336\) −71.8218 + 87.0043i −0.213755 + 0.258941i
\(337\) −605.486 −1.79669 −0.898347 0.439286i \(-0.855232\pi\)
−0.898347 + 0.439286i \(0.855232\pi\)
\(338\) −238.398 + 16.9832i −0.705319 + 0.0502461i
\(339\) −108.059 62.3879i −0.318758 0.184035i
\(340\) −58.5797 + 33.8210i −0.172293 + 0.0994736i
\(341\) 762.837i 2.23706i
\(342\) 152.667 88.1421i 0.446394 0.257726i
\(343\) −164.290 + 301.094i −0.478979 + 0.877826i
\(344\) 131.415 75.8725i 0.382021 0.220560i
\(345\) −224.630 129.690i −0.651101 0.375913i
\(346\) −213.770 + 370.260i −0.617832 + 1.07012i
\(347\) 25.2726 0.0728318 0.0364159 0.999337i \(-0.488406\pi\)
0.0364159 + 0.999337i \(0.488406\pi\)
\(348\) 5.79859i 0.0166626i
\(349\) −276.022 + 478.084i −0.790894 + 1.36987i 0.134520 + 0.990911i \(0.457051\pi\)
−0.925414 + 0.378958i \(0.876283\pi\)
\(350\) 581.170 + 97.6672i 1.66048 + 0.279049i
\(351\) 63.0131 67.6618i 0.179524 0.192769i
\(352\) 48.5732 + 84.1312i 0.137992 + 0.239009i
\(353\) 75.4148 + 130.622i 0.213640 + 0.370035i 0.952851 0.303439i \(-0.0981349\pi\)
−0.739211 + 0.673474i \(0.764802\pi\)
\(354\) −37.5167 64.9809i −0.105979 0.183562i
\(355\) 235.655 + 136.056i 0.663818 + 0.383255i
\(356\) −194.485 −0.546307
\(357\) −80.0131 66.0506i −0.224126 0.185016i
\(358\) −224.640 + 129.696i −0.627485 + 0.362279i
\(359\) −53.1461 + 30.6839i −0.148039 + 0.0854705i −0.572190 0.820121i \(-0.693906\pi\)
0.424151 + 0.905592i \(0.360573\pi\)
\(360\) 188.139i 0.522610i
\(361\) 32.0742 + 55.5541i 0.0888481 + 0.153889i
\(362\) −312.250 −0.862570
\(363\) 700.763i 1.93048i
\(364\) −168.143 69.6548i −0.461932 0.191359i
\(365\) −553.994 −1.51779
\(366\) 66.1162i 0.180645i
\(367\) 356.970 206.097i 0.972670 0.561572i 0.0726211 0.997360i \(-0.476864\pi\)
0.900049 + 0.435788i \(0.143530\pi\)
\(368\) 28.0070 0.0761060
\(369\) −117.588 203.669i −0.318667 0.551948i
\(370\) 198.370 + 343.588i 0.536136 + 0.928615i
\(371\) 10.2085 60.7455i 0.0275161 0.163735i
\(372\) 357.960i 0.962258i
\(373\) −83.9583 + 145.420i −0.225089 + 0.389866i −0.956346 0.292236i \(-0.905601\pi\)
0.731257 + 0.682102i \(0.238934\pi\)
\(374\) −77.3709 + 44.6701i −0.206874 + 0.119439i
\(375\) 1107.80 639.587i 2.95412 1.70556i
\(376\) 179.786 103.800i 0.478155 0.276063i
\(377\) −8.94379 + 2.74078i −0.0237236 + 0.00726996i
\(378\) 65.9661 24.6118i 0.174514 0.0651106i
\(379\) −180.041 103.947i −0.475042 0.274266i 0.243306 0.969950i \(-0.421768\pi\)
−0.718348 + 0.695684i \(0.755101\pi\)
\(380\) 316.815 0.833724
\(381\) 200.105i 0.525211i
\(382\) 11.5337 + 6.65898i 0.0301929 + 0.0174319i
\(383\) −253.134 + 438.440i −0.660924 + 1.14475i 0.319450 + 0.947603i \(0.396502\pi\)
−0.980373 + 0.197150i \(0.936831\pi\)
\(384\) −22.7929 39.4784i −0.0593564 0.102808i
\(385\) 1089.95 + 183.170i 2.83105 + 0.475766i
\(386\) −24.3131 42.1115i −0.0629873 0.109097i
\(387\) 388.149 1.00297
\(388\) 79.1455 + 137.084i 0.203983 + 0.353309i
\(389\) −132.829 + 230.066i −0.341462 + 0.591429i −0.984704 0.174233i \(-0.944255\pi\)
0.643243 + 0.765662i \(0.277589\pi\)
\(390\) −651.175 + 199.549i −1.66968 + 0.511664i
\(391\) 25.7565i 0.0658735i
\(392\) −90.7805 104.723i −0.231583 0.267150i
\(393\) −346.298 + 599.805i −0.881165 + 1.52622i
\(394\) −82.2048 + 142.383i −0.208642 + 0.361378i
\(395\) −610.292 + 1057.06i −1.54504 + 2.67609i
\(396\) 248.491i 0.627502i
\(397\) 98.2478 170.170i 0.247476 0.428640i −0.715349 0.698767i \(-0.753732\pi\)
0.962825 + 0.270127i \(0.0870656\pi\)
\(398\) 141.374 0.355211
\(399\) 169.869 + 455.294i 0.425737 + 1.14109i
\(400\) −119.060 + 206.219i −0.297651 + 0.515547i
\(401\) 18.3343i 0.0457213i −0.999739 0.0228607i \(-0.992723\pi\)
0.999739 0.0228607i \(-0.00727741\pi\)
\(402\) 137.105 + 79.1574i 0.341056 + 0.196909i
\(403\) −552.120 + 169.194i −1.37002 + 0.419836i
\(404\) 19.1107 11.0336i 0.0473037 0.0273108i
\(405\) 431.065 746.627i 1.06436 1.84352i
\(406\) −7.02480 1.18054i −0.0173025 0.00290773i
\(407\) 262.004 + 453.804i 0.643743 + 1.11500i
\(408\) 36.3062 20.9614i 0.0889857 0.0513759i
\(409\) 55.2062 0.134979 0.0674893 0.997720i \(-0.478501\pi\)
0.0674893 + 0.997720i \(0.478501\pi\)
\(410\) 422.655i 1.03087i
\(411\) −87.7321 151.957i −0.213460 0.369724i
\(412\) −278.211 + 160.625i −0.675270 + 0.389867i
\(413\) 86.3602 32.2208i 0.209105 0.0780164i
\(414\) 62.0413 + 35.8196i 0.149858 + 0.0865207i
\(415\) 497.158 + 861.102i 1.19797 + 2.07495i
\(416\) 50.1184 53.8158i 0.120477 0.129365i
\(417\) −50.5954 + 87.6338i −0.121332 + 0.210153i
\(418\) 418.443 1.00106
\(419\) 595.399 + 343.754i 1.42100 + 0.820415i 0.996384 0.0849586i \(-0.0270758\pi\)
0.424616 + 0.905374i \(0.360409\pi\)
\(420\) −511.459 85.9521i −1.21776 0.204648i
\(421\) 584.326i 1.38795i 0.720001 + 0.693973i \(0.244141\pi\)
−0.720001 + 0.693973i \(0.755859\pi\)
\(422\) −392.570 226.651i −0.930261 0.537087i
\(423\) 531.019 1.25536
\(424\) 21.5546 + 12.4445i 0.0508363 + 0.0293503i
\(425\) −189.648 109.493i −0.446231 0.257632i
\(426\) −146.053 84.3237i −0.342847 0.197943i
\(427\) 80.0975 + 13.4606i 0.187582 + 0.0315237i
\(428\) −268.121 −0.626450
\(429\) −860.059 + 263.560i −2.00480 + 0.614360i
\(430\) 604.117 + 348.787i 1.40492 + 0.811133i
\(431\) −2.84514 + 1.64264i −0.00660126 + 0.00381124i −0.503297 0.864113i \(-0.667880\pi\)
0.496696 + 0.867925i \(0.334546\pi\)
\(432\) 28.4491i 0.0658544i
\(433\) 244.440 141.128i 0.564527 0.325930i −0.190434 0.981700i \(-0.560989\pi\)
0.754960 + 0.655770i \(0.227656\pi\)
\(434\) −433.656 72.8772i −0.999208 0.167920i
\(435\) −23.0850 + 13.3281i −0.0530689 + 0.0306393i
\(436\) 107.503 + 62.0668i 0.246566 + 0.142355i
\(437\) 60.3179 104.474i 0.138027 0.239070i
\(438\) 343.351 0.783906
\(439\) 350.600i 0.798634i −0.916813 0.399317i \(-0.869247\pi\)
0.916813 0.399317i \(-0.130753\pi\)
\(440\) −223.292 + 386.752i −0.507481 + 0.878983i
\(441\) −67.1623 348.087i −0.152295 0.789313i
\(442\) 49.4915 + 46.0912i 0.111972 + 0.104279i
\(443\) 15.8959 + 27.5325i 0.0358824 + 0.0621501i 0.883409 0.468603i \(-0.155243\pi\)
−0.847527 + 0.530753i \(0.821909\pi\)
\(444\) −122.945 212.946i −0.276902 0.479609i
\(445\) −447.026 774.271i −1.00455 1.73994i
\(446\) −388.078 224.057i −0.870129 0.502369i
\(447\) 621.299 1.38993
\(448\) 52.4672 19.5754i 0.117114 0.0436950i
\(449\) −271.586 + 156.800i −0.604868 + 0.349221i −0.770954 0.636891i \(-0.780220\pi\)
0.166086 + 0.986111i \(0.446887\pi\)
\(450\) −527.487 + 304.545i −1.17219 + 0.676767i
\(451\) 558.234i 1.23777i
\(452\) 30.9675 + 53.6373i 0.0685122 + 0.118667i
\(453\) −178.176 −0.393324
\(454\) 199.549i 0.439536i
\(455\) −109.174 829.503i −0.239943 1.82308i
\(456\) −196.354 −0.430600
\(457\) 97.0336i 0.212327i 0.994349 + 0.106164i \(0.0338567\pi\)
−0.994349 + 0.106164i \(0.966143\pi\)
\(458\) 93.8266 54.1708i 0.204862 0.118277i
\(459\) −26.1631 −0.0570002
\(460\) 64.3743 + 111.500i 0.139944 + 0.242390i
\(461\) −244.363 423.249i −0.530071 0.918110i −0.999385 0.0350783i \(-0.988832\pi\)
0.469314 0.883032i \(-0.344501\pi\)
\(462\) −675.524 113.524i −1.46217 0.245722i
\(463\) 570.309i 1.23177i −0.787837 0.615884i \(-0.788799\pi\)
0.787837 0.615884i \(-0.211201\pi\)
\(464\) 1.43913 2.49264i 0.00310156 0.00537207i
\(465\) −1425.09 + 822.774i −3.06470 + 1.76941i
\(466\) 336.648 194.364i 0.722420 0.417089i
\(467\) −92.0182 + 53.1267i −0.197041 + 0.113762i −0.595275 0.803522i \(-0.702957\pi\)
0.398233 + 0.917284i \(0.369623\pi\)
\(468\) 179.851 55.1142i 0.384296 0.117765i
\(469\) −123.810 + 149.982i −0.263987 + 0.319791i
\(470\) 826.481 + 477.169i 1.75847 + 1.01525i
\(471\) 522.818 1.11002
\(472\) 37.2444i 0.0789076i
\(473\) 797.906 + 460.671i 1.68690 + 0.973935i
\(474\) 378.243 655.135i 0.797980 1.38214i
\(475\) 512.835 + 888.255i 1.07965 + 1.87001i
\(476\) 18.0024 + 48.2512i 0.0378202 + 0.101368i
\(477\) 31.8319 + 55.1345i 0.0667336 + 0.115586i
\(478\) 250.674 0.524423
\(479\) 16.6219 + 28.7900i 0.0347012 + 0.0601043i 0.882854 0.469647i \(-0.155619\pi\)
−0.848153 + 0.529751i \(0.822285\pi\)
\(480\) 104.779 181.483i 0.218290 0.378089i
\(481\) 270.339 290.282i 0.562035 0.603498i
\(482\) 452.355i 0.938497i
\(483\) −125.720 + 152.296i −0.260289 + 0.315312i
\(484\) −173.919 + 301.237i −0.359337 + 0.622390i
\(485\) −363.833 + 630.178i −0.750172 + 1.29934i
\(486\) −221.901 + 384.343i −0.456586 + 0.790829i
\(487\) 360.023i 0.739266i −0.929178 0.369633i \(-0.879483\pi\)
0.929178 0.369633i \(-0.120517\pi\)
\(488\) −16.4091 + 28.4213i −0.0336251 + 0.0582404i
\(489\) −863.641 −1.76614
\(490\) 208.256 602.116i 0.425012 1.22881i
\(491\) 242.721 420.404i 0.494339 0.856221i −0.505639 0.862745i \(-0.668743\pi\)
0.999979 + 0.00652400i \(0.00207667\pi\)
\(492\) 261.950i 0.532419i
\(493\) 2.29235 + 1.32349i 0.00464979 + 0.00268456i
\(494\) −92.8089 302.857i −0.187872 0.613071i
\(495\) −989.275 + 571.158i −1.99854 + 1.15385i
\(496\) 88.8404 153.876i 0.179114 0.310234i
\(497\) 131.890 159.771i 0.265373 0.321470i
\(498\) −308.125 533.688i −0.618725 1.07166i
\(499\) −295.490 + 170.601i −0.592164 + 0.341886i −0.765953 0.642897i \(-0.777732\pi\)
0.173789 + 0.984783i \(0.444399\pi\)
\(500\) −634.944 −1.26989
\(501\) 564.423i 1.12659i
\(502\) 22.5783 + 39.1068i 0.0449767 + 0.0779020i
\(503\) −227.952 + 131.608i −0.453184 + 0.261646i −0.709174 0.705034i \(-0.750932\pi\)
0.255990 + 0.966679i \(0.417599\pi\)
\(504\) 141.262 + 23.7394i 0.280281 + 0.0471020i
\(505\) 87.8521 + 50.7214i 0.173965 + 0.100438i
\(506\) 85.0243 + 147.266i 0.168032 + 0.291040i
\(507\) 381.515 + 564.030i 0.752495 + 1.11248i
\(508\) −49.6632 + 86.0192i −0.0977622 + 0.169329i
\(509\) 159.836 0.314019 0.157009 0.987597i \(-0.449815\pi\)
0.157009 + 0.987597i \(0.449815\pi\)
\(510\) 166.900 + 96.3598i 0.327255 + 0.188941i
\(511\) −69.9029 + 415.958i −0.136796 + 0.814007i
\(512\) 22.6274i 0.0441942i
\(513\) 106.123 + 61.2700i 0.206867 + 0.119435i
\(514\) 51.8027 0.100783
\(515\) −1278.94 738.397i −2.48338 1.43378i
\(516\) −374.416 216.169i −0.725612 0.418932i
\(517\) 1091.60 + 630.235i 2.11141 + 1.21902i
\(518\) 283.008 105.590i 0.546347 0.203841i
\(519\) 1218.11 2.34703
\(520\) 329.446 + 75.8320i 0.633549 + 0.145831i
\(521\) 676.625 + 390.650i 1.29870 + 0.749808i 0.980180 0.198107i \(-0.0634793\pi\)
0.318525 + 0.947915i \(0.396813\pi\)
\(522\) 6.37593 3.68114i 0.0122144 0.00705200i
\(523\) 830.732i 1.58840i 0.607658 + 0.794199i \(0.292109\pi\)
−0.607658 + 0.794199i \(0.707891\pi\)
\(524\) 297.726 171.892i 0.568179 0.328038i
\(525\) −586.924 1573.11i −1.11795 2.99640i
\(526\) −517.341 + 298.687i −0.983538 + 0.567846i
\(527\) 141.512 + 81.7017i 0.268523 + 0.155032i
\(528\) 138.390 239.699i 0.262103 0.453975i
\(529\) −479.976 −0.907326
\(530\) 114.416i 0.215878i
\(531\) −47.6338 + 82.5041i −0.0897058 + 0.155375i
\(532\) 39.9757 237.876i 0.0751423 0.447135i
\(533\) −404.034 + 123.814i −0.758037 + 0.232296i
\(534\) 277.055 + 479.873i 0.518829 + 0.898638i
\(535\) −616.278 1067.42i −1.15192 1.99519i
\(536\) −39.2914 68.0547i −0.0733049 0.126968i
\(537\) 640.023 + 369.517i 1.19185 + 0.688114i
\(538\) 630.202 1.17138
\(539\) 275.060 795.263i 0.510316 1.47544i
\(540\) −113.260 + 65.3904i −0.209740 + 0.121093i
\(541\) 55.8428 32.2408i 0.103221 0.0595949i −0.447501 0.894284i \(-0.647686\pi\)
0.550722 + 0.834689i \(0.314352\pi\)
\(542\) 521.094i 0.961428i
\(543\) 444.817 + 770.446i 0.819185 + 1.41887i
\(544\) −20.8092 −0.0382522
\(545\) 570.645i 1.04705i
\(546\) 67.6632 + 514.104i 0.123925 + 0.941583i
\(547\) −196.545 −0.359314 −0.179657 0.983729i \(-0.557499\pi\)
−0.179657 + 0.983729i \(0.557499\pi\)
\(548\) 87.0953i 0.158933i
\(549\) −72.6990 + 41.9728i −0.132421 + 0.0764531i
\(550\) −1445.79 −2.62870
\(551\) −6.19881 10.7367i −0.0112501 0.0194858i
\(552\) −39.8975 69.1045i −0.0722781 0.125189i
\(553\) 716.668 + 591.607i 1.29596 + 1.06981i
\(554\) 471.167i 0.850483i
\(555\) 565.179 978.918i 1.01834 1.76382i
\(556\) 43.4988 25.1141i 0.0782353 0.0451692i
\(557\) 388.499 224.300i 0.697485 0.402693i −0.108925 0.994050i \(-0.534741\pi\)
0.806410 + 0.591357i \(0.201408\pi\)
\(558\) 393.600 227.245i 0.705376 0.407249i
\(559\) 156.448 679.676i 0.279872 1.21588i
\(560\) 198.528 + 163.885i 0.354515 + 0.292651i
\(561\) 220.438 + 127.270i 0.392938 + 0.226863i
\(562\) −409.914 −0.729384
\(563\) 518.144i 0.920327i 0.887834 + 0.460164i \(0.152209\pi\)
−0.887834 + 0.460164i \(0.847791\pi\)
\(564\) −512.231 295.737i −0.908211 0.524356i
\(565\) −142.358 + 246.572i −0.251961 + 0.436410i
\(566\) 10.9960 + 19.0456i 0.0194276 + 0.0336495i
\(567\) −506.202 417.868i −0.892772 0.736981i
\(568\) 41.8558 + 72.4964i 0.0736898 + 0.127634i
\(569\) −686.901 −1.20721 −0.603604 0.797285i \(-0.706269\pi\)
−0.603604 + 0.797285i \(0.706269\pi\)
\(570\) −451.320 781.709i −0.791790 1.37142i
\(571\) 321.533 556.911i 0.563105 0.975326i −0.434118 0.900856i \(-0.642940\pi\)
0.997223 0.0744705i \(-0.0237267\pi\)
\(572\) 435.125 + 100.157i 0.760708 + 0.175100i
\(573\) 37.9443i 0.0662205i
\(574\) −317.344 53.3305i −0.552864 0.0929104i
\(575\) −208.408 + 360.973i −0.362448 + 0.627779i
\(576\) −28.9394 + 50.1244i −0.0502419 + 0.0870216i
\(577\) −139.909 + 242.329i −0.242476 + 0.419981i −0.961419 0.275088i \(-0.911293\pi\)
0.718943 + 0.695069i \(0.244626\pi\)
\(578\) 389.571i 0.673998i
\(579\) −69.2706 + 119.980i −0.119638 + 0.207220i
\(580\) 13.2314 0.0228127
\(581\) 709.277 264.629i 1.22079 0.455472i
\(582\) 225.494 390.567i 0.387447 0.671078i
\(583\) 151.118i 0.259207i
\(584\) −147.596 85.2146i −0.252733 0.145915i
\(585\) 632.805 + 589.328i 1.08172 + 1.00740i
\(586\) −311.008 + 179.561i −0.530731 + 0.306417i
\(587\) 522.694 905.332i 0.890449 1.54230i 0.0511114 0.998693i \(-0.483724\pi\)
0.839338 0.543610i \(-0.182943\pi\)
\(588\) −129.072 + 373.175i −0.219510 + 0.634652i
\(589\) −382.666 662.797i −0.649688 1.12529i
\(590\) −148.275 + 85.6066i −0.251313 + 0.145096i
\(591\) 468.421 0.792590
\(592\) 122.052i 0.206169i
\(593\) 300.390 + 520.290i 0.506559 + 0.877387i 0.999971 + 0.00759089i \(0.00241628\pi\)
−0.493412 + 0.869796i \(0.664250\pi\)
\(594\) −149.591 + 86.3664i −0.251837 + 0.145398i
\(595\) −150.716 + 182.576i −0.253304 + 0.306850i
\(596\) −267.078 154.197i −0.448117 0.258720i
\(597\) −201.395 348.826i −0.337345 0.584299i
\(598\) 87.7292 94.2012i 0.146704 0.157527i
\(599\) −158.885 + 275.197i −0.265251 + 0.459428i −0.967629 0.252376i \(-0.918788\pi\)
0.702378 + 0.711804i \(0.252121\pi\)
\(600\) 678.432 1.13072
\(601\) −906.763 523.520i −1.50876 0.871082i −0.999948 0.0102029i \(-0.996752\pi\)
−0.508810 0.860879i \(-0.669914\pi\)
\(602\) 338.109 409.582i 0.561643 0.680369i
\(603\) 201.007i 0.333345i
\(604\) 76.5923 + 44.2206i 0.126808 + 0.0732129i
\(605\) −1599.02 −2.64300
\(606\) −54.4484 31.4358i −0.0898489 0.0518743i
\(607\) −103.899 59.9859i −0.171167 0.0988235i 0.411969 0.911198i \(-0.364841\pi\)
−0.583136 + 0.812374i \(0.698175\pi\)
\(608\) 84.4064 + 48.7321i 0.138826 + 0.0801514i
\(609\) 7.09435 + 19.0147i 0.0116492 + 0.0312229i
\(610\) −150.865 −0.247320
\(611\) 214.034 929.852i 0.350301 1.52185i
\(612\) −46.0967 26.6140i −0.0753215 0.0434869i
\(613\) 11.5933 6.69339i 0.0189124 0.0109191i −0.490514 0.871433i \(-0.663191\pi\)
0.509426 + 0.860514i \(0.329858\pi\)
\(614\) 385.530i 0.627898i
\(615\) −1042.86 + 602.095i −1.69570 + 0.979016i
\(616\) 262.212 + 216.456i 0.425669 + 0.351389i
\(617\) 602.948 348.112i 0.977225 0.564201i 0.0757935 0.997124i \(-0.475851\pi\)
0.901431 + 0.432923i \(0.142518\pi\)
\(618\) 792.654 + 457.639i 1.28261 + 0.740516i
\(619\) 459.302 795.534i 0.742006 1.28519i −0.209574 0.977793i \(-0.567208\pi\)
0.951580 0.307400i \(-0.0994589\pi\)
\(620\) 816.801 1.31742
\(621\) 49.7983i 0.0801906i
\(622\) 204.634 354.436i 0.328993 0.569833i
\(623\) −637.755 + 237.945i −1.02368 + 0.381934i
\(624\) −204.182 46.9987i −0.327214 0.0753184i
\(625\) −715.296 1238.93i −1.14447 1.98229i
\(626\) 202.692 + 351.072i 0.323789 + 0.560818i
\(627\) −596.095 1032.47i −0.950709 1.64668i
\(628\) −224.743 129.756i −0.357872 0.206617i
\(629\) −112.245 −0.178450
\(630\) 230.181 + 616.947i 0.365367 + 0.979280i
\(631\) 610.860 352.680i 0.968082 0.558922i 0.0694309 0.997587i \(-0.477882\pi\)
0.898651 + 0.438664i \(0.144548\pi\)
\(632\) −325.190 + 187.748i −0.514541 + 0.297070i
\(633\) 1291.50i 2.04029i
\(634\) 58.9424 + 102.091i 0.0929691 + 0.161027i
\(635\) −456.605 −0.719063
\(636\) 70.9117i 0.111496i
\(637\) −636.596 22.6950i −0.999365 0.0356279i
\(638\) 17.4757 0.0273914
\(639\) 214.126i 0.335096i
\(640\) −90.0827 + 52.0093i −0.140754 + 0.0812645i
\(641\) 792.995 1.23712 0.618560 0.785737i \(-0.287716\pi\)
0.618560 + 0.785737i \(0.287716\pi\)
\(642\) 381.953 + 661.561i 0.594942 + 1.03047i
\(643\) −420.524 728.369i −0.654003 1.13277i −0.982143 0.188137i \(-0.939755\pi\)
0.328140 0.944629i \(-0.393578\pi\)
\(644\) 91.8405 34.2655i 0.142609 0.0532072i
\(645\) 1987.47i 3.08134i
\(646\) −44.8163 + 77.6240i −0.0693750 + 0.120161i
\(647\) 518.738 299.493i 0.801759 0.462896i −0.0423272 0.999104i \(-0.513477\pi\)
0.844086 + 0.536208i \(0.180144\pi\)
\(648\) 229.690 132.612i 0.354460 0.204648i
\(649\) −195.839 + 113.067i −0.301754 + 0.174218i
\(650\) 320.669 + 1046.42i 0.493337 + 1.60987i
\(651\) 437.950 + 1173.82i 0.672734 + 1.80311i
\(652\) 371.253 + 214.343i 0.569406 + 0.328747i
\(653\) −413.536 −0.633286 −0.316643 0.948545i \(-0.602556\pi\)
−0.316643 + 0.948545i \(0.602556\pi\)
\(654\) 353.670i 0.540780i
\(655\) 1368.65 + 790.190i 2.08954 + 1.20640i
\(656\) 65.0122 112.604i 0.0991039 0.171653i
\(657\) −217.970 377.536i −0.331766 0.574636i
\(658\) 462.560 560.341i 0.702979 0.851583i
\(659\) 9.17613 + 15.8935i 0.0139243 + 0.0241176i 0.872904 0.487893i \(-0.162234\pi\)
−0.858979 + 0.512010i \(0.828901\pi\)
\(660\) 1272.36 1.92782
\(661\) 487.981 + 845.208i 0.738246 + 1.27868i 0.953284 + 0.302075i \(0.0976792\pi\)
−0.215038 + 0.976606i \(0.568988\pi\)
\(662\) −211.636 + 366.564i −0.319692 + 0.553723i
\(663\) 43.2222 187.775i 0.0651918 0.283220i
\(664\) 305.888i 0.460675i
\(665\) 1038.90 387.611i 1.56225 0.582873i
\(666\) −156.099 + 270.371i −0.234383 + 0.405963i
\(667\) 2.51910 4.36321i 0.00377676 0.00654154i
\(668\) 140.081 242.628i 0.209703 0.363216i
\(669\) 1276.72i 1.90841i
\(670\) 180.623 312.849i 0.269587 0.466938i
\(671\) −199.260 −0.296960
\(672\) −123.043 101.571i −0.183099 0.151148i
\(673\) 478.681 829.100i 0.711264 1.23195i −0.253119 0.967435i \(-0.581456\pi\)
0.964383 0.264511i \(-0.0852104\pi\)
\(674\) 856.287i 1.27045i
\(675\) −366.671 211.698i −0.543216 0.313626i
\(676\) −24.0179 337.146i −0.0355294 0.498736i
\(677\) −973.555 + 562.082i −1.43804 + 0.830255i −0.997714 0.0675817i \(-0.978472\pi\)
−0.440329 + 0.897836i \(0.645138\pi\)
\(678\) 88.2298 152.819i 0.130132 0.225396i
\(679\) 427.251 + 352.694i 0.629236 + 0.519432i
\(680\) −47.8302 82.8443i −0.0703385 0.121830i
\(681\) 492.368 284.269i 0.723007 0.417428i
\(682\) 1078.81 1.58184
\(683\) 397.466i 0.581942i −0.956732 0.290971i \(-0.906022\pi\)
0.956732 0.290971i \(-0.0939783\pi\)
\(684\) 124.652 + 215.903i 0.182240 + 0.315648i
\(685\) −346.738 + 200.189i −0.506187 + 0.292247i
\(686\) −425.812 232.341i −0.620717 0.338689i
\(687\) −267.322 154.339i −0.389115 0.224656i
\(688\) 107.300 + 185.849i 0.155959 + 0.270129i
\(689\) 109.375 33.5173i 0.158744 0.0486463i
\(690\) 183.409 317.674i 0.265811 0.460398i
\(691\) −422.080 −0.610825 −0.305413 0.952220i \(-0.598794\pi\)
−0.305413 + 0.952220i \(0.598794\pi\)
\(692\) −523.627 302.316i −0.756686 0.436873i
\(693\) 304.019 + 814.851i 0.438700 + 1.17583i
\(694\) 35.7409i 0.0514999i
\(695\) 199.965 + 115.450i 0.287719 + 0.166115i
\(696\) −8.20045 −0.0117823
\(697\) 103.556 + 59.7882i 0.148574 + 0.0857793i
\(698\) −676.113 390.354i −0.968643 0.559247i
\(699\) −959.146 553.763i −1.37217 0.792222i
\(700\) −138.122 + 821.898i −0.197318 + 1.17414i
\(701\) 253.930 0.362240 0.181120 0.983461i \(-0.442028\pi\)
0.181120 + 0.983461i \(0.442028\pi\)
\(702\) 95.6882 + 89.1140i 0.136308 + 0.126943i
\(703\) 455.288 + 262.861i 0.647636 + 0.373913i
\(704\) −118.979 + 68.6928i −0.169005 + 0.0975751i
\(705\) 2719.01i 3.85675i
\(706\) −184.728 + 106.653i −0.261654 + 0.151066i
\(707\) 49.1686 59.5624i 0.0695454 0.0842467i
\(708\) 91.8969 53.0567i 0.129798 0.0749388i
\(709\) 780.741 + 450.761i 1.10119 + 0.635770i 0.936532 0.350581i \(-0.114016\pi\)
0.164654 + 0.986351i \(0.447349\pi\)
\(710\) −192.412 + 333.267i −0.271003 + 0.469390i
\(711\) −960.484 −1.35089
\(712\) 275.044i 0.386297i
\(713\) 155.509 269.350i 0.218106 0.377770i
\(714\) 93.4097 113.156i 0.130826 0.158481i
\(715\) 601.398 + 1962.50i 0.841117 + 2.74476i
\(716\) −183.417 317.688i −0.256170 0.443699i
\(717\) −357.099 618.513i −0.498046 0.862640i
\(718\) −43.3936 75.1599i −0.0604368 0.104680i
\(719\) −941.586 543.625i −1.30958 0.756085i −0.327552 0.944833i \(-0.606224\pi\)
−0.982025 + 0.188749i \(0.939557\pi\)
\(720\) −266.069 −0.369541
\(721\) −715.791 + 867.103i −0.992776 + 1.20264i
\(722\) −78.5653 + 45.3597i −0.108816 + 0.0628251i
\(723\) −1116.14 + 644.405i −1.54376 + 0.891293i
\(724\) 441.588i 0.609929i
\(725\) 21.4179 + 37.0968i 0.0295419 + 0.0511681i
\(726\) 991.029 1.36505
\(727\) 202.930i 0.279133i 0.990213 + 0.139566i \(0.0445709\pi\)
−0.990213 + 0.139566i \(0.955429\pi\)
\(728\) 98.5067 237.791i 0.135311 0.326636i
\(729\) 420.502 0.576820
\(730\) 783.465i 1.07324i
\(731\) −170.915 + 98.6780i −0.233810 + 0.134990i
\(732\) 93.5024 0.127736
\(733\) 270.224 + 468.041i 0.368654 + 0.638528i 0.989355 0.145519i \(-0.0464852\pi\)
−0.620701 + 0.784047i \(0.713152\pi\)
\(734\) 291.465 + 504.832i 0.397091 + 0.687782i
\(735\) −1782.33 + 343.896i −2.42494 + 0.467885i
\(736\) 39.6079i 0.0538150i
\(737\) 238.564 413.204i 0.323695 0.560657i
\(738\) 288.031 166.295i 0.390286 0.225332i
\(739\) −538.883 + 311.124i −0.729206 + 0.421007i −0.818132 0.575031i \(-0.804990\pi\)
0.0889257 + 0.996038i \(0.471657\pi\)
\(740\) −485.906 + 280.538i −0.656630 + 0.379105i
\(741\) −615.058 + 660.433i −0.830038 + 0.891273i
\(742\) 85.9072 + 14.4369i 0.115778 + 0.0194568i
\(743\) 330.453 + 190.787i 0.444755 + 0.256780i 0.705613 0.708598i \(-0.250672\pi\)
−0.260857 + 0.965377i \(0.584005\pi\)
\(744\) −506.232 −0.680419
\(745\) 1417.69i 1.90295i
\(746\) −205.655 118.735i −0.275677 0.159162i
\(747\) −391.216 + 677.607i −0.523717 + 0.907104i
\(748\) −63.1731 109.419i −0.0844560 0.146282i
\(749\) −879.221 + 328.035i −1.17386 + 0.437964i
\(750\) 904.512 + 1566.66i 1.20602 + 2.08888i
\(751\) −241.806 −0.321979 −0.160989 0.986956i \(-0.551469\pi\)
−0.160989 + 0.986956i \(0.551469\pi\)
\(752\) 146.795 + 254.256i 0.195206 + 0.338107i
\(753\) 64.3281 111.420i 0.0854291 0.147968i
\(754\) −3.87604 12.6484i −0.00514064 0.0167751i
\(755\) 406.565i 0.538497i
\(756\) 34.8063 + 93.2902i 0.0460401 + 0.123400i
\(757\) −277.724 + 481.032i −0.366874 + 0.635445i −0.989075 0.147413i \(-0.952905\pi\)
0.622201 + 0.782858i \(0.286239\pi\)
\(758\) 147.003 254.616i 0.193935 0.335906i
\(759\) 242.243 419.578i 0.319161 0.552804i
\(760\) 448.044i 0.589532i
\(761\) 450.886 780.958i 0.592492 1.02623i −0.401404 0.915901i \(-0.631478\pi\)
0.993896 0.110325i \(-0.0351890\pi\)
\(762\) 282.992 0.371380
\(763\) 428.460 + 72.0039i 0.561546 + 0.0943695i
\(764\) −9.41722 + 16.3111i −0.0123262 + 0.0213496i
\(765\) 244.690i 0.319856i
\(766\) −620.048 357.985i −0.809463 0.467343i
\(767\) 125.271 + 116.664i 0.163326 + 0.152105i
\(768\) 55.8309 32.2340i 0.0726965 0.0419713i
\(769\) 27.1659 47.0527i 0.0353263 0.0611869i −0.847822 0.530281i \(-0.822086\pi\)
0.883148 + 0.469094i \(0.155420\pi\)
\(770\) −259.041 + 1541.43i −0.336417 + 2.00185i
\(771\) −73.7957 127.818i −0.0957143 0.165782i
\(772\) 59.5546 34.3839i 0.0771433 0.0445387i
\(773\) −484.904 −0.627301 −0.313651 0.949538i \(-0.601552\pi\)
−0.313651 + 0.949538i \(0.601552\pi\)
\(774\) 548.925i 0.709206i
\(775\) 1322.17 + 2290.07i 1.70603 + 2.95493i
\(776\) −193.866 + 111.929i −0.249828 + 0.144238i
\(777\) −663.692 547.876i −0.854172 0.705117i
\(778\) −325.362 187.848i −0.418203 0.241450i
\(779\) −280.030 485.026i −0.359474 0.622627i
\(780\) −282.205 920.901i −0.361801 1.18064i
\(781\) −254.134 + 440.172i −0.325395 + 0.563601i
\(782\) −36.4252 −0.0465796
\(783\) 4.43208 + 2.55886i 0.00566038 + 0.00326802i
\(784\) 148.101 128.383i 0.188904 0.163754i
\(785\) 1192.98i 1.51972i
\(786\) −848.253 489.739i −1.07920 0.623077i
\(787\) −617.635 −0.784797 −0.392398 0.919795i \(-0.628354\pi\)
−0.392398 + 0.919795i \(0.628354\pi\)
\(788\) −201.360 116.255i −0.255533 0.147532i
\(789\) 1473.96 + 850.992i 1.86814 + 1.07857i
\(790\) −1494.90 863.083i −1.89228 1.09251i
\(791\) 167.172 + 138.000i 0.211342 + 0.174463i
\(792\) −351.419 −0.443711
\(793\) 44.1950 + 144.219i 0.0557315 + 0.181865i
\(794\) 240.657 + 138.943i 0.303095 + 0.174992i
\(795\) 282.309 162.991i 0.355106 0.205020i
\(796\) 199.933i 0.251172i
\(797\) −45.6634 + 26.3638i −0.0572941 + 0.0330788i −0.528373 0.849012i \(-0.677198\pi\)
0.471079 + 0.882091i \(0.343865\pi\)
\(798\) −643.882 + 240.231i −0.806870 + 0.301041i
\(799\) −233.826 + 134.999i −0.292648 + 0.168960i
\(800\) −291.637 168.377i −0.364547 0.210471i
\(801\) 351.767 609.279i 0.439160 0.760648i
\(802\) 25.9285 0.0323299
\(803\) 1034.79i 1.28865i
\(804\) −111.946 + 193.895i −0.139236 + 0.241163i
\(805\) 347.511 + 286.870i 0.431691 + 0.356360i
\(806\) −239.277 780.815i −0.296869 0.968753i
\(807\) −897.756 1554.96i −1.11246 1.92684i
\(808\) 15.6038 + 27.0266i 0.0193116 + 0.0334487i
\(809\) 311.964 + 540.338i 0.385617 + 0.667909i 0.991855 0.127375i \(-0.0406552\pi\)
−0.606237 + 0.795284i \(0.707322\pi\)
\(810\) 1055.89 + 609.618i 1.30357 + 0.752615i
\(811\) 10.3713 0.0127882 0.00639412 0.999980i \(-0.497965\pi\)
0.00639412 + 0.999980i \(0.497965\pi\)
\(812\) 1.66953 9.93457i 0.00205608 0.0122347i
\(813\) −1285.75 + 742.327i −1.58149 + 0.913071i
\(814\) −641.775 + 370.529i −0.788421 + 0.455195i
\(815\) 1970.68i 2.41801i
\(816\) 29.6439 + 51.3447i 0.0363283 + 0.0629224i
\(817\) 924.356 1.13140
\(818\) 78.0734i 0.0954442i
\(819\) 522.336 400.771i 0.637772 0.489341i
\(820\) 597.724 0.728932
\(821\) 97.1595i 0.118343i 0.998248 + 0.0591715i \(0.0188459\pi\)
−0.998248 + 0.0591715i \(0.981154\pi\)
\(822\) 214.899 124.072i 0.261434 0.150939i
\(823\) −872.335 −1.05995 −0.529973 0.848015i \(-0.677798\pi\)
−0.529973 + 0.848015i \(0.677798\pi\)
\(824\) −227.159 393.450i −0.275678 0.477488i
\(825\) 2059.60 + 3567.33i 2.49649 + 4.32404i
\(826\) 45.5671 + 122.132i 0.0551659 + 0.147859i
\(827\) 246.854i 0.298493i −0.988800 0.149247i \(-0.952315\pi\)
0.988800 0.149247i \(-0.0476848\pi\)
\(828\) −50.6565 + 87.7397i −0.0611794 + 0.105966i
\(829\) 511.303 295.201i 0.616771 0.356093i −0.158840 0.987304i \(-0.550775\pi\)
0.775611 + 0.631211i \(0.217442\pi\)
\(830\) −1217.78 + 703.087i −1.46721 + 0.847093i
\(831\) 1162.56 671.203i 1.39899 0.807706i
\(832\) 76.1071 + 70.8782i 0.0914748 + 0.0851901i
\(833\) 118.067 + 136.200i 0.141737 + 0.163506i
\(834\) −123.933 71.5527i −0.148601 0.0857946i
\(835\) 1287.91 1.54241
\(836\) 591.768i 0.707856i
\(837\) 273.602 + 157.964i 0.326884 + 0.188727i
\(838\) −486.141 + 842.022i −0.580121 + 1.00480i
\(839\) 186.954 + 323.815i 0.222830 + 0.385953i 0.955666 0.294452i \(-0.0951372\pi\)
−0.732836 + 0.680405i \(0.761804\pi\)
\(840\) 121.555 723.312i 0.144708 0.861085i
\(841\) 420.241 + 727.879i 0.499692 + 0.865492i
\(842\) −826.361 −0.981427
\(843\) 583.945 + 1011.42i 0.692698 + 1.19979i
\(844\) 320.532 555.178i 0.379778 0.657794i
\(845\) 1287.02 870.550i 1.52310 1.03024i
\(846\) 750.974i 0.887676i
\(847\) −201.764 + 1200.60i −0.238210 + 1.41747i
\(848\) −17.5992 + 30.4828i −0.0207538 + 0.0359467i
\(849\) 31.3288 54.2631i 0.0369008 0.0639141i
\(850\) 154.847 268.203i 0.182173 0.315533i
\(851\) 213.645i 0.251051i
\(852\) 119.252 206.550i 0.139967 0.242430i
\(853\) −1444.14 −1.69301 −0.846506 0.532379i \(-0.821298\pi\)
−0.846506 + 0.532379i \(0.821298\pi\)
\(854\) −19.0362 + 113.275i −0.0222906 + 0.132641i
\(855\) −573.026 + 992.511i −0.670206 + 1.16083i
\(856\) 379.180i 0.442967i
\(857\) 641.919 + 370.612i 0.749031 + 0.432453i 0.825344 0.564631i \(-0.190981\pi\)
−0.0763129 + 0.997084i \(0.524315\pi\)
\(858\) −372.731 1216.31i −0.434418 1.41761i
\(859\) 898.862 518.958i 1.04641 0.604142i 0.124764 0.992186i \(-0.460183\pi\)
0.921641 + 0.388044i \(0.126849\pi\)
\(860\) −493.260 + 854.351i −0.573558 + 0.993431i
\(861\) 320.486 + 858.987i 0.372225 + 0.997662i
\(862\) −2.32305 4.02364i −0.00269495 0.00466780i
\(863\) 301.249 173.926i 0.349071 0.201536i −0.315205 0.949024i \(-0.602073\pi\)
0.664276 + 0.747487i \(0.268740\pi\)
\(864\) −40.2331 −0.0465661
\(865\) 2779.50i 3.21330i
\(866\) 199.584 + 345.690i 0.230467 + 0.399181i
\(867\) 961.227 554.964i 1.10868 0.640097i
\(868\) 103.064 613.283i 0.118737 0.706547i
\(869\) −1974.44 1139.94i −2.27208 1.31179i
\(870\) −18.8488 32.6471i −0.0216653 0.0375254i
\(871\) −351.978 81.0185i −0.404108 0.0930178i
\(872\) −87.7758 + 152.032i −0.100660 + 0.174349i
\(873\) −572.605 −0.655905
\(874\) 147.748 + 85.3024i 0.169048 + 0.0976000i
\(875\) −2082.11 + 776.829i −2.37955 + 0.887805i
\(876\) 485.571i 0.554305i
\(877\) 779.140 + 449.837i 0.888415 + 0.512926i 0.873424 0.486961i \(-0.161895\pi\)
0.0149911 + 0.999888i \(0.495228\pi\)
\(878\) 495.824 0.564720
\(879\) 886.096 + 511.588i 1.00807 + 0.582011i
\(880\) −546.951 315.782i −0.621535 0.358843i
\(881\) −222.311 128.352i −0.252340 0.145688i 0.368495 0.929630i \(-0.379873\pi\)
−0.620835 + 0.783941i \(0.713206\pi\)
\(882\) 492.269 94.9818i 0.558128 0.107689i
\(883\) −774.664 −0.877309 −0.438654 0.898656i \(-0.644545\pi\)
−0.438654 + 0.898656i \(0.644545\pi\)
\(884\) −65.1828 + 69.9916i −0.0737362 + 0.0791760i
\(885\) 422.451 + 243.902i 0.477346 + 0.275596i
\(886\) −38.9368 + 22.4802i −0.0439467 + 0.0253727i
\(887\) 604.756i 0.681800i −0.940100 0.340900i \(-0.889268\pi\)
0.940100 0.340900i \(-0.110732\pi\)
\(888\) 301.152 173.870i 0.339135 0.195800i
\(889\) −57.6144 + 342.835i −0.0648081 + 0.385641i
\(890\) 1094.98 632.190i 1.23032 0.710326i
\(891\) 1394.60 + 805.172i 1.56521 + 0.903672i
\(892\) 316.864 548.825i 0.355229 0.615274i
\(893\) 1264.59 1.41612
\(894\) 878.650i 0.982830i
\(895\) 843.173 1460.42i 0.942093 1.63175i
\(896\) 27.6838 + 74.1998i 0.0308971 + 0.0828123i
\(897\) −357.407 82.2682i −0.398447 0.0917149i
\(898\) −221.749 384.080i −0.246936 0.427706i
\(899\) −15.9816 27.6809i −0.0177770 0.0307907i
\(900\) −430.692 745.980i −0.478546 0.828866i
\(901\) −28.0334 16.1851i −0.0311136 0.0179635i
\(902\) 789.462 0.875235
\(903\) −1492.26 250.778i −1.65256 0.277717i
\(904\) −75.8546 + 43.7947i −0.0839100 + 0.0484454i
\(905\) 1758.02 1014.99i 1.94257 1.12154i
\(906\) 251.978i 0.278122i
\(907\) 62.1926 + 107.721i 0.0685696 + 0.118766i 0.898272 0.439440i \(-0.144823\pi\)
−0.829702 + 0.558206i \(0.811490\pi\)
\(908\) −282.205 −0.310799
\(909\) 79.8260i 0.0878174i
\(910\) 1173.09 154.395i 1.28912 0.169665i
\(911\) 1162.26 1.27580 0.637902 0.770117i \(-0.279802\pi\)
0.637902 + 0.770117i \(0.279802\pi\)
\(912\) 277.686i 0.304480i
\(913\) −1608.42 + 928.623i −1.76169 + 1.01711i
\(914\) −137.226 −0.150138
\(915\) 214.916 + 372.245i 0.234881 + 0.406826i
\(916\) 76.6091 + 132.691i 0.0836344 + 0.144859i
\(917\) 765.998 927.923i 0.835331 1.01191i
\(918\) 37.0002i 0.0403052i
\(919\) −143.941 + 249.312i −0.156627 + 0.271287i −0.933650 0.358186i \(-0.883396\pi\)
0.777023 + 0.629472i \(0.216729\pi\)
\(920\) −157.684 + 91.0390i −0.171396 + 0.0989554i
\(921\) −951.256 + 549.208i −1.03285 + 0.596317i
\(922\) 598.564 345.581i 0.649202 0.374817i
\(923\) 374.950 + 86.3063i 0.406230 + 0.0935063i
\(924\) 160.547 955.335i 0.173752 1.03391i
\(925\) −1573.09 908.225i −1.70064 0.981864i
\(926\) 806.539 0.870992
\(927\) 1162.10i 1.25361i
\(928\) 3.52512 + 2.03523i 0.00379862 + 0.00219314i
\(929\) −536.089 + 928.534i −0.577061 + 0.999498i 0.418754 + 0.908100i \(0.362467\pi\)
−0.995814 + 0.0913984i \(0.970866\pi\)
\(930\) −1163.58 2015.38i −1.25116 2.16707i
\(931\) −159.943 828.951i −0.171797 0.890387i
\(932\) 274.872 + 476.092i 0.294927 + 0.510828i
\(933\) −1166.05 −1.24978
\(934\) −75.1325 130.133i −0.0804417 0.139329i
\(935\) 290.408 503.001i 0.310597 0.537969i
\(936\) 77.9433 + 254.347i 0.0832727 + 0.271738i
\(937\) 980.365i 1.04628i 0.852247 + 0.523140i \(0.175240\pi\)
−0.852247 + 0.523140i \(0.824760\pi\)
\(938\) −212.107 175.093i −0.226126 0.186667i
\(939\) 577.491 1000.24i 0.615006 1.06522i
\(940\) −674.819 + 1168.82i −0.717892 + 1.24343i
\(941\) 355.761 616.197i 0.378067 0.654832i −0.612714 0.790305i \(-0.709922\pi\)
0.990781 + 0.135473i \(0.0432554\pi\)
\(942\) 739.376i 0.784900i
\(943\) 113.800 197.107i 0.120678 0.209021i
\(944\) −52.6715 −0.0557961
\(945\) −291.398 + 352.997i −0.308358 + 0.373542i
\(946\) −651.487 + 1128.41i −0.688676 + 1.19282i
\(947\) 1060.33i 1.11967i 0.828603 + 0.559836i \(0.189136\pi\)
−0.828603 + 0.559836i \(0.810864\pi\)
\(948\) 926.501 + 534.916i 0.977322 + 0.564257i
\(949\) −748.948 + 229.511i −0.789197 + 0.241845i
\(950\) −1256.18 + 725.258i −1.32230 + 0.763429i
\(951\) 167.933 290.869i 0.176586 0.305856i
\(952\) −68.2376 + 25.4593i −0.0716781 + 0.0267429i
\(953\) 241.380 + 418.082i 0.253284 + 0.438701i 0.964428 0.264345i \(-0.0851559\pi\)
−0.711144 + 0.703046i \(0.751823\pi\)
\(954\) −77.9720 + 45.0171i −0.0817316 + 0.0471878i
\(955\) −86.5822 −0.0906620
\(956\) 354.507i 0.370823i
\(957\) −24.8951 43.1196i −0.0260137 0.0450571i
\(958\) −40.7151 + 23.5069i −0.0425001 + 0.0245375i
\(959\) 106.558 + 285.603i 0.111113 + 0.297813i
\(960\) 256.656 + 148.180i 0.267350 + 0.154354i
\(961\) −506.076 876.550i −0.526614 0.912123i
\(962\) 410.521 + 382.317i 0.426737 + 0.397419i
\(963\) 484.953 839.963i 0.503585 0.872235i
\(964\) 639.727 0.663617
\(965\) 273.774 + 158.063i 0.283703 + 0.163796i
\(966\) −215.378 177.794i −0.222959 0.184052i
\(967\) 477.346i 0.493636i −0.969062 0.246818i \(-0.920615\pi\)
0.969062 0.246818i \(-0.0793849\pi\)
\(968\) −426.013 245.959i −0.440096 0.254090i
\(969\) 255.373 0.263543
\(970\) −891.206 514.538i −0.918769 0.530451i
\(971\) −622.642 359.482i −0.641237 0.370219i 0.143854 0.989599i \(-0.454051\pi\)
−0.785091 + 0.619380i \(0.787384\pi\)
\(972\) −543.543 313.815i −0.559201 0.322855i
\(973\) 111.915 135.573i 0.115021 0.139335i
\(974\) 509.149 0.522740
\(975\) 2125.12 2281.90i 2.17961 2.34041i
\(976\) −40.1938 23.2059i −0.0411822 0.0237766i
\(977\) −272.518 + 157.338i −0.278933 + 0.161042i −0.632940 0.774201i \(-0.718152\pi\)
0.354007 + 0.935243i \(0.384819\pi\)
\(978\) 1221.37i 1.24885i
\(979\) 1446.23 834.984i 1.47726 0.852894i
\(980\) 851.520 + 294.519i 0.868898 + 0.300529i
\(981\) −388.883 + 224.522i −0.396415 + 0.228870i
\(982\) 594.542 + 343.259i 0.605440 + 0.349551i
\(983\) 542.737 940.049i 0.552123 0.956306i −0.445998 0.895034i \(-0.647151\pi\)
0.998121 0.0612717i \(-0.0195156\pi\)
\(984\) −370.454 −0.376477
\(985\) 1068.85i 1.08513i
\(986\) −1.87169 + 3.24187i −0.00189827 + 0.00328790i
\(987\) −2041.53 343.085i −2.06842 0.347604i
\(988\) 428.305 131.252i 0.433507 0.132846i
\(989\) 187.822 + 325.317i 0.189911 + 0.328935i
\(990\) −807.740 1399.05i −0.815899 1.41318i
\(991\) 71.7454 + 124.267i 0.0723970 + 0.125395i 0.899951 0.435990i \(-0.143602\pi\)
−0.827554 + 0.561386i \(0.810268\pi\)
\(992\) 217.614 + 125.639i 0.219369 + 0.126652i
\(993\) 1205.95 1.21445
\(994\) 225.950 + 186.521i 0.227314 + 0.187647i
\(995\) −795.960 + 459.548i −0.799960 + 0.461857i
\(996\) 754.749 435.755i 0.757780 0.437505i
\(997\) 1390.84i 1.39502i −0.716574 0.697511i \(-0.754291\pi\)
0.716574 0.697511i \(-0.245709\pi\)
\(998\) −241.266 417.886i −0.241750 0.418723i
\(999\) −217.017 −0.217234
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 182.3.r.a.17.17 yes 36
7.5 odd 6 182.3.k.a.173.11 yes 36
13.10 even 6 182.3.k.a.101.17 36
91.75 odd 6 inner 182.3.r.a.75.8 yes 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
182.3.k.a.101.17 36 13.10 even 6
182.3.k.a.173.11 yes 36 7.5 odd 6
182.3.r.a.17.17 yes 36 1.1 even 1 trivial
182.3.r.a.75.8 yes 36 91.75 odd 6 inner