Properties

Label 1859.4.a.k
Level 18591859
Weight 44
Character orbit 1859.a
Self dual yes
Analytic conductor 109.685109.685
Analytic rank 00
Dimension 1818
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1859,4,Mod(1,1859)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1859, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1859.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: N N == 1859=11132 1859 = 11 \cdot 13^{2}
Weight: k k == 4 4
Character orbit: [χ][\chi] == 1859.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [18,2,0,76,20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 109.684550701109.684550701
Analytic rank: 00
Dimension: 1818
Coefficient field: Q[x]/(x18)\mathbb{Q}[x]/(x^{18} - \cdots)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x182x17108x16+212x15+4721x148963x13107626x12+194656x11++9847296 x^{18} - 2 x^{17} - 108 x^{16} + 212 x^{15} + 4721 x^{14} - 8963 x^{13} - 107626 x^{12} + 194656 x^{11} + \cdots + 9847296 Copy content Toggle raw display
Coefficient ring: Z[a1,,a17]\Z[a_1, \ldots, a_{17}]
Coefficient ring index: 2532 2^{5}\cdot 3^{2}
Twist minimal: no (minimal twist has level 143)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β171,\beta_1,\ldots,\beta_{17} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β1q2β5q3+(β2+4)q4+(β11+1)q5+(β8β5+3)q6+(β14β5+2)q7+(β3+4β11)q8+(β6+β1+10)q9++(11β6+11β1+110)q99+O(q100) q + \beta_1 q^{2} - \beta_{5} q^{3} + (\beta_{2} + 4) q^{4} + (\beta_{11} + 1) q^{5} + (\beta_{8} - \beta_{5} + 3) q^{6} + (\beta_{14} - \beta_{5} + 2) q^{7} + (\beta_{3} + 4 \beta_1 - 1) q^{8} + (\beta_{6} + \beta_1 + 10) q^{9}+ \cdots + (11 \beta_{6} + 11 \beta_1 + 110) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 18q+2q2+76q4+20q5+49q6+28q712q8+180q9+56q10+198q11+54q12+4q14+60q15+364q16138q17+298q18+24q19+160q20++1980q99+O(q100) 18 q + 2 q^{2} + 76 q^{4} + 20 q^{5} + 49 q^{6} + 28 q^{7} - 12 q^{8} + 180 q^{9} + 56 q^{10} + 198 q^{11} + 54 q^{12} + 4 q^{14} + 60 q^{15} + 364 q^{16} - 138 q^{17} + 298 q^{18} + 24 q^{19} + 160 q^{20}+ \cdots + 1980 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x182x17108x16+212x15+4721x148963x13107626x12+194656x11++9847296 x^{18} - 2 x^{17} - 108 x^{16} + 212 x^{15} + 4721 x^{14} - 8963 x^{13} - 107626 x^{12} + 194656 x^{11} + \cdots + 9847296 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== ν212 \nu^{2} - 12 Copy content Toggle raw display
β3\beta_{3}== ν320ν+1 \nu^{3} - 20\nu + 1 Copy content Toggle raw display
β4\beta_{4}== (87 ⁣ ⁣43ν17++69 ⁣ ⁣48)/38 ⁣ ⁣12 ( - 87\!\cdots\!43 \nu^{17} + \cdots + 69\!\cdots\!48 ) / 38\!\cdots\!12 Copy content Toggle raw display
β5\beta_{5}== (19 ⁣ ⁣81ν17++17 ⁣ ⁣96)/77 ⁣ ⁣24 ( 19\!\cdots\!81 \nu^{17} + \cdots + 17\!\cdots\!96 ) / 77\!\cdots\!24 Copy content Toggle raw display
β6\beta_{6}== (21 ⁣ ⁣85ν17+26 ⁣ ⁣64)/77 ⁣ ⁣24 ( 21\!\cdots\!85 \nu^{17} + \cdots - 26\!\cdots\!64 ) / 77\!\cdots\!24 Copy content Toggle raw display
β7\beta_{7}== (13 ⁣ ⁣15ν17++43 ⁣ ⁣04)/38 ⁣ ⁣12 ( 13\!\cdots\!15 \nu^{17} + \cdots + 43\!\cdots\!04 ) / 38\!\cdots\!12 Copy content Toggle raw display
β8\beta_{8}== (18 ⁣ ⁣99ν17++10 ⁣ ⁣00)/38 ⁣ ⁣12 ( 18\!\cdots\!99 \nu^{17} + \cdots + 10\!\cdots\!00 ) / 38\!\cdots\!12 Copy content Toggle raw display
β9\beta_{9}== (47 ⁣ ⁣53ν17+37 ⁣ ⁣80)/96 ⁣ ⁣28 ( 47\!\cdots\!53 \nu^{17} + \cdots - 37\!\cdots\!80 ) / 96\!\cdots\!28 Copy content Toggle raw display
β10\beta_{10}== (11 ⁣ ⁣97ν17++16 ⁣ ⁣20)/19 ⁣ ⁣56 ( 11\!\cdots\!97 \nu^{17} + \cdots + 16\!\cdots\!20 ) / 19\!\cdots\!56 Copy content Toggle raw display
β11\beta_{11}== (55 ⁣ ⁣81ν17++18 ⁣ ⁣60)/77 ⁣ ⁣24 ( 55\!\cdots\!81 \nu^{17} + \cdots + 18\!\cdots\!60 ) / 77\!\cdots\!24 Copy content Toggle raw display
β12\beta_{12}== (57 ⁣ ⁣87ν17++75 ⁣ ⁣60)/77 ⁣ ⁣24 ( - 57\!\cdots\!87 \nu^{17} + \cdots + 75\!\cdots\!60 ) / 77\!\cdots\!24 Copy content Toggle raw display
β13\beta_{13}== (19 ⁣ ⁣00ν17+24 ⁣ ⁣40)/24 ⁣ ⁣32 ( - 19\!\cdots\!00 \nu^{17} + \cdots - 24\!\cdots\!40 ) / 24\!\cdots\!32 Copy content Toggle raw display
β14\beta_{14}== (12 ⁣ ⁣95ν17++58 ⁣ ⁣40)/14 ⁣ ⁣12 ( 12\!\cdots\!95 \nu^{17} + \cdots + 58\!\cdots\!40 ) / 14\!\cdots\!12 Copy content Toggle raw display
β15\beta_{15}== (20 ⁣ ⁣57ν17+96 ⁣ ⁣72)/14 ⁣ ⁣12 ( 20\!\cdots\!57 \nu^{17} + \cdots - 96\!\cdots\!72 ) / 14\!\cdots\!12 Copy content Toggle raw display
β16\beta_{16}== (14 ⁣ ⁣05ν17++58 ⁣ ⁣56)/96 ⁣ ⁣28 ( 14\!\cdots\!05 \nu^{17} + \cdots + 58\!\cdots\!56 ) / 96\!\cdots\!28 Copy content Toggle raw display
β17\beta_{17}== (63 ⁣ ⁣33ν17+28 ⁣ ⁣44)/38 ⁣ ⁣12 ( - 63\!\cdots\!33 \nu^{17} + \cdots - 28\!\cdots\!44 ) / 38\!\cdots\!12 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β2+12 \beta_{2} + 12 Copy content Toggle raw display
ν3\nu^{3}== β3+20β11 \beta_{3} + 20\beta _1 - 1 Copy content Toggle raw display
ν4\nu^{4}== β17+2β11+β10+β8β7β6β5+β4++243 \beta_{17} + 2 \beta_{11} + \beta_{10} + \beta_{8} - \beta_{7} - \beta_{6} - \beta_{5} + \beta_{4} + \cdots + 243 Copy content Toggle raw display
ν5\nu^{5}== β17+β163β13+β125β112β10+2β9+54 \beta_{17} + \beta_{16} - 3 \beta_{13} + \beta_{12} - 5 \beta_{11} - 2 \beta_{10} + 2 \beta_{9} + \cdots - 54 Copy content Toggle raw display
ν6\nu^{6}== 43β17+5β169β152β14+7β133β12+110β11++5694 43 \beta_{17} + 5 \beta_{16} - 9 \beta_{15} - 2 \beta_{14} + 7 \beta_{13} - 3 \beta_{12} + 110 \beta_{11} + \cdots + 5694 Copy content Toggle raw display
ν7\nu^{7}== 58β17+42β16+11β15+41β14146β13+34β12+2429 58 \beta_{17} + 42 \beta_{16} + 11 \beta_{15} + 41 \beta_{14} - 146 \beta_{13} + 34 \beta_{12} + \cdots - 2429 Copy content Toggle raw display
ν8\nu^{8}== 1392β17+243β16505β15164β14+397β13177β12++142456 1392 \beta_{17} + 243 \beta_{16} - 505 \beta_{15} - 164 \beta_{14} + 397 \beta_{13} - 177 \beta_{12} + \cdots + 142456 Copy content Toggle raw display
ν9\nu^{9}== 2365β17+1423β16+839β15+2748β145235β13+811β12+95658 2365 \beta_{17} + 1423 \beta_{16} + 839 \beta_{15} + 2748 \beta_{14} - 5235 \beta_{13} + 811 \beta_{12} + \cdots - 95658 Copy content Toggle raw display
ν10\nu^{10}== 40683β17+8386β1620201β159310β14+15992β13++3703901 40683 \beta_{17} + 8386 \beta_{16} - 20201 \beta_{15} - 9310 \beta_{14} + 15992 \beta_{13} + \cdots + 3703901 Copy content Toggle raw display
ν11\nu^{11}== 84881β17+45180β16+42082β15+125248β14168488β13+3497365 84881 \beta_{17} + 45180 \beta_{16} + 42082 \beta_{15} + 125248 \beta_{14} - 168488 \beta_{13} + \cdots - 3497365 Copy content Toggle raw display
ν12\nu^{12}== 1132592β17+253357β16712064β15429353β14+565631β13++98915292 1132592 \beta_{17} + 253357 \beta_{16} - 712064 \beta_{15} - 429353 \beta_{14} + 565631 \beta_{13} + \cdots + 98915292 Copy content Toggle raw display
ν13\nu^{13}== 2858244β17+1392248β16+1758968β15+4867680β145175540β13+122138637 2858244 \beta_{17} + 1392248 \beta_{16} + 1758968 \beta_{15} + 4867680 \beta_{14} - 5175540 \beta_{13} + \cdots - 122138637 Copy content Toggle raw display
ν14\nu^{14}== 30685237β17+7156458β1623629696β1517447418β14+18790318β13++2695761351 30685237 \beta_{17} + 7156458 \beta_{16} - 23629696 \beta_{15} - 17447418 \beta_{14} + 18790318 \beta_{13} + \cdots + 2695761351 Copy content Toggle raw display
ν15\nu^{15}== 92570193β17+42169053β16+66545956β15+173975032β14+4134600078 92570193 \beta_{17} + 42169053 \beta_{16} + 66545956 \beta_{15} + 173975032 \beta_{14} + \cdots - 4134600078 Copy content Toggle raw display
ν16\nu^{16}== 817043035β17+194236989β16758941021β15653984098β14++74662407118 817043035 \beta_{17} + 194236989 \beta_{16} - 758941021 \beta_{15} - 653984098 \beta_{14} + \cdots + 74662407118 Copy content Toggle raw display
ν17\nu^{17}== 2919002722β17+1262961878β16+2368607115β15+5916221793β14+136855788777 2919002722 \beta_{17} + 1262961878 \beta_{16} + 2368607115 \beta_{15} + 5916221793 \beta_{14} + \cdots - 136855788777 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−5.51522
−4.98751
−4.27424
−3.98165
−2.40428
−2.37174
−2.32803
−0.901974
0.370518
0.468651
1.26989
2.18512
2.22320
3.37885
3.97618
4.83029
4.83238
5.22956
−5.51522 3.00574 22.4176 18.8802 −16.5773 −0.324979 −79.5165 −17.9655 −104.128
1.2 −4.98751 −4.47034 16.8752 −20.1605 22.2959 23.8481 −44.2654 −7.01607 100.551
1.3 −4.27424 4.33951 10.2691 0.295728 −18.5481 11.5737 −9.69883 −8.16862 −1.26401
1.4 −3.98165 −8.48796 7.85352 −2.25841 33.7961 −28.5605 0.583227 45.0454 8.99219
1.5 −2.40428 7.21858 −2.21943 −9.84845 −17.3555 −8.26104 24.5704 25.1078 23.6784
1.6 −2.37174 −6.00967 −2.37485 22.0017 14.2534 21.9243 24.6064 9.11608 −52.1824
1.7 −2.32803 −4.42417 −2.58028 −12.1881 10.2996 −11.2388 24.6312 −7.42671 28.3743
1.8 −0.901974 8.17246 −7.18644 11.3696 −7.37135 8.81530 13.6978 39.7891 −10.2551
1.9 0.370518 −0.548979 −7.86272 −11.6192 −0.203406 19.9902 −5.87742 −26.6986 −4.30511
1.10 0.468651 −6.65460 −7.78037 3.45502 −3.11869 11.5900 −7.39549 17.2837 1.61920
1.11 1.26989 3.96847 −6.38737 −4.99906 5.03953 −32.3730 −18.2704 −11.2513 −6.34827
1.12 2.18512 −9.62593 −3.22525 10.6961 −21.0338 −26.7047 −24.5285 65.6585 23.3723
1.13 2.22320 2.89827 −3.05739 19.1319 6.44342 4.29594 −24.5828 −18.6000 42.5339
1.14 3.37885 7.92479 3.41661 −15.9579 26.7767 29.7230 −15.4866 35.8023 −53.9193
1.15 3.97618 −1.00306 7.81003 −0.345299 −3.98837 −17.7538 −0.755338 −25.9939 −1.37297
1.16 4.83029 −7.08819 15.3317 −9.07266 −34.2380 −2.15508 35.4141 23.2424 −43.8235
1.17 4.83238 9.74664 15.3519 8.44122 47.0995 −12.5767 35.5272 67.9971 40.7912
1.18 5.22956 1.03843 19.3483 12.1782 5.43054 36.1879 59.3469 −25.9217 63.6866
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.18
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
1111 1 -1
1313 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1859.4.a.k 18
13.b even 2 1 1859.4.a.j 18
13.d odd 4 2 143.4.b.a 36
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
143.4.b.a 36 13.d odd 4 2
1859.4.a.j 18 13.b even 2 1
1859.4.a.k 18 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T2182T217108T216+212T215+4721T2148963T213++9847296 T_{2}^{18} - 2 T_{2}^{17} - 108 T_{2}^{16} + 212 T_{2}^{15} + 4721 T_{2}^{14} - 8963 T_{2}^{13} + \cdots + 9847296 acting on S4new(Γ0(1859))S_{4}^{\mathrm{new}}(\Gamma_0(1859)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T182T17++9847296 T^{18} - 2 T^{17} + \cdots + 9847296 Copy content Toggle raw display
33 T18+179055689728 T^{18} + \cdots - 179055689728 Copy content Toggle raw display
55 T18+16 ⁣ ⁣84 T^{18} + \cdots - 16\!\cdots\!84 Copy content Toggle raw display
77 T18+20 ⁣ ⁣40 T^{18} + \cdots - 20\!\cdots\!40 Copy content Toggle raw display
1111 (T11)18 (T - 11)^{18} Copy content Toggle raw display
1313 T18 T^{18} Copy content Toggle raw display
1717 T18+14 ⁣ ⁣00 T^{18} + \cdots - 14\!\cdots\!00 Copy content Toggle raw display
1919 T18++34 ⁣ ⁣04 T^{18} + \cdots + 34\!\cdots\!04 Copy content Toggle raw display
2323 T18+69 ⁣ ⁣76 T^{18} + \cdots - 69\!\cdots\!76 Copy content Toggle raw display
2929 T18+19 ⁣ ⁣96 T^{18} + \cdots - 19\!\cdots\!96 Copy content Toggle raw display
3131 T18+76 ⁣ ⁣12 T^{18} + \cdots - 76\!\cdots\!12 Copy content Toggle raw display
3737 T18++66 ⁣ ⁣92 T^{18} + \cdots + 66\!\cdots\!92 Copy content Toggle raw display
4141 T18++16 ⁣ ⁣24 T^{18} + \cdots + 16\!\cdots\!24 Copy content Toggle raw display
4343 T18++26 ⁣ ⁣04 T^{18} + \cdots + 26\!\cdots\!04 Copy content Toggle raw display
4747 T18++10 ⁣ ⁣64 T^{18} + \cdots + 10\!\cdots\!64 Copy content Toggle raw display
5353 T18++26 ⁣ ⁣24 T^{18} + \cdots + 26\!\cdots\!24 Copy content Toggle raw display
5959 T18+14 ⁣ ⁣36 T^{18} + \cdots - 14\!\cdots\!36 Copy content Toggle raw display
6161 T18+22 ⁣ ⁣56 T^{18} + \cdots - 22\!\cdots\!56 Copy content Toggle raw display
6767 T18++46 ⁣ ⁣36 T^{18} + \cdots + 46\!\cdots\!36 Copy content Toggle raw display
7171 T18+39 ⁣ ⁣52 T^{18} + \cdots - 39\!\cdots\!52 Copy content Toggle raw display
7373 T18+26 ⁣ ⁣84 T^{18} + \cdots - 26\!\cdots\!84 Copy content Toggle raw display
7979 T18++38 ⁣ ⁣00 T^{18} + \cdots + 38\!\cdots\!00 Copy content Toggle raw display
8383 T18+82 ⁣ ⁣76 T^{18} + \cdots - 82\!\cdots\!76 Copy content Toggle raw display
8989 T18+26 ⁣ ⁣00 T^{18} + \cdots - 26\!\cdots\!00 Copy content Toggle raw display
9797 T18++46 ⁣ ⁣68 T^{18} + \cdots + 46\!\cdots\!68 Copy content Toggle raw display
show more
show less