Properties

Label 2-1859-1.1-c3-0-111
Degree $2$
Conductor $1859$
Sign $1$
Analytic cond. $109.684$
Root an. cond. $10.4730$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4.83·2-s − 7.08·3-s + 15.3·4-s − 9.07·5-s − 34.2·6-s − 2.15·7-s + 35.4·8-s + 23.2·9-s − 43.8·10-s + 11·11-s − 108.·12-s − 10.4·14-s + 64.3·15-s + 48.4·16-s + 49.8·17-s + 112.·18-s − 95.3·19-s − 139.·20-s + 15.2·21-s + 53.1·22-s − 96.0·23-s − 251.·24-s − 42.6·25-s + 26.6·27-s − 33.0·28-s + 115.·29-s + 310.·30-s + ⋯
L(s)  = 1  + 1.70·2-s − 1.36·3-s + 1.91·4-s − 0.811·5-s − 2.32·6-s − 0.116·7-s + 1.56·8-s + 0.860·9-s − 1.38·10-s + 0.301·11-s − 2.61·12-s − 0.198·14-s + 1.10·15-s + 0.756·16-s + 0.711·17-s + 1.47·18-s − 1.15·19-s − 1.55·20-s + 0.158·21-s + 0.514·22-s − 0.871·23-s − 2.13·24-s − 0.341·25-s + 0.189·27-s − 0.223·28-s + 0.736·29-s + 1.89·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1859 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1859 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1859\)    =    \(11 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(109.684\)
Root analytic conductor: \(10.4730\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1859,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.577937921\)
\(L(\frac12)\) \(\approx\) \(2.577937921\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad11 \( 1 - 11T \)
13 \( 1 \)
good2 \( 1 - 4.83T + 8T^{2} \)
3 \( 1 + 7.08T + 27T^{2} \)
5 \( 1 + 9.07T + 125T^{2} \)
7 \( 1 + 2.15T + 343T^{2} \)
17 \( 1 - 49.8T + 4.91e3T^{2} \)
19 \( 1 + 95.3T + 6.85e3T^{2} \)
23 \( 1 + 96.0T + 1.21e4T^{2} \)
29 \( 1 - 115.T + 2.43e4T^{2} \)
31 \( 1 + 78.6T + 2.97e4T^{2} \)
37 \( 1 - 13.4T + 5.06e4T^{2} \)
41 \( 1 - 122.T + 6.89e4T^{2} \)
43 \( 1 - 95.5T + 7.95e4T^{2} \)
47 \( 1 - 361.T + 1.03e5T^{2} \)
53 \( 1 - 617.T + 1.48e5T^{2} \)
59 \( 1 - 723.T + 2.05e5T^{2} \)
61 \( 1 + 549.T + 2.26e5T^{2} \)
67 \( 1 + 554.T + 3.00e5T^{2} \)
71 \( 1 + 99.2T + 3.57e5T^{2} \)
73 \( 1 - 609.T + 3.89e5T^{2} \)
79 \( 1 + 586.T + 4.93e5T^{2} \)
83 \( 1 - 5.23T + 5.71e5T^{2} \)
89 \( 1 - 789.T + 7.04e5T^{2} \)
97 \( 1 - 1.65e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.757102925566434908789340411274, −7.66163348009640697729084736793, −6.90470887561005112310421513565, −6.07837787474985364285144424317, −5.72958585590015802933792134368, −4.71168910138457163064088702662, −4.17510622512893119561696447614, −3.38343114294067951114747507965, −2.12212270013629268843332801805, −0.60124916041575610485762274258, 0.60124916041575610485762274258, 2.12212270013629268843332801805, 3.38343114294067951114747507965, 4.17510622512893119561696447614, 4.71168910138457163064088702662, 5.72958585590015802933792134368, 6.07837787474985364285144424317, 6.90470887561005112310421513565, 7.66163348009640697729084736793, 8.757102925566434908789340411274

Graph of the $Z$-function along the critical line