L(s) = 1 | + 4.85·2-s + 3.92·3-s + 15.5·4-s + 7.28·5-s + 19.0·6-s − 33.6·7-s + 36.5·8-s − 11.5·9-s + 35.3·10-s − 11·11-s + 61.0·12-s − 163.·14-s + 28.6·15-s + 53.2·16-s + 19.6·17-s − 56.1·18-s − 140.·19-s + 113.·20-s − 132.·21-s − 53.3·22-s + 49.5·23-s + 143.·24-s − 71.9·25-s − 151.·27-s − 522.·28-s − 51.1·29-s + 138.·30-s + ⋯ |
L(s) = 1 | + 1.71·2-s + 0.755·3-s + 1.94·4-s + 0.651·5-s + 1.29·6-s − 1.81·7-s + 1.61·8-s − 0.428·9-s + 1.11·10-s − 0.301·11-s + 1.46·12-s − 3.11·14-s + 0.492·15-s + 0.831·16-s + 0.280·17-s − 0.735·18-s − 1.69·19-s + 1.26·20-s − 1.37·21-s − 0.517·22-s + 0.449·23-s + 1.22·24-s − 0.575·25-s − 1.07·27-s − 3.52·28-s − 0.327·29-s + 0.844·30-s + ⋯ |
Λ(s)=(=(1859s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(1859s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 11 | 1+11T |
| 13 | 1 |
good | 2 | 1−4.85T+8T2 |
| 3 | 1−3.92T+27T2 |
| 5 | 1−7.28T+125T2 |
| 7 | 1+33.6T+343T2 |
| 17 | 1−19.6T+4.91e3T2 |
| 19 | 1+140.T+6.85e3T2 |
| 23 | 1−49.5T+1.21e4T2 |
| 29 | 1+51.1T+2.43e4T2 |
| 31 | 1+28.5T+2.97e4T2 |
| 37 | 1+157.T+5.06e4T2 |
| 41 | 1+253.T+6.89e4T2 |
| 43 | 1+37.2T+7.95e4T2 |
| 47 | 1−579.T+1.03e5T2 |
| 53 | 1−412.T+1.48e5T2 |
| 59 | 1+423.T+2.05e5T2 |
| 61 | 1−249.T+2.26e5T2 |
| 67 | 1−635.T+3.00e5T2 |
| 71 | 1−718.T+3.57e5T2 |
| 73 | 1+1.15e3T+3.89e5T2 |
| 79 | 1+388.T+4.93e5T2 |
| 83 | 1+616.T+5.71e5T2 |
| 89 | 1−1.05e3T+7.04e5T2 |
| 97 | 1+1.11e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.585606803856572552039672144696, −7.31190284599908324800697431804, −6.57398895564289668008456436248, −5.94997517312382934606905342331, −5.37650160826345035061269418435, −4.07613073572611803752262068647, −3.47912525211879763783642193432, −2.69277052799655231740459918070, −2.10806371674581315788656654766, 0,
2.10806371674581315788656654766, 2.69277052799655231740459918070, 3.47912525211879763783642193432, 4.07613073572611803752262068647, 5.37650160826345035061269418435, 5.94997517312382934606905342331, 6.57398895564289668008456436248, 7.31190284599908324800697431804, 8.585606803856572552039672144696