L(s) = 1 | + 2.18·2-s − 9.62·3-s − 3.22·4-s + 10.6·5-s − 21.0·6-s − 26.7·7-s − 24.5·8-s + 65.6·9-s + 23.3·10-s + 11·11-s + 31.0·12-s − 58.3·14-s − 102.·15-s − 27.7·16-s + 123.·17-s + 143.·18-s + 6.83·19-s − 34.4·20-s + 257.·21-s + 24.0·22-s − 164.·23-s + 236.·24-s − 10.5·25-s − 372.·27-s + 86.1·28-s − 184.·29-s − 224.·30-s + ⋯ |
L(s) = 1 | + 0.772·2-s − 1.85·3-s − 0.403·4-s + 0.956·5-s − 1.43·6-s − 1.44·7-s − 1.08·8-s + 2.43·9-s + 0.739·10-s + 0.301·11-s + 0.746·12-s − 1.11·14-s − 1.77·15-s − 0.434·16-s + 1.76·17-s + 1.87·18-s + 0.0825·19-s − 0.385·20-s + 2.67·21-s + 0.232·22-s − 1.49·23-s + 2.00·24-s − 0.0847·25-s − 2.65·27-s + 0.581·28-s − 1.17·29-s − 1.36·30-s + ⋯ |
Λ(s)=(=(1859s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(1859s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
0.6691843742 |
L(21) |
≈ |
0.6691843742 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 11 | 1−11T |
| 13 | 1 |
good | 2 | 1−2.18T+8T2 |
| 3 | 1+9.62T+27T2 |
| 5 | 1−10.6T+125T2 |
| 7 | 1+26.7T+343T2 |
| 17 | 1−123.T+4.91e3T2 |
| 19 | 1−6.83T+6.85e3T2 |
| 23 | 1+164.T+1.21e4T2 |
| 29 | 1+184.T+2.43e4T2 |
| 31 | 1+90.4T+2.97e4T2 |
| 37 | 1−98.3T+5.06e4T2 |
| 41 | 1+313.T+6.89e4T2 |
| 43 | 1+60.0T+7.95e4T2 |
| 47 | 1+601.T+1.03e5T2 |
| 53 | 1+106.T+1.48e5T2 |
| 59 | 1+128.T+2.05e5T2 |
| 61 | 1+102.T+2.26e5T2 |
| 67 | 1+186.T+3.00e5T2 |
| 71 | 1−736.T+3.57e5T2 |
| 73 | 1−814.T+3.89e5T2 |
| 79 | 1−171.T+4.93e5T2 |
| 83 | 1+15.5T+5.71e5T2 |
| 89 | 1+878.T+7.04e5T2 |
| 97 | 1−750.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.456634985870976668680172959781, −7.87922151290882562797969250153, −6.66254397456577722476569833373, −6.22872227699418230299831382750, −5.59935812021300691151328070380, −5.21957420480317638160172957712, −4.01246405770842970339472136162, −3.33156614491702784762856759879, −1.65806484141682363241231841276, −0.37758427889913755387502725725,
0.37758427889913755387502725725, 1.65806484141682363241231841276, 3.33156614491702784762856759879, 4.01246405770842970339472136162, 5.21957420480317638160172957712, 5.59935812021300691151328070380, 6.22872227699418230299831382750, 6.66254397456577722476569833373, 7.87922151290882562797969250153, 9.456634985870976668680172959781