Properties

Label 2-1859-1.1-c3-0-140
Degree $2$
Conductor $1859$
Sign $1$
Analytic cond. $109.684$
Root an. cond. $10.4730$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.37·2-s − 6.00·3-s − 2.37·4-s + 22.0·5-s + 14.2·6-s + 21.9·7-s + 24.6·8-s + 9.11·9-s − 52.1·10-s + 11·11-s + 14.2·12-s − 51.9·14-s − 132.·15-s − 39.3·16-s − 45.0·17-s − 21.6·18-s − 118.·19-s − 52.2·20-s − 131.·21-s − 26.0·22-s + 37.3·23-s − 147.·24-s + 359.·25-s + 107.·27-s − 52.0·28-s − 137.·29-s + 313.·30-s + ⋯
L(s)  = 1  − 0.838·2-s − 1.15·3-s − 0.296·4-s + 1.96·5-s + 0.969·6-s + 1.18·7-s + 1.08·8-s + 0.337·9-s − 1.65·10-s + 0.301·11-s + 0.343·12-s − 0.992·14-s − 2.27·15-s − 0.615·16-s − 0.642·17-s − 0.283·18-s − 1.43·19-s − 0.584·20-s − 1.36·21-s − 0.252·22-s + 0.338·23-s − 1.25·24-s + 2.87·25-s + 0.766·27-s − 0.351·28-s − 0.880·29-s + 1.90·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1859 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1859 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1859\)    =    \(11 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(109.684\)
Root analytic conductor: \(10.4730\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1859,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.319303028\)
\(L(\frac12)\) \(\approx\) \(1.319303028\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad11 \( 1 - 11T \)
13 \( 1 \)
good2 \( 1 + 2.37T + 8T^{2} \)
3 \( 1 + 6.00T + 27T^{2} \)
5 \( 1 - 22.0T + 125T^{2} \)
7 \( 1 - 21.9T + 343T^{2} \)
17 \( 1 + 45.0T + 4.91e3T^{2} \)
19 \( 1 + 118.T + 6.85e3T^{2} \)
23 \( 1 - 37.3T + 1.21e4T^{2} \)
29 \( 1 + 137.T + 2.43e4T^{2} \)
31 \( 1 + 1.53T + 2.97e4T^{2} \)
37 \( 1 - 236.T + 5.06e4T^{2} \)
41 \( 1 + 72.6T + 6.89e4T^{2} \)
43 \( 1 + 60.4T + 7.95e4T^{2} \)
47 \( 1 - 397.T + 1.03e5T^{2} \)
53 \( 1 - 0.405T + 1.48e5T^{2} \)
59 \( 1 + 37.1T + 2.05e5T^{2} \)
61 \( 1 - 308.T + 2.26e5T^{2} \)
67 \( 1 - 427.T + 3.00e5T^{2} \)
71 \( 1 - 1.01e3T + 3.57e5T^{2} \)
73 \( 1 + 186.T + 3.89e5T^{2} \)
79 \( 1 + 831.T + 4.93e5T^{2} \)
83 \( 1 + 1.34e3T + 5.71e5T^{2} \)
89 \( 1 + 840.T + 7.04e5T^{2} \)
97 \( 1 - 1.23e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.852739129221344370310503950815, −8.486435997414790093214579689927, −7.20865507686584903422232648228, −6.38166018131668011937590437780, −5.69045626675517914857428680252, −4.99995902041839080047718893319, −4.35614461264906527425345109328, −2.29972798541246092824061129282, −1.60761765035166993994556681094, −0.69090340069554749819069713240, 0.69090340069554749819069713240, 1.60761765035166993994556681094, 2.29972798541246092824061129282, 4.35614461264906527425345109328, 4.99995902041839080047718893319, 5.69045626675517914857428680252, 6.38166018131668011937590437780, 7.20865507686584903422232648228, 8.486435997414790093214579689927, 8.852739129221344370310503950815

Graph of the $Z$-function along the critical line