Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [182,3,Mod(101,182)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(182, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([1, 5]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("182.101");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 182 = 2 \cdot 7 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 182.k (of order \(6\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(4.95914081136\) |
Analytic rank: | \(0\) |
Dimension: | \(36\) |
Relative dimension: | \(18\) over \(\Q(\zeta_{6})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
101.1 | −1.22474 | − | 0.707107i | − | 5.39170i | 1.00000 | + | 1.73205i | 1.60444 | + | 2.77896i | −3.81251 | + | 6.60346i | −6.78200 | − | 1.73332i | − | 2.82843i | −20.0704 | − | 4.53803i | |||||
101.2 | −1.22474 | − | 0.707107i | − | 3.15670i | 1.00000 | + | 1.73205i | 2.18358 | + | 3.78206i | −2.23213 | + | 3.86616i | 5.93564 | + | 3.71055i | − | 2.82843i | −0.964772 | − | 6.17609i | |||||
101.3 | −1.22474 | − | 0.707107i | − | 2.74178i | 1.00000 | + | 1.73205i | −0.905631 | − | 1.56860i | −1.93873 | + | 3.35798i | 6.97908 | − | 0.540725i | − | 2.82843i | 1.48266 | 2.56151i | ||||||
101.4 | −1.22474 | − | 0.707107i | − | 0.464638i | 1.00000 | + | 1.73205i | 0.913880 | + | 1.58289i | −0.328548 | + | 0.569062i | −5.23853 | − | 4.64303i | − | 2.82843i | 8.78411 | − | 2.58484i | |||||
101.5 | −1.22474 | − | 0.707107i | 0.599163i | 1.00000 | + | 1.73205i | −2.93203 | − | 5.07842i | 0.423672 | − | 0.733822i | −6.63379 | + | 2.23447i | − | 2.82843i | 8.64100 | 8.29303i | |||||||
101.6 | −1.22474 | − | 0.707107i | 0.997088i | 1.00000 | + | 1.73205i | −2.39328 | − | 4.14528i | 0.705048 | − | 1.22118i | 0.359568 | + | 6.99076i | − | 2.82843i | 8.00582 | 6.76921i | |||||||
101.7 | −1.22474 | − | 0.707107i | 2.61846i | 1.00000 | + | 1.73205i | 3.10639 | + | 5.38043i | 1.85153 | − | 3.20695i | 2.61741 | − | 6.49224i | − | 2.82843i | 2.14365 | − | 8.78621i | ||||||
101.8 | −1.22474 | − | 0.707107i | 4.37470i | 1.00000 | + | 1.73205i | 2.56440 | + | 4.44167i | 3.09338 | − | 5.35789i | 2.86286 | + | 6.38780i | − | 2.82843i | −10.1380 | − | 7.25322i | ||||||
101.9 | −1.22474 | − | 0.707107i | 4.89745i | 1.00000 | + | 1.73205i | −4.14175 | − | 7.17372i | 3.46302 | − | 5.99813i | 4.84926 | − | 5.04824i | − | 2.82843i | −14.9850 | 11.7146i | |||||||
101.10 | 1.22474 | + | 0.707107i | − | 4.24411i | 1.00000 | + | 1.73205i | −2.97543 | − | 5.15360i | 3.00104 | − | 5.19795i | −6.87300 | − | 1.32736i | 2.82843i | −9.01248 | − | 8.41579i | ||||||
101.11 | 1.22474 | + | 0.707107i | − | 3.98808i | 1.00000 | + | 1.73205i | 0.700844 | + | 1.21390i | 2.82000 | − | 4.88438i | 2.68579 | − | 6.46425i | 2.82843i | −6.90481 | 1.98229i | |||||||
101.12 | 1.22474 | + | 0.707107i | − | 3.43880i | 1.00000 | + | 1.73205i | 3.24452 | + | 5.61967i | 2.43160 | − | 4.21165i | 3.70893 | + | 5.93665i | 2.82843i | −2.82532 | 9.17688i | |||||||
101.13 | 1.22474 | + | 0.707107i | − | 0.262462i | 1.00000 | + | 1.73205i | −4.53203 | − | 7.84970i | 0.185589 | − | 0.321449i | 6.48718 | + | 2.62991i | 2.82843i | 8.93111 | − | 12.8185i | ||||||
101.14 | 1.22474 | + | 0.707107i | − | 0.0568985i | 1.00000 | + | 1.73205i | 0.904458 | + | 1.56657i | 0.0402333 | − | 0.0696861i | 2.86528 | − | 6.38672i | 2.82843i | 8.99676 | 2.55819i | |||||||
101.15 | 1.22474 | + | 0.707107i | 0.265126i | 1.00000 | + | 1.73205i | 1.03292 | + | 1.78906i | −0.187472 | + | 0.324711i | −5.02643 | + | 4.87186i | 2.82843i | 8.92971 | 2.92153i | ||||||||
101.16 | 1.22474 | + | 0.707107i | 3.89692i | 1.00000 | + | 1.73205i | 0.569657 | + | 0.986676i | −2.75554 | + | 4.77274i | 6.85176 | + | 1.43295i | 2.82843i | −6.18601 | 1.61123i | ||||||||
101.17 | 1.22474 | + | 0.707107i | 4.02925i | 1.00000 | + | 1.73205i | 4.59702 | + | 7.96227i | −2.84911 | + | 4.93480i | −5.39829 | − | 4.45628i | 2.82843i | −7.23484 | 13.0023i | ||||||||
101.18 | 1.22474 | + | 0.707107i | 5.53110i | 1.00000 | + | 1.73205i | −3.54195 | − | 6.13483i | −3.91108 | + | 6.77419i | −5.25071 | + | 4.62926i | 2.82843i | −21.5931 | − | 10.0181i | |||||||
173.1 | −1.22474 | + | 0.707107i | − | 4.89745i | 1.00000 | − | 1.73205i | −4.14175 | + | 7.17372i | 3.46302 | + | 5.99813i | 4.84926 | + | 5.04824i | 2.82843i | −14.9850 | − | 11.7146i | ||||||
173.2 | −1.22474 | + | 0.707107i | − | 4.37470i | 1.00000 | − | 1.73205i | 2.56440 | − | 4.44167i | 3.09338 | + | 5.35789i | 2.86286 | − | 6.38780i | 2.82843i | −10.1380 | 7.25322i | |||||||
See all 36 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
91.p | odd | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 182.3.k.a | ✓ | 36 |
7.d | odd | 6 | 1 | 182.3.r.a | yes | 36 | |
13.e | even | 6 | 1 | 182.3.r.a | yes | 36 | |
91.p | odd | 6 | 1 | inner | 182.3.k.a | ✓ | 36 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
182.3.k.a | ✓ | 36 | 1.a | even | 1 | 1 | trivial |
182.3.k.a | ✓ | 36 | 91.p | odd | 6 | 1 | inner |
182.3.r.a | yes | 36 | 7.d | odd | 6 | 1 | |
182.3.r.a | yes | 36 | 13.e | even | 6 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(182, [\chi])\).