Properties

Label 1859.4.a.k
Level $1859$
Weight $4$
Character orbit 1859.a
Self dual yes
Analytic conductor $109.685$
Analytic rank $0$
Dimension $18$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1859,4,Mod(1,1859)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1859, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1859.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1859 = 11 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1859.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(109.684550701\)
Analytic rank: \(0\)
Dimension: \(18\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - 2 x^{17} - 108 x^{16} + 212 x^{15} + 4721 x^{14} - 8963 x^{13} - 107626 x^{12} + 194656 x^{11} + \cdots + 9847296 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{5}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 143)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{17}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} - \beta_{5} q^{3} + (\beta_{2} + 4) q^{4} + (\beta_{11} + 1) q^{5} + (\beta_{8} - \beta_{5} + 3) q^{6} + (\beta_{14} - \beta_{5} + 2) q^{7} + (\beta_{3} + 4 \beta_1 - 1) q^{8} + (\beta_{6} + \beta_1 + 10) q^{9}+ \cdots + (11 \beta_{6} + 11 \beta_1 + 110) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q + 2 q^{2} + 76 q^{4} + 20 q^{5} + 49 q^{6} + 28 q^{7} - 12 q^{8} + 180 q^{9} + 56 q^{10} + 198 q^{11} + 54 q^{12} + 4 q^{14} + 60 q^{15} + 364 q^{16} - 138 q^{17} + 298 q^{18} + 24 q^{19} + 160 q^{20}+ \cdots + 1980 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{18} - 2 x^{17} - 108 x^{16} + 212 x^{15} + 4721 x^{14} - 8963 x^{13} - 107626 x^{12} + 194656 x^{11} + \cdots + 9847296 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 12 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - 20\nu + 1 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 87\!\cdots\!43 \nu^{17} + \cdots + 69\!\cdots\!48 ) / 38\!\cdots\!12 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 19\!\cdots\!81 \nu^{17} + \cdots + 17\!\cdots\!96 ) / 77\!\cdots\!24 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 21\!\cdots\!85 \nu^{17} + \cdots - 26\!\cdots\!64 ) / 77\!\cdots\!24 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 13\!\cdots\!15 \nu^{17} + \cdots + 43\!\cdots\!04 ) / 38\!\cdots\!12 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( 18\!\cdots\!99 \nu^{17} + \cdots + 10\!\cdots\!00 ) / 38\!\cdots\!12 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( 47\!\cdots\!53 \nu^{17} + \cdots - 37\!\cdots\!80 ) / 96\!\cdots\!28 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( 11\!\cdots\!97 \nu^{17} + \cdots + 16\!\cdots\!20 ) / 19\!\cdots\!56 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( 55\!\cdots\!81 \nu^{17} + \cdots + 18\!\cdots\!60 ) / 77\!\cdots\!24 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( - 57\!\cdots\!87 \nu^{17} + \cdots + 75\!\cdots\!60 ) / 77\!\cdots\!24 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( - 19\!\cdots\!00 \nu^{17} + \cdots - 24\!\cdots\!40 ) / 24\!\cdots\!32 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( 12\!\cdots\!95 \nu^{17} + \cdots + 58\!\cdots\!40 ) / 14\!\cdots\!12 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( 20\!\cdots\!57 \nu^{17} + \cdots - 96\!\cdots\!72 ) / 14\!\cdots\!12 \) Copy content Toggle raw display
\(\beta_{16}\)\(=\) \( ( 14\!\cdots\!05 \nu^{17} + \cdots + 58\!\cdots\!56 ) / 96\!\cdots\!28 \) Copy content Toggle raw display
\(\beta_{17}\)\(=\) \( ( - 63\!\cdots\!33 \nu^{17} + \cdots - 28\!\cdots\!44 ) / 38\!\cdots\!12 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 12 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 20\beta _1 - 1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{17} + 2 \beta_{11} + \beta_{10} + \beta_{8} - \beta_{7} - \beta_{6} - \beta_{5} + \beta_{4} + \cdots + 243 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( \beta_{17} + \beta_{16} - 3 \beta_{13} + \beta_{12} - 5 \beta_{11} - 2 \beta_{10} + 2 \beta_{9} + \cdots - 54 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 43 \beta_{17} + 5 \beta_{16} - 9 \beta_{15} - 2 \beta_{14} + 7 \beta_{13} - 3 \beta_{12} + 110 \beta_{11} + \cdots + 5694 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 58 \beta_{17} + 42 \beta_{16} + 11 \beta_{15} + 41 \beta_{14} - 146 \beta_{13} + 34 \beta_{12} + \cdots - 2429 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( 1392 \beta_{17} + 243 \beta_{16} - 505 \beta_{15} - 164 \beta_{14} + 397 \beta_{13} - 177 \beta_{12} + \cdots + 142456 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( 2365 \beta_{17} + 1423 \beta_{16} + 839 \beta_{15} + 2748 \beta_{14} - 5235 \beta_{13} + 811 \beta_{12} + \cdots - 95658 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( 40683 \beta_{17} + 8386 \beta_{16} - 20201 \beta_{15} - 9310 \beta_{14} + 15992 \beta_{13} + \cdots + 3703901 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( 84881 \beta_{17} + 45180 \beta_{16} + 42082 \beta_{15} + 125248 \beta_{14} - 168488 \beta_{13} + \cdots - 3497365 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( 1132592 \beta_{17} + 253357 \beta_{16} - 712064 \beta_{15} - 429353 \beta_{14} + 565631 \beta_{13} + \cdots + 98915292 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( 2858244 \beta_{17} + 1392248 \beta_{16} + 1758968 \beta_{15} + 4867680 \beta_{14} - 5175540 \beta_{13} + \cdots - 122138637 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( 30685237 \beta_{17} + 7156458 \beta_{16} - 23629696 \beta_{15} - 17447418 \beta_{14} + 18790318 \beta_{13} + \cdots + 2695761351 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( 92570193 \beta_{17} + 42169053 \beta_{16} + 66545956 \beta_{15} + 173975032 \beta_{14} + \cdots - 4134600078 \) Copy content Toggle raw display
\(\nu^{16}\)\(=\) \( 817043035 \beta_{17} + 194236989 \beta_{16} - 758941021 \beta_{15} - 653984098 \beta_{14} + \cdots + 74662407118 \) Copy content Toggle raw display
\(\nu^{17}\)\(=\) \( 2919002722 \beta_{17} + 1262961878 \beta_{16} + 2368607115 \beta_{15} + 5916221793 \beta_{14} + \cdots - 136855788777 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−5.51522
−4.98751
−4.27424
−3.98165
−2.40428
−2.37174
−2.32803
−0.901974
0.370518
0.468651
1.26989
2.18512
2.22320
3.37885
3.97618
4.83029
4.83238
5.22956
−5.51522 3.00574 22.4176 18.8802 −16.5773 −0.324979 −79.5165 −17.9655 −104.128
1.2 −4.98751 −4.47034 16.8752 −20.1605 22.2959 23.8481 −44.2654 −7.01607 100.551
1.3 −4.27424 4.33951 10.2691 0.295728 −18.5481 11.5737 −9.69883 −8.16862 −1.26401
1.4 −3.98165 −8.48796 7.85352 −2.25841 33.7961 −28.5605 0.583227 45.0454 8.99219
1.5 −2.40428 7.21858 −2.21943 −9.84845 −17.3555 −8.26104 24.5704 25.1078 23.6784
1.6 −2.37174 −6.00967 −2.37485 22.0017 14.2534 21.9243 24.6064 9.11608 −52.1824
1.7 −2.32803 −4.42417 −2.58028 −12.1881 10.2996 −11.2388 24.6312 −7.42671 28.3743
1.8 −0.901974 8.17246 −7.18644 11.3696 −7.37135 8.81530 13.6978 39.7891 −10.2551
1.9 0.370518 −0.548979 −7.86272 −11.6192 −0.203406 19.9902 −5.87742 −26.6986 −4.30511
1.10 0.468651 −6.65460 −7.78037 3.45502 −3.11869 11.5900 −7.39549 17.2837 1.61920
1.11 1.26989 3.96847 −6.38737 −4.99906 5.03953 −32.3730 −18.2704 −11.2513 −6.34827
1.12 2.18512 −9.62593 −3.22525 10.6961 −21.0338 −26.7047 −24.5285 65.6585 23.3723
1.13 2.22320 2.89827 −3.05739 19.1319 6.44342 4.29594 −24.5828 −18.6000 42.5339
1.14 3.37885 7.92479 3.41661 −15.9579 26.7767 29.7230 −15.4866 35.8023 −53.9193
1.15 3.97618 −1.00306 7.81003 −0.345299 −3.98837 −17.7538 −0.755338 −25.9939 −1.37297
1.16 4.83029 −7.08819 15.3317 −9.07266 −34.2380 −2.15508 35.4141 23.2424 −43.8235
1.17 4.83238 9.74664 15.3519 8.44122 47.0995 −12.5767 35.5272 67.9971 40.7912
1.18 5.22956 1.03843 19.3483 12.1782 5.43054 36.1879 59.3469 −25.9217 63.6866
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.18
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(11\) \( -1 \)
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1859.4.a.k 18
13.b even 2 1 1859.4.a.j 18
13.d odd 4 2 143.4.b.a 36
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
143.4.b.a 36 13.d odd 4 2
1859.4.a.j 18 13.b even 2 1
1859.4.a.k 18 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{18} - 2 T_{2}^{17} - 108 T_{2}^{16} + 212 T_{2}^{15} + 4721 T_{2}^{14} - 8963 T_{2}^{13} + \cdots + 9847296 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1859))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{18} - 2 T^{17} + \cdots + 9847296 \) Copy content Toggle raw display
$3$ \( T^{18} + \cdots - 179055689728 \) Copy content Toggle raw display
$5$ \( T^{18} + \cdots - 16\!\cdots\!84 \) Copy content Toggle raw display
$7$ \( T^{18} + \cdots - 20\!\cdots\!40 \) Copy content Toggle raw display
$11$ \( (T - 11)^{18} \) Copy content Toggle raw display
$13$ \( T^{18} \) Copy content Toggle raw display
$17$ \( T^{18} + \cdots - 14\!\cdots\!00 \) Copy content Toggle raw display
$19$ \( T^{18} + \cdots + 34\!\cdots\!04 \) Copy content Toggle raw display
$23$ \( T^{18} + \cdots - 69\!\cdots\!76 \) Copy content Toggle raw display
$29$ \( T^{18} + \cdots - 19\!\cdots\!96 \) Copy content Toggle raw display
$31$ \( T^{18} + \cdots - 76\!\cdots\!12 \) Copy content Toggle raw display
$37$ \( T^{18} + \cdots + 66\!\cdots\!92 \) Copy content Toggle raw display
$41$ \( T^{18} + \cdots + 16\!\cdots\!24 \) Copy content Toggle raw display
$43$ \( T^{18} + \cdots + 26\!\cdots\!04 \) Copy content Toggle raw display
$47$ \( T^{18} + \cdots + 10\!\cdots\!64 \) Copy content Toggle raw display
$53$ \( T^{18} + \cdots + 26\!\cdots\!24 \) Copy content Toggle raw display
$59$ \( T^{18} + \cdots - 14\!\cdots\!36 \) Copy content Toggle raw display
$61$ \( T^{18} + \cdots - 22\!\cdots\!56 \) Copy content Toggle raw display
$67$ \( T^{18} + \cdots + 46\!\cdots\!36 \) Copy content Toggle raw display
$71$ \( T^{18} + \cdots - 39\!\cdots\!52 \) Copy content Toggle raw display
$73$ \( T^{18} + \cdots - 26\!\cdots\!84 \) Copy content Toggle raw display
$79$ \( T^{18} + \cdots + 38\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{18} + \cdots - 82\!\cdots\!76 \) Copy content Toggle raw display
$89$ \( T^{18} + \cdots - 26\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{18} + \cdots + 46\!\cdots\!68 \) Copy content Toggle raw display
show more
show less