Properties

Label 1859.4.a.l.1.34
Level $1859$
Weight $4$
Character 1859.1
Self dual yes
Analytic conductor $109.685$
Analytic rank $1$
Dimension $36$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1859,4,Mod(1,1859)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1859, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1859.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1859 = 11 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1859.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(109.684550701\)
Analytic rank: \(1\)
Dimension: \(36\)
Twist minimal: no (minimal twist has level 143)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.34
Character \(\chi\) \(=\) 1859.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.85206 q^{2} +3.92771 q^{3} +15.5425 q^{4} +7.28280 q^{5} +19.0575 q^{6} -33.6189 q^{7} +36.5968 q^{8} -11.5731 q^{9} +35.3366 q^{10} -11.0000 q^{11} +61.0464 q^{12} -163.121 q^{14} +28.6047 q^{15} +53.2297 q^{16} +19.6860 q^{17} -56.1535 q^{18} -140.469 q^{19} +113.193 q^{20} -132.045 q^{21} -53.3727 q^{22} +49.5620 q^{23} +143.741 q^{24} -71.9609 q^{25} -151.504 q^{27} -522.522 q^{28} -51.1267 q^{29} +138.792 q^{30} -28.5019 q^{31} -34.5002 q^{32} -43.2048 q^{33} +95.5175 q^{34} -244.840 q^{35} -179.875 q^{36} -157.622 q^{37} -681.564 q^{38} +266.527 q^{40} -253.996 q^{41} -640.691 q^{42} -37.2395 q^{43} -170.968 q^{44} -84.2847 q^{45} +240.478 q^{46} +579.589 q^{47} +209.071 q^{48} +787.230 q^{49} -349.159 q^{50} +77.3206 q^{51} +412.349 q^{53} -735.107 q^{54} -80.1108 q^{55} -1230.34 q^{56} -551.720 q^{57} -248.070 q^{58} -423.228 q^{59} +444.589 q^{60} +249.679 q^{61} -138.293 q^{62} +389.076 q^{63} -593.235 q^{64} -209.632 q^{66} +635.707 q^{67} +305.969 q^{68} +194.665 q^{69} -1187.98 q^{70} +718.897 q^{71} -423.539 q^{72} -1151.31 q^{73} -764.792 q^{74} -282.641 q^{75} -2183.24 q^{76} +369.808 q^{77} -388.060 q^{79} +387.661 q^{80} -282.588 q^{81} -1232.40 q^{82} -616.271 q^{83} -2052.31 q^{84} +143.369 q^{85} -180.689 q^{86} -200.811 q^{87} -402.565 q^{88} +1052.24 q^{89} -408.955 q^{90} +770.319 q^{92} -111.947 q^{93} +2812.20 q^{94} -1023.01 q^{95} -135.507 q^{96} -1116.11 q^{97} +3819.69 q^{98} +127.304 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q - 4 q^{2} + 12 q^{3} + 152 q^{4} - 40 q^{5} - 98 q^{6} - 56 q^{7} - 84 q^{8} + 360 q^{9} - 56 q^{10} - 396 q^{11} + 66 q^{12} + 164 q^{14} - 120 q^{15} + 644 q^{16} + 138 q^{17} + 28 q^{18} - 498 q^{19}+ \cdots - 3960 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.85206 1.71546 0.857732 0.514098i \(-0.171873\pi\)
0.857732 + 0.514098i \(0.171873\pi\)
\(3\) 3.92771 0.755887 0.377944 0.925829i \(-0.376631\pi\)
0.377944 + 0.925829i \(0.376631\pi\)
\(4\) 15.5425 1.94281
\(5\) 7.28280 0.651393 0.325697 0.945474i \(-0.394401\pi\)
0.325697 + 0.945474i \(0.394401\pi\)
\(6\) 19.0575 1.29670
\(7\) −33.6189 −1.81525 −0.907625 0.419782i \(-0.862106\pi\)
−0.907625 + 0.419782i \(0.862106\pi\)
\(8\) 36.5968 1.61736
\(9\) −11.5731 −0.428634
\(10\) 35.3366 1.11744
\(11\) −11.0000 −0.301511
\(12\) 61.0464 1.46855
\(13\) 0 0
\(14\) −163.121 −3.11399
\(15\) 28.6047 0.492380
\(16\) 53.2297 0.831714
\(17\) 19.6860 0.280856 0.140428 0.990091i \(-0.455152\pi\)
0.140428 + 0.990091i \(0.455152\pi\)
\(18\) −56.1535 −0.735306
\(19\) −140.469 −1.69609 −0.848047 0.529922i \(-0.822221\pi\)
−0.848047 + 0.529922i \(0.822221\pi\)
\(20\) 113.193 1.26554
\(21\) −132.045 −1.37212
\(22\) −53.3727 −0.517232
\(23\) 49.5620 0.449322 0.224661 0.974437i \(-0.427873\pi\)
0.224661 + 0.974437i \(0.427873\pi\)
\(24\) 143.741 1.22255
\(25\) −71.9609 −0.575687
\(26\) 0 0
\(27\) −151.504 −1.07989
\(28\) −522.522 −3.52669
\(29\) −51.1267 −0.327379 −0.163690 0.986512i \(-0.552340\pi\)
−0.163690 + 0.986512i \(0.552340\pi\)
\(30\) 138.792 0.844660
\(31\) −28.5019 −0.165132 −0.0825661 0.996586i \(-0.526312\pi\)
−0.0825661 + 0.996586i \(0.526312\pi\)
\(32\) −34.5002 −0.190589
\(33\) −43.2048 −0.227909
\(34\) 95.5175 0.481797
\(35\) −244.840 −1.18244
\(36\) −179.875 −0.832757
\(37\) −157.622 −0.700348 −0.350174 0.936685i \(-0.613878\pi\)
−0.350174 + 0.936685i \(0.613878\pi\)
\(38\) −681.564 −2.90959
\(39\) 0 0
\(40\) 266.527 1.05354
\(41\) −253.996 −0.967499 −0.483750 0.875206i \(-0.660725\pi\)
−0.483750 + 0.875206i \(0.660725\pi\)
\(42\) −640.691 −2.35383
\(43\) −37.2395 −0.132069 −0.0660346 0.997817i \(-0.521035\pi\)
−0.0660346 + 0.997817i \(0.521035\pi\)
\(44\) −170.968 −0.585781
\(45\) −84.2847 −0.279209
\(46\) 240.478 0.770795
\(47\) 579.589 1.79876 0.899380 0.437168i \(-0.144018\pi\)
0.899380 + 0.437168i \(0.144018\pi\)
\(48\) 209.071 0.628683
\(49\) 787.230 2.29513
\(50\) −349.159 −0.987570
\(51\) 77.3206 0.212295
\(52\) 0 0
\(53\) 412.349 1.06869 0.534344 0.845267i \(-0.320559\pi\)
0.534344 + 0.845267i \(0.320559\pi\)
\(54\) −735.107 −1.85251
\(55\) −80.1108 −0.196402
\(56\) −1230.34 −2.93592
\(57\) −551.720 −1.28206
\(58\) −248.070 −0.561607
\(59\) −423.228 −0.933892 −0.466946 0.884286i \(-0.654646\pi\)
−0.466946 + 0.884286i \(0.654646\pi\)
\(60\) 444.589 0.956603
\(61\) 249.679 0.524067 0.262034 0.965059i \(-0.415607\pi\)
0.262034 + 0.965059i \(0.415607\pi\)
\(62\) −138.293 −0.283278
\(63\) 389.076 0.778078
\(64\) −593.235 −1.15866
\(65\) 0 0
\(66\) −209.632 −0.390969
\(67\) 635.707 1.15916 0.579581 0.814914i \(-0.303216\pi\)
0.579581 + 0.814914i \(0.303216\pi\)
\(68\) 305.969 0.545650
\(69\) 194.665 0.339637
\(70\) −1187.98 −2.02843
\(71\) 718.897 1.20165 0.600826 0.799379i \(-0.294838\pi\)
0.600826 + 0.799379i \(0.294838\pi\)
\(72\) −423.539 −0.693258
\(73\) −1151.31 −1.84589 −0.922946 0.384929i \(-0.874226\pi\)
−0.922946 + 0.384929i \(0.874226\pi\)
\(74\) −764.792 −1.20142
\(75\) −282.641 −0.435155
\(76\) −2183.24 −3.29519
\(77\) 369.808 0.547318
\(78\) 0 0
\(79\) −388.060 −0.552660 −0.276330 0.961063i \(-0.589118\pi\)
−0.276330 + 0.961063i \(0.589118\pi\)
\(80\) 387.661 0.541773
\(81\) −282.588 −0.387638
\(82\) −1232.40 −1.65971
\(83\) −616.271 −0.814994 −0.407497 0.913207i \(-0.633598\pi\)
−0.407497 + 0.913207i \(0.633598\pi\)
\(84\) −2052.31 −2.66578
\(85\) 143.369 0.182947
\(86\) −180.689 −0.226560
\(87\) −200.811 −0.247462
\(88\) −402.565 −0.487654
\(89\) 1052.24 1.25323 0.626614 0.779330i \(-0.284440\pi\)
0.626614 + 0.779330i \(0.284440\pi\)
\(90\) −408.955 −0.478974
\(91\) 0 0
\(92\) 770.319 0.872949
\(93\) −111.947 −0.124821
\(94\) 2812.20 3.08571
\(95\) −1023.01 −1.10482
\(96\) −135.507 −0.144063
\(97\) −1116.11 −1.16829 −0.584144 0.811650i \(-0.698570\pi\)
−0.584144 + 0.811650i \(0.698570\pi\)
\(98\) 3819.69 3.93721
\(99\) 127.304 0.129238
\(100\) −1118.45 −1.11845
\(101\) 1743.94 1.71810 0.859051 0.511889i \(-0.171054\pi\)
0.859051 + 0.511889i \(0.171054\pi\)
\(102\) 375.165 0.364185
\(103\) 1242.54 1.18865 0.594326 0.804224i \(-0.297419\pi\)
0.594326 + 0.804224i \(0.297419\pi\)
\(104\) 0 0
\(105\) −961.658 −0.893792
\(106\) 2000.74 1.83329
\(107\) −1164.54 −1.05215 −0.526075 0.850438i \(-0.676337\pi\)
−0.526075 + 0.850438i \(0.676337\pi\)
\(108\) −2354.75 −2.09802
\(109\) −1251.73 −1.09995 −0.549973 0.835182i \(-0.685362\pi\)
−0.549973 + 0.835182i \(0.685362\pi\)
\(110\) −388.703 −0.336921
\(111\) −619.093 −0.529385
\(112\) −1789.52 −1.50977
\(113\) −1020.38 −0.849465 −0.424732 0.905319i \(-0.639632\pi\)
−0.424732 + 0.905319i \(0.639632\pi\)
\(114\) −2676.98 −2.19932
\(115\) 360.950 0.292685
\(116\) −794.638 −0.636037
\(117\) 0 0
\(118\) −2053.53 −1.60206
\(119\) −661.820 −0.509823
\(120\) 1046.84 0.796358
\(121\) 121.000 0.0909091
\(122\) 1211.46 0.899018
\(123\) −997.621 −0.731320
\(124\) −442.992 −0.320821
\(125\) −1434.43 −1.02639
\(126\) 1887.82 1.33476
\(127\) 634.113 0.443059 0.221529 0.975154i \(-0.428895\pi\)
0.221529 + 0.975154i \(0.428895\pi\)
\(128\) −2602.41 −1.79705
\(129\) −146.266 −0.0998295
\(130\) 0 0
\(131\) −923.025 −0.615611 −0.307805 0.951449i \(-0.599595\pi\)
−0.307805 + 0.951449i \(0.599595\pi\)
\(132\) −671.511 −0.442784
\(133\) 4722.41 3.07883
\(134\) 3084.49 1.98850
\(135\) −1103.37 −0.703431
\(136\) 720.442 0.454246
\(137\) 285.350 0.177950 0.0889748 0.996034i \(-0.471641\pi\)
0.0889748 + 0.996034i \(0.471641\pi\)
\(138\) 944.527 0.582634
\(139\) −233.049 −0.142208 −0.0711042 0.997469i \(-0.522652\pi\)
−0.0711042 + 0.997469i \(0.522652\pi\)
\(140\) −3805.42 −2.29726
\(141\) 2276.45 1.35966
\(142\) 3488.13 2.06139
\(143\) 0 0
\(144\) −616.034 −0.356501
\(145\) −372.346 −0.213253
\(146\) −5586.21 −3.16656
\(147\) 3092.01 1.73486
\(148\) −2449.84 −1.36065
\(149\) 1544.53 0.849211 0.424605 0.905378i \(-0.360413\pi\)
0.424605 + 0.905378i \(0.360413\pi\)
\(150\) −1371.39 −0.746492
\(151\) −1010.81 −0.544759 −0.272380 0.962190i \(-0.587811\pi\)
−0.272380 + 0.962190i \(0.587811\pi\)
\(152\) −5140.71 −2.74320
\(153\) −227.828 −0.120384
\(154\) 1794.33 0.938905
\(155\) −207.574 −0.107566
\(156\) 0 0
\(157\) 1076.84 0.547398 0.273699 0.961815i \(-0.411753\pi\)
0.273699 + 0.961815i \(0.411753\pi\)
\(158\) −1882.89 −0.948069
\(159\) 1619.58 0.807808
\(160\) −251.258 −0.124148
\(161\) −1666.22 −0.815631
\(162\) −1371.14 −0.664980
\(163\) 325.227 0.156280 0.0781402 0.996942i \(-0.475102\pi\)
0.0781402 + 0.996942i \(0.475102\pi\)
\(164\) −3947.73 −1.87967
\(165\) −314.652 −0.148458
\(166\) −2990.18 −1.39809
\(167\) 129.913 0.0601975 0.0300987 0.999547i \(-0.490418\pi\)
0.0300987 + 0.999547i \(0.490418\pi\)
\(168\) −4832.43 −2.21922
\(169\) 0 0
\(170\) 695.635 0.313840
\(171\) 1625.66 0.727003
\(172\) −578.796 −0.256586
\(173\) −4001.50 −1.75854 −0.879272 0.476320i \(-0.841971\pi\)
−0.879272 + 0.476320i \(0.841971\pi\)
\(174\) −974.347 −0.424512
\(175\) 2419.24 1.04502
\(176\) −585.527 −0.250771
\(177\) −1662.32 −0.705917
\(178\) 5105.54 2.14987
\(179\) 841.267 0.351281 0.175640 0.984454i \(-0.443800\pi\)
0.175640 + 0.984454i \(0.443800\pi\)
\(180\) −1310.00 −0.542452
\(181\) −3876.21 −1.59180 −0.795902 0.605426i \(-0.793003\pi\)
−0.795902 + 0.605426i \(0.793003\pi\)
\(182\) 0 0
\(183\) 980.665 0.396136
\(184\) 1813.81 0.726717
\(185\) −1147.93 −0.456202
\(186\) −543.175 −0.214127
\(187\) −216.545 −0.0846811
\(188\) 9008.27 3.49466
\(189\) 5093.39 1.96026
\(190\) −4963.69 −1.89528
\(191\) 655.840 0.248455 0.124228 0.992254i \(-0.460355\pi\)
0.124228 + 0.992254i \(0.460355\pi\)
\(192\) −2330.05 −0.875818
\(193\) −562.365 −0.209741 −0.104870 0.994486i \(-0.533443\pi\)
−0.104870 + 0.994486i \(0.533443\pi\)
\(194\) −5415.44 −2.00415
\(195\) 0 0
\(196\) 12235.5 4.45901
\(197\) 756.084 0.273446 0.136723 0.990609i \(-0.456343\pi\)
0.136723 + 0.990609i \(0.456343\pi\)
\(198\) 617.689 0.221703
\(199\) 2485.64 0.885439 0.442719 0.896660i \(-0.354014\pi\)
0.442719 + 0.896660i \(0.354014\pi\)
\(200\) −2633.54 −0.931095
\(201\) 2496.87 0.876197
\(202\) 8461.70 2.94734
\(203\) 1718.82 0.594275
\(204\) 1201.76 0.412450
\(205\) −1849.80 −0.630222
\(206\) 6028.88 2.03909
\(207\) −573.588 −0.192595
\(208\) 0 0
\(209\) 1545.16 0.511391
\(210\) −4666.03 −1.53327
\(211\) −1957.58 −0.638699 −0.319350 0.947637i \(-0.603464\pi\)
−0.319350 + 0.947637i \(0.603464\pi\)
\(212\) 6408.94 2.07626
\(213\) 2823.62 0.908314
\(214\) −5650.40 −1.80492
\(215\) −271.208 −0.0860290
\(216\) −5544.55 −1.74657
\(217\) 958.204 0.299756
\(218\) −6073.48 −1.88692
\(219\) −4521.99 −1.39529
\(220\) −1245.12 −0.381574
\(221\) 0 0
\(222\) −3003.88 −0.908140
\(223\) 2632.96 0.790654 0.395327 0.918541i \(-0.370631\pi\)
0.395327 + 0.918541i \(0.370631\pi\)
\(224\) 1159.86 0.345966
\(225\) 832.812 0.246759
\(226\) −4950.96 −1.45723
\(227\) −1064.02 −0.311108 −0.155554 0.987827i \(-0.549716\pi\)
−0.155554 + 0.987827i \(0.549716\pi\)
\(228\) −8575.12 −2.49080
\(229\) 747.625 0.215740 0.107870 0.994165i \(-0.465597\pi\)
0.107870 + 0.994165i \(0.465597\pi\)
\(230\) 1751.35 0.502091
\(231\) 1452.50 0.413711
\(232\) −1871.07 −0.529491
\(233\) −2448.79 −0.688522 −0.344261 0.938874i \(-0.611871\pi\)
−0.344261 + 0.938874i \(0.611871\pi\)
\(234\) 0 0
\(235\) 4221.03 1.17170
\(236\) −6578.03 −1.81438
\(237\) −1524.19 −0.417749
\(238\) −3211.19 −0.874583
\(239\) 2808.34 0.760068 0.380034 0.924972i \(-0.375912\pi\)
0.380034 + 0.924972i \(0.375912\pi\)
\(240\) 1522.62 0.409519
\(241\) 12.2520 0.00327479 0.00163739 0.999999i \(-0.499479\pi\)
0.00163739 + 0.999999i \(0.499479\pi\)
\(242\) 587.100 0.155951
\(243\) 2980.68 0.786876
\(244\) 3880.64 1.01817
\(245\) 5733.24 1.49503
\(246\) −4840.52 −1.25455
\(247\) 0 0
\(248\) −1043.08 −0.267079
\(249\) −2420.53 −0.616043
\(250\) −6959.93 −1.76074
\(251\) −6089.82 −1.53142 −0.765709 0.643188i \(-0.777612\pi\)
−0.765709 + 0.643188i \(0.777612\pi\)
\(252\) 6047.21 1.51166
\(253\) −545.182 −0.135476
\(254\) 3076.76 0.760051
\(255\) 563.111 0.138288
\(256\) −7881.19 −1.92412
\(257\) 4485.77 1.08877 0.544387 0.838834i \(-0.316762\pi\)
0.544387 + 0.838834i \(0.316762\pi\)
\(258\) −709.692 −0.171254
\(259\) 5299.08 1.27131
\(260\) 0 0
\(261\) 591.696 0.140326
\(262\) −4478.57 −1.05606
\(263\) 7665.86 1.79733 0.898664 0.438638i \(-0.144539\pi\)
0.898664 + 0.438638i \(0.144539\pi\)
\(264\) −1581.16 −0.368611
\(265\) 3003.05 0.696136
\(266\) 22913.4 5.28162
\(267\) 4132.89 0.947299
\(268\) 9880.48 2.25204
\(269\) −3980.87 −0.902296 −0.451148 0.892449i \(-0.648985\pi\)
−0.451148 + 0.892449i \(0.648985\pi\)
\(270\) −5353.63 −1.20671
\(271\) −564.461 −0.126526 −0.0632630 0.997997i \(-0.520151\pi\)
−0.0632630 + 0.997997i \(0.520151\pi\)
\(272\) 1047.88 0.233592
\(273\) 0 0
\(274\) 1384.54 0.305266
\(275\) 791.570 0.173576
\(276\) 3025.59 0.659851
\(277\) 3367.91 0.730534 0.365267 0.930903i \(-0.380978\pi\)
0.365267 + 0.930903i \(0.380978\pi\)
\(278\) −1130.77 −0.243953
\(279\) 329.857 0.0707814
\(280\) −8960.34 −1.91244
\(281\) −2359.54 −0.500918 −0.250459 0.968127i \(-0.580582\pi\)
−0.250459 + 0.968127i \(0.580582\pi\)
\(282\) 11045.5 2.33245
\(283\) −5644.97 −1.18572 −0.592859 0.805306i \(-0.702001\pi\)
−0.592859 + 0.805306i \(0.702001\pi\)
\(284\) 11173.5 2.33459
\(285\) −4018.07 −0.835122
\(286\) 0 0
\(287\) 8539.05 1.75625
\(288\) 399.275 0.0816928
\(289\) −4525.46 −0.921120
\(290\) −1806.64 −0.365827
\(291\) −4383.76 −0.883094
\(292\) −17894.2 −3.58623
\(293\) 907.243 0.180893 0.0904466 0.995901i \(-0.471171\pi\)
0.0904466 + 0.995901i \(0.471171\pi\)
\(294\) 15002.6 2.97609
\(295\) −3082.28 −0.608331
\(296\) −5768.46 −1.13272
\(297\) 1666.54 0.325598
\(298\) 7494.13 1.45679
\(299\) 0 0
\(300\) −4392.96 −0.845425
\(301\) 1251.95 0.239739
\(302\) −4904.52 −0.934514
\(303\) 6849.68 1.29869
\(304\) −7477.12 −1.41067
\(305\) 1818.36 0.341374
\(306\) −1105.44 −0.206515
\(307\) 4548.47 0.845585 0.422793 0.906227i \(-0.361050\pi\)
0.422793 + 0.906227i \(0.361050\pi\)
\(308\) 5747.74 1.06334
\(309\) 4880.33 0.898487
\(310\) −1007.16 −0.184526
\(311\) 5264.16 0.959817 0.479908 0.877319i \(-0.340670\pi\)
0.479908 + 0.877319i \(0.340670\pi\)
\(312\) 0 0
\(313\) 3910.77 0.706229 0.353114 0.935580i \(-0.385123\pi\)
0.353114 + 0.935580i \(0.385123\pi\)
\(314\) 5224.91 0.939041
\(315\) 2833.56 0.506835
\(316\) −6031.43 −1.07372
\(317\) −8552.60 −1.51534 −0.757668 0.652640i \(-0.773662\pi\)
−0.757668 + 0.652640i \(0.773662\pi\)
\(318\) 7858.33 1.38576
\(319\) 562.394 0.0987085
\(320\) −4320.41 −0.754745
\(321\) −4573.96 −0.795306
\(322\) −8084.61 −1.39919
\(323\) −2765.26 −0.476357
\(324\) −4392.14 −0.753110
\(325\) 0 0
\(326\) 1578.02 0.268093
\(327\) −4916.43 −0.831435
\(328\) −9295.42 −1.56480
\(329\) −19485.1 −3.26520
\(330\) −1526.71 −0.254674
\(331\) −10272.2 −1.70578 −0.852888 0.522094i \(-0.825151\pi\)
−0.852888 + 0.522094i \(0.825151\pi\)
\(332\) −9578.40 −1.58338
\(333\) 1824.18 0.300193
\(334\) 630.347 0.103267
\(335\) 4629.72 0.755071
\(336\) −7028.73 −1.14122
\(337\) 8953.48 1.44726 0.723631 0.690187i \(-0.242472\pi\)
0.723631 + 0.690187i \(0.242472\pi\)
\(338\) 0 0
\(339\) −4007.76 −0.642100
\(340\) 2228.31 0.355433
\(341\) 313.521 0.0497893
\(342\) 7887.82 1.24715
\(343\) −14934.5 −2.35099
\(344\) −1362.85 −0.213604
\(345\) 1417.71 0.221237
\(346\) −19415.5 −3.01672
\(347\) 773.649 0.119688 0.0598439 0.998208i \(-0.480940\pi\)
0.0598439 + 0.998208i \(0.480940\pi\)
\(348\) −3121.11 −0.480772
\(349\) −81.0078 −0.0124248 −0.00621239 0.999981i \(-0.501977\pi\)
−0.00621239 + 0.999981i \(0.501977\pi\)
\(350\) 11738.3 1.79269
\(351\) 0 0
\(352\) 379.502 0.0574646
\(353\) −11417.2 −1.72146 −0.860731 0.509061i \(-0.829993\pi\)
−0.860731 + 0.509061i \(0.829993\pi\)
\(354\) −8065.66 −1.21097
\(355\) 5235.58 0.782749
\(356\) 16354.5 2.43479
\(357\) −2599.43 −0.385369
\(358\) 4081.88 0.602609
\(359\) 1673.33 0.246003 0.123002 0.992406i \(-0.460748\pi\)
0.123002 + 0.992406i \(0.460748\pi\)
\(360\) −3084.55 −0.451583
\(361\) 12872.5 1.87673
\(362\) −18807.6 −2.73068
\(363\) 475.252 0.0687170
\(364\) 0 0
\(365\) −8384.73 −1.20240
\(366\) 4758.25 0.679557
\(367\) −6442.11 −0.916281 −0.458141 0.888880i \(-0.651484\pi\)
−0.458141 + 0.888880i \(0.651484\pi\)
\(368\) 2638.17 0.373707
\(369\) 2939.52 0.414703
\(370\) −5569.82 −0.782598
\(371\) −13862.7 −1.93994
\(372\) −1739.94 −0.242505
\(373\) 6908.41 0.958992 0.479496 0.877544i \(-0.340819\pi\)
0.479496 + 0.877544i \(0.340819\pi\)
\(374\) −1050.69 −0.145267
\(375\) −5634.00 −0.775837
\(376\) 21211.1 2.90925
\(377\) 0 0
\(378\) 24713.5 3.36276
\(379\) −14614.2 −1.98068 −0.990341 0.138653i \(-0.955723\pi\)
−0.990341 + 0.138653i \(0.955723\pi\)
\(380\) −15900.1 −2.14647
\(381\) 2490.61 0.334902
\(382\) 3182.18 0.426216
\(383\) 1984.03 0.264697 0.132349 0.991203i \(-0.457748\pi\)
0.132349 + 0.991203i \(0.457748\pi\)
\(384\) −10221.5 −1.35837
\(385\) 2693.24 0.356519
\(386\) −2728.63 −0.359802
\(387\) 430.978 0.0566094
\(388\) −17347.2 −2.26977
\(389\) −1403.79 −0.182969 −0.0914844 0.995807i \(-0.529161\pi\)
−0.0914844 + 0.995807i \(0.529161\pi\)
\(390\) 0 0
\(391\) 975.676 0.126194
\(392\) 28810.1 3.71206
\(393\) −3625.37 −0.465333
\(394\) 3668.57 0.469086
\(395\) −2826.16 −0.359999
\(396\) 1978.63 0.251086
\(397\) −15159.0 −1.91640 −0.958198 0.286107i \(-0.907639\pi\)
−0.958198 + 0.286107i \(0.907639\pi\)
\(398\) 12060.5 1.51894
\(399\) 18548.2 2.32725
\(400\) −3830.46 −0.478807
\(401\) −11427.3 −1.42308 −0.711538 0.702648i \(-0.752001\pi\)
−0.711538 + 0.702648i \(0.752001\pi\)
\(402\) 12115.0 1.50308
\(403\) 0 0
\(404\) 27105.2 3.33796
\(405\) −2058.03 −0.252505
\(406\) 8339.84 1.01946
\(407\) 1733.84 0.211163
\(408\) 2829.69 0.343359
\(409\) 14770.2 1.78567 0.892836 0.450381i \(-0.148712\pi\)
0.892836 + 0.450381i \(0.148712\pi\)
\(410\) −8975.34 −1.08112
\(411\) 1120.77 0.134510
\(412\) 19312.2 2.30933
\(413\) 14228.5 1.69525
\(414\) −2783.08 −0.330389
\(415\) −4488.17 −0.530881
\(416\) 0 0
\(417\) −915.348 −0.107494
\(418\) 7497.20 0.877273
\(419\) 5041.53 0.587816 0.293908 0.955834i \(-0.405044\pi\)
0.293908 + 0.955834i \(0.405044\pi\)
\(420\) −14946.6 −1.73647
\(421\) −12174.1 −1.40934 −0.704669 0.709537i \(-0.748904\pi\)
−0.704669 + 0.709537i \(0.748904\pi\)
\(422\) −9498.31 −1.09567
\(423\) −6707.65 −0.771010
\(424\) 15090.6 1.72846
\(425\) −1416.62 −0.161685
\(426\) 13700.4 1.55818
\(427\) −8393.93 −0.951313
\(428\) −18099.8 −2.04413
\(429\) 0 0
\(430\) −1315.92 −0.147580
\(431\) 987.140 0.110322 0.0551611 0.998477i \(-0.482433\pi\)
0.0551611 + 0.998477i \(0.482433\pi\)
\(432\) −8064.51 −0.898157
\(433\) 16004.0 1.77622 0.888112 0.459627i \(-0.152017\pi\)
0.888112 + 0.459627i \(0.152017\pi\)
\(434\) 4649.27 0.514221
\(435\) −1462.46 −0.161195
\(436\) −19455.1 −2.13699
\(437\) −6961.92 −0.762091
\(438\) −21941.0 −2.39356
\(439\) 10882.5 1.18313 0.591563 0.806259i \(-0.298511\pi\)
0.591563 + 0.806259i \(0.298511\pi\)
\(440\) −2931.80 −0.317654
\(441\) −9110.71 −0.983772
\(442\) 0 0
\(443\) −14689.4 −1.57542 −0.787712 0.616043i \(-0.788735\pi\)
−0.787712 + 0.616043i \(0.788735\pi\)
\(444\) −9622.26 −1.02850
\(445\) 7663.25 0.816344
\(446\) 12775.3 1.35634
\(447\) 6066.44 0.641908
\(448\) 19943.9 2.10326
\(449\) −4909.49 −0.516021 −0.258010 0.966142i \(-0.583067\pi\)
−0.258010 + 0.966142i \(0.583067\pi\)
\(450\) 4040.86 0.423306
\(451\) 2793.95 0.291712
\(452\) −15859.3 −1.65035
\(453\) −3970.17 −0.411777
\(454\) −5162.70 −0.533695
\(455\) 0 0
\(456\) −20191.2 −2.07355
\(457\) −9752.89 −0.998295 −0.499148 0.866517i \(-0.666353\pi\)
−0.499148 + 0.866517i \(0.666353\pi\)
\(458\) 3627.52 0.370094
\(459\) −2982.50 −0.303292
\(460\) 5610.08 0.568633
\(461\) −5771.01 −0.583043 −0.291521 0.956564i \(-0.594161\pi\)
−0.291521 + 0.956564i \(0.594161\pi\)
\(462\) 7047.61 0.709706
\(463\) 10103.3 1.01413 0.507063 0.861909i \(-0.330731\pi\)
0.507063 + 0.861909i \(0.330731\pi\)
\(464\) −2721.46 −0.272286
\(465\) −815.289 −0.0813078
\(466\) −11881.7 −1.18113
\(467\) −11122.1 −1.10207 −0.551037 0.834481i \(-0.685768\pi\)
−0.551037 + 0.834481i \(0.685768\pi\)
\(468\) 0 0
\(469\) −21371.7 −2.10417
\(470\) 20480.7 2.01001
\(471\) 4229.53 0.413771
\(472\) −15488.8 −1.51044
\(473\) 409.635 0.0398204
\(474\) −7395.45 −0.716633
\(475\) 10108.3 0.976419
\(476\) −10286.3 −0.990492
\(477\) −4772.16 −0.458076
\(478\) 13626.2 1.30387
\(479\) 12970.4 1.23723 0.618614 0.785695i \(-0.287694\pi\)
0.618614 + 0.785695i \(0.287694\pi\)
\(480\) −986.868 −0.0938420
\(481\) 0 0
\(482\) 59.4477 0.00561778
\(483\) −6544.43 −0.616525
\(484\) 1880.64 0.176620
\(485\) −8128.41 −0.761014
\(486\) 14462.5 1.34986
\(487\) −8900.44 −0.828167 −0.414084 0.910239i \(-0.635898\pi\)
−0.414084 + 0.910239i \(0.635898\pi\)
\(488\) 9137.44 0.847608
\(489\) 1277.39 0.118130
\(490\) 27818.0 2.56467
\(491\) 5298.03 0.486959 0.243479 0.969906i \(-0.421711\pi\)
0.243479 + 0.969906i \(0.421711\pi\)
\(492\) −15505.5 −1.42082
\(493\) −1006.48 −0.0919463
\(494\) 0 0
\(495\) 927.132 0.0841848
\(496\) −1517.15 −0.137343
\(497\) −24168.5 −2.18130
\(498\) −11744.6 −1.05680
\(499\) 16775.9 1.50499 0.752496 0.658597i \(-0.228850\pi\)
0.752496 + 0.658597i \(0.228850\pi\)
\(500\) −22294.6 −1.99409
\(501\) 510.261 0.0455025
\(502\) −29548.2 −2.62709
\(503\) 637.501 0.0565105 0.0282552 0.999601i \(-0.491005\pi\)
0.0282552 + 0.999601i \(0.491005\pi\)
\(504\) 14238.9 1.25844
\(505\) 12700.8 1.11916
\(506\) −2645.26 −0.232403
\(507\) 0 0
\(508\) 9855.72 0.860781
\(509\) −9312.20 −0.810915 −0.405458 0.914114i \(-0.632888\pi\)
−0.405458 + 0.914114i \(0.632888\pi\)
\(510\) 2732.25 0.237227
\(511\) 38705.6 3.35076
\(512\) −17420.7 −1.50370
\(513\) 21281.6 1.83159
\(514\) 21765.3 1.86775
\(515\) 9049.17 0.774280
\(516\) −2273.34 −0.193950
\(517\) −6375.48 −0.542346
\(518\) 25711.5 2.18088
\(519\) −15716.7 −1.32926
\(520\) 0 0
\(521\) 2984.82 0.250993 0.125496 0.992094i \(-0.459948\pi\)
0.125496 + 0.992094i \(0.459948\pi\)
\(522\) 2870.95 0.240724
\(523\) 6809.82 0.569355 0.284677 0.958623i \(-0.408114\pi\)
0.284677 + 0.958623i \(0.408114\pi\)
\(524\) −14346.1 −1.19602
\(525\) 9502.08 0.789914
\(526\) 37195.2 3.08325
\(527\) −561.088 −0.0463783
\(528\) −2299.78 −0.189555
\(529\) −9710.61 −0.798110
\(530\) 14571.0 1.19420
\(531\) 4898.07 0.400298
\(532\) 73398.1 5.98160
\(533\) 0 0
\(534\) 20053.1 1.62506
\(535\) −8481.08 −0.685363
\(536\) 23264.8 1.87479
\(537\) 3304.25 0.265529
\(538\) −19315.4 −1.54786
\(539\) −8659.53 −0.692008
\(540\) −17149.2 −1.36664
\(541\) −200.402 −0.0159260 −0.00796301 0.999968i \(-0.502535\pi\)
−0.00796301 + 0.999968i \(0.502535\pi\)
\(542\) −2738.80 −0.217051
\(543\) −15224.6 −1.20322
\(544\) −679.169 −0.0535278
\(545\) −9116.10 −0.716497
\(546\) 0 0
\(547\) −9841.40 −0.769265 −0.384632 0.923070i \(-0.625672\pi\)
−0.384632 + 0.923070i \(0.625672\pi\)
\(548\) 4435.06 0.345723
\(549\) −2889.56 −0.224633
\(550\) 3840.75 0.297764
\(551\) 7181.71 0.555266
\(552\) 7124.11 0.549316
\(553\) 13046.1 1.00322
\(554\) 16341.3 1.25320
\(555\) −4508.73 −0.344837
\(556\) −3622.17 −0.276285
\(557\) −14021.7 −1.06664 −0.533320 0.845914i \(-0.679056\pi\)
−0.533320 + 0.845914i \(0.679056\pi\)
\(558\) 1600.49 0.121423
\(559\) 0 0
\(560\) −13032.7 −0.983453
\(561\) −850.527 −0.0640094
\(562\) −11448.6 −0.859307
\(563\) 2138.86 0.160110 0.0800552 0.996790i \(-0.474490\pi\)
0.0800552 + 0.996790i \(0.474490\pi\)
\(564\) 35381.8 2.64157
\(565\) −7431.24 −0.553335
\(566\) −27389.7 −2.03406
\(567\) 9500.31 0.703661
\(568\) 26309.3 1.94351
\(569\) 13039.8 0.960734 0.480367 0.877068i \(-0.340503\pi\)
0.480367 + 0.877068i \(0.340503\pi\)
\(570\) −19495.9 −1.43262
\(571\) 15518.7 1.13736 0.568682 0.822557i \(-0.307453\pi\)
0.568682 + 0.822557i \(0.307453\pi\)
\(572\) 0 0
\(573\) 2575.95 0.187804
\(574\) 41432.0 3.01279
\(575\) −3566.53 −0.258669
\(576\) 6865.58 0.496642
\(577\) −45.4628 −0.00328014 −0.00164007 0.999999i \(-0.500522\pi\)
−0.00164007 + 0.999999i \(0.500522\pi\)
\(578\) −21957.8 −1.58015
\(579\) −2208.81 −0.158540
\(580\) −5787.19 −0.414310
\(581\) 20718.3 1.47942
\(582\) −21270.3 −1.51492
\(583\) −4535.84 −0.322222
\(584\) −42134.1 −2.98548
\(585\) 0 0
\(586\) 4402.00 0.310316
\(587\) −27397.3 −1.92642 −0.963208 0.268756i \(-0.913388\pi\)
−0.963208 + 0.268756i \(0.913388\pi\)
\(588\) 48057.6 3.37051
\(589\) 4003.64 0.280080
\(590\) −14955.4 −1.04357
\(591\) 2969.68 0.206694
\(592\) −8390.17 −0.582490
\(593\) −11744.6 −0.813310 −0.406655 0.913582i \(-0.633305\pi\)
−0.406655 + 0.913582i \(0.633305\pi\)
\(594\) 8086.17 0.558552
\(595\) −4819.90 −0.332095
\(596\) 24005.8 1.64986
\(597\) 9762.86 0.669292
\(598\) 0 0
\(599\) 27018.7 1.84299 0.921497 0.388386i \(-0.126967\pi\)
0.921497 + 0.388386i \(0.126967\pi\)
\(600\) −10343.8 −0.703803
\(601\) −17817.6 −1.20931 −0.604656 0.796487i \(-0.706689\pi\)
−0.604656 + 0.796487i \(0.706689\pi\)
\(602\) 6074.55 0.411263
\(603\) −7357.11 −0.496857
\(604\) −15710.5 −1.05837
\(605\) 881.218 0.0592176
\(606\) 33235.1 2.22786
\(607\) 1888.35 0.126270 0.0631349 0.998005i \(-0.479890\pi\)
0.0631349 + 0.998005i \(0.479890\pi\)
\(608\) 4846.20 0.323256
\(609\) 6751.04 0.449205
\(610\) 8822.80 0.585614
\(611\) 0 0
\(612\) −3541.02 −0.233884
\(613\) −23090.6 −1.52140 −0.760700 0.649103i \(-0.775144\pi\)
−0.760700 + 0.649103i \(0.775144\pi\)
\(614\) 22069.4 1.45057
\(615\) −7265.47 −0.476377
\(616\) 13533.8 0.885213
\(617\) 6821.01 0.445063 0.222531 0.974926i \(-0.428568\pi\)
0.222531 + 0.974926i \(0.428568\pi\)
\(618\) 23679.7 1.54132
\(619\) −6426.72 −0.417305 −0.208652 0.977990i \(-0.566908\pi\)
−0.208652 + 0.977990i \(0.566908\pi\)
\(620\) −3226.22 −0.208981
\(621\) −7508.84 −0.485216
\(622\) 25542.0 1.64653
\(623\) −35375.2 −2.27492
\(624\) 0 0
\(625\) −1451.53 −0.0928976
\(626\) 18975.3 1.21151
\(627\) 6068.92 0.386554
\(628\) 16736.9 1.06349
\(629\) −3102.94 −0.196697
\(630\) 13748.6 0.869457
\(631\) 24596.8 1.55180 0.775899 0.630858i \(-0.217297\pi\)
0.775899 + 0.630858i \(0.217297\pi\)
\(632\) −14201.7 −0.893853
\(633\) −7688.81 −0.482785
\(634\) −41497.7 −2.59950
\(635\) 4618.12 0.288605
\(636\) 25172.4 1.56942
\(637\) 0 0
\(638\) 2728.77 0.169331
\(639\) −8319.88 −0.515070
\(640\) −18952.8 −1.17059
\(641\) 10681.7 0.658195 0.329098 0.944296i \(-0.393255\pi\)
0.329098 + 0.944296i \(0.393255\pi\)
\(642\) −22193.1 −1.36432
\(643\) 16532.1 1.01394 0.506971 0.861963i \(-0.330765\pi\)
0.506971 + 0.861963i \(0.330765\pi\)
\(644\) −25897.3 −1.58462
\(645\) −1065.23 −0.0650282
\(646\) −13417.2 −0.817173
\(647\) 16684.5 1.01381 0.506905 0.862002i \(-0.330789\pi\)
0.506905 + 0.862002i \(0.330789\pi\)
\(648\) −10341.8 −0.626953
\(649\) 4655.51 0.281579
\(650\) 0 0
\(651\) 3763.54 0.226582
\(652\) 5054.84 0.303624
\(653\) −14318.0 −0.858051 −0.429026 0.903292i \(-0.641143\pi\)
−0.429026 + 0.903292i \(0.641143\pi\)
\(654\) −23854.8 −1.42630
\(655\) −6722.20 −0.401005
\(656\) −13520.1 −0.804683
\(657\) 13324.2 0.791213
\(658\) −94543.1 −5.60133
\(659\) 2611.89 0.154392 0.0771962 0.997016i \(-0.475403\pi\)
0.0771962 + 0.997016i \(0.475403\pi\)
\(660\) −4890.48 −0.288427
\(661\) 22924.1 1.34893 0.674466 0.738306i \(-0.264374\pi\)
0.674466 + 0.738306i \(0.264374\pi\)
\(662\) −49841.4 −2.92620
\(663\) 0 0
\(664\) −22553.5 −1.31814
\(665\) 34392.3 2.00553
\(666\) 8851.03 0.514971
\(667\) −2533.94 −0.147099
\(668\) 2019.18 0.116953
\(669\) 10341.5 0.597645
\(670\) 22463.7 1.29530
\(671\) −2746.47 −0.158012
\(672\) 4555.58 0.261511
\(673\) 13171.3 0.754408 0.377204 0.926130i \(-0.376886\pi\)
0.377204 + 0.926130i \(0.376886\pi\)
\(674\) 43442.9 2.48273
\(675\) 10902.4 0.621677
\(676\) 0 0
\(677\) −14414.4 −0.818303 −0.409151 0.912467i \(-0.634175\pi\)
−0.409151 + 0.912467i \(0.634175\pi\)
\(678\) −19445.9 −1.10150
\(679\) 37522.4 2.12073
\(680\) 5246.84 0.295893
\(681\) −4179.16 −0.235163
\(682\) 1521.23 0.0854117
\(683\) 3456.95 0.193670 0.0968350 0.995300i \(-0.469128\pi\)
0.0968350 + 0.995300i \(0.469128\pi\)
\(684\) 25266.9 1.41243
\(685\) 2078.15 0.115915
\(686\) −72463.2 −4.03303
\(687\) 2936.45 0.163075
\(688\) −1982.25 −0.109844
\(689\) 0 0
\(690\) 6878.80 0.379524
\(691\) 16264.8 0.895430 0.447715 0.894176i \(-0.352238\pi\)
0.447715 + 0.894176i \(0.352238\pi\)
\(692\) −62193.3 −3.41653
\(693\) −4279.83 −0.234599
\(694\) 3753.79 0.205320
\(695\) −1697.25 −0.0926336
\(696\) −7349.03 −0.400236
\(697\) −5000.15 −0.271728
\(698\) −393.055 −0.0213142
\(699\) −9618.13 −0.520445
\(700\) 37601.2 2.03027
\(701\) −9771.57 −0.526487 −0.263243 0.964729i \(-0.584792\pi\)
−0.263243 + 0.964729i \(0.584792\pi\)
\(702\) 0 0
\(703\) 22141.0 1.18786
\(704\) 6525.58 0.349350
\(705\) 16579.0 0.885673
\(706\) −55396.9 −2.95310
\(707\) −58629.3 −3.11879
\(708\) −25836.6 −1.37147
\(709\) −5957.18 −0.315552 −0.157776 0.987475i \(-0.550432\pi\)
−0.157776 + 0.987475i \(0.550432\pi\)
\(710\) 25403.4 1.34278
\(711\) 4491.07 0.236889
\(712\) 38508.6 2.02693
\(713\) −1412.61 −0.0741975
\(714\) −12612.6 −0.661086
\(715\) 0 0
\(716\) 13075.4 0.682473
\(717\) 11030.3 0.574526
\(718\) 8119.12 0.422009
\(719\) 26368.5 1.36770 0.683852 0.729621i \(-0.260303\pi\)
0.683852 + 0.729621i \(0.260303\pi\)
\(720\) −4486.45 −0.232223
\(721\) −41772.8 −2.15770
\(722\) 62458.2 3.21946
\(723\) 48.1224 0.00247537
\(724\) −60246.1 −3.09258
\(725\) 3679.12 0.188468
\(726\) 2305.95 0.117882
\(727\) −34152.2 −1.74228 −0.871138 0.491038i \(-0.836618\pi\)
−0.871138 + 0.491038i \(0.836618\pi\)
\(728\) 0 0
\(729\) 19337.1 0.982428
\(730\) −40683.2 −2.06268
\(731\) −733.096 −0.0370924
\(732\) 15242.0 0.769619
\(733\) 10731.5 0.540758 0.270379 0.962754i \(-0.412851\pi\)
0.270379 + 0.962754i \(0.412851\pi\)
\(734\) −31257.5 −1.57185
\(735\) 22518.5 1.13008
\(736\) −1709.90 −0.0856355
\(737\) −6992.77 −0.349501
\(738\) 14262.8 0.711408
\(739\) −7371.07 −0.366914 −0.183457 0.983028i \(-0.558729\pi\)
−0.183457 + 0.983028i \(0.558729\pi\)
\(740\) −17841.7 −0.886316
\(741\) 0 0
\(742\) −67262.7 −3.32789
\(743\) −27347.1 −1.35029 −0.675146 0.737684i \(-0.735919\pi\)
−0.675146 + 0.737684i \(0.735919\pi\)
\(744\) −4096.91 −0.201882
\(745\) 11248.5 0.553170
\(746\) 33520.1 1.64512
\(747\) 7132.17 0.349334
\(748\) −3365.66 −0.164520
\(749\) 39150.4 1.90991
\(750\) −27336.5 −1.33092
\(751\) −8946.91 −0.434724 −0.217362 0.976091i \(-0.569745\pi\)
−0.217362 + 0.976091i \(0.569745\pi\)
\(752\) 30851.4 1.49605
\(753\) −23919.0 −1.15758
\(754\) 0 0
\(755\) −7361.53 −0.354852
\(756\) 79164.2 3.80843
\(757\) −12527.0 −0.601455 −0.300728 0.953710i \(-0.597230\pi\)
−0.300728 + 0.953710i \(0.597230\pi\)
\(758\) −70908.8 −3.39779
\(759\) −2141.32 −0.102404
\(760\) −37438.7 −1.78690
\(761\) −35342.0 −1.68351 −0.841753 0.539863i \(-0.818476\pi\)
−0.841753 + 0.539863i \(0.818476\pi\)
\(762\) 12084.6 0.574513
\(763\) 42081.8 1.99668
\(764\) 10193.4 0.482702
\(765\) −1659.22 −0.0784175
\(766\) 9626.62 0.454078
\(767\) 0 0
\(768\) −30955.0 −1.45442
\(769\) 10655.2 0.499657 0.249829 0.968290i \(-0.419626\pi\)
0.249829 + 0.968290i \(0.419626\pi\)
\(770\) 13067.7 0.611596
\(771\) 17618.8 0.822990
\(772\) −8740.57 −0.407487
\(773\) 6327.89 0.294435 0.147217 0.989104i \(-0.452968\pi\)
0.147217 + 0.989104i \(0.452968\pi\)
\(774\) 2091.13 0.0971113
\(775\) 2051.02 0.0950645
\(776\) −40846.1 −1.88955
\(777\) 20813.2 0.960965
\(778\) −6811.27 −0.313876
\(779\) 35678.5 1.64097
\(780\) 0 0
\(781\) −7907.87 −0.362312
\(782\) 4734.04 0.216482
\(783\) 7745.90 0.353532
\(784\) 41904.0 1.90889
\(785\) 7842.44 0.356571
\(786\) −17590.5 −0.798261
\(787\) 17119.9 0.775423 0.387712 0.921781i \(-0.373266\pi\)
0.387712 + 0.921781i \(0.373266\pi\)
\(788\) 11751.5 0.531254
\(789\) 30109.2 1.35858
\(790\) −13712.7 −0.617565
\(791\) 34304.1 1.54199
\(792\) 4658.93 0.209025
\(793\) 0 0
\(794\) −73552.5 −3.28751
\(795\) 11795.1 0.526200
\(796\) 38633.1 1.72024
\(797\) −24952.3 −1.10898 −0.554490 0.832191i \(-0.687086\pi\)
−0.554490 + 0.832191i \(0.687086\pi\)
\(798\) 89997.2 3.99231
\(799\) 11409.8 0.505192
\(800\) 2482.66 0.109719
\(801\) −12177.7 −0.537176
\(802\) −55446.1 −2.44123
\(803\) 12664.4 0.556558
\(804\) 38807.6 1.70229
\(805\) −12134.7 −0.531296
\(806\) 0 0
\(807\) −15635.7 −0.682035
\(808\) 63822.5 2.77880
\(809\) 24696.9 1.07329 0.536647 0.843807i \(-0.319691\pi\)
0.536647 + 0.843807i \(0.319691\pi\)
\(810\) −9985.71 −0.433163
\(811\) 30317.8 1.31270 0.656352 0.754455i \(-0.272099\pi\)
0.656352 + 0.754455i \(0.272099\pi\)
\(812\) 26714.9 1.15457
\(813\) −2217.04 −0.0956395
\(814\) 8412.71 0.362242
\(815\) 2368.56 0.101800
\(816\) 4115.76 0.176569
\(817\) 5231.00 0.224002
\(818\) 71666.0 3.06326
\(819\) 0 0
\(820\) −28750.5 −1.22441
\(821\) −21601.5 −0.918269 −0.459135 0.888367i \(-0.651840\pi\)
−0.459135 + 0.888367i \(0.651840\pi\)
\(822\) 5438.05 0.230747
\(823\) 8064.84 0.341583 0.170791 0.985307i \(-0.445368\pi\)
0.170791 + 0.985307i \(0.445368\pi\)
\(824\) 45473.0 1.92248
\(825\) 3109.05 0.131204
\(826\) 69037.4 2.90813
\(827\) −28844.4 −1.21284 −0.606420 0.795145i \(-0.707395\pi\)
−0.606420 + 0.795145i \(0.707395\pi\)
\(828\) −8914.99 −0.374176
\(829\) −37091.0 −1.55395 −0.776974 0.629532i \(-0.783247\pi\)
−0.776974 + 0.629532i \(0.783247\pi\)
\(830\) −21776.9 −0.910708
\(831\) 13228.2 0.552202
\(832\) 0 0
\(833\) 15497.4 0.644600
\(834\) −4441.33 −0.184401
\(835\) 946.131 0.0392122
\(836\) 24015.6 0.993539
\(837\) 4318.16 0.178324
\(838\) 24461.8 1.00838
\(839\) 2748.30 0.113089 0.0565446 0.998400i \(-0.481992\pi\)
0.0565446 + 0.998400i \(0.481992\pi\)
\(840\) −35193.6 −1.44559
\(841\) −21775.1 −0.892823
\(842\) −59069.7 −2.41767
\(843\) −9267.56 −0.378638
\(844\) −30425.8 −1.24087
\(845\) 0 0
\(846\) −32546.0 −1.32264
\(847\) −4067.89 −0.165023
\(848\) 21949.2 0.888843
\(849\) −22171.8 −0.896270
\(850\) −6873.52 −0.277365
\(851\) −7812.06 −0.314682
\(852\) 43886.1 1.76469
\(853\) 27636.7 1.10933 0.554667 0.832072i \(-0.312846\pi\)
0.554667 + 0.832072i \(0.312846\pi\)
\(854\) −40727.9 −1.63194
\(855\) 11839.4 0.473565
\(856\) −42618.3 −1.70171
\(857\) 8533.01 0.340119 0.170060 0.985434i \(-0.445604\pi\)
0.170060 + 0.985434i \(0.445604\pi\)
\(858\) 0 0
\(859\) −785.062 −0.0311828 −0.0155914 0.999878i \(-0.504963\pi\)
−0.0155914 + 0.999878i \(0.504963\pi\)
\(860\) −4215.26 −0.167138
\(861\) 33538.9 1.32753
\(862\) 4789.67 0.189254
\(863\) 7926.87 0.312670 0.156335 0.987704i \(-0.450032\pi\)
0.156335 + 0.987704i \(0.450032\pi\)
\(864\) 5226.92 0.205814
\(865\) −29142.1 −1.14550
\(866\) 77652.6 3.04705
\(867\) −17774.7 −0.696263
\(868\) 14892.9 0.582371
\(869\) 4268.66 0.166633
\(870\) −7095.97 −0.276524
\(871\) 0 0
\(872\) −45809.3 −1.77901
\(873\) 12916.9 0.500768
\(874\) −33779.7 −1.30734
\(875\) 48223.8 1.86316
\(876\) −70283.1 −2.71078
\(877\) 34503.3 1.32850 0.664249 0.747512i \(-0.268752\pi\)
0.664249 + 0.747512i \(0.268752\pi\)
\(878\) 52802.5 2.02961
\(879\) 3563.38 0.136735
\(880\) −4264.27 −0.163351
\(881\) 17746.0 0.678637 0.339319 0.940671i \(-0.389804\pi\)
0.339319 + 0.940671i \(0.389804\pi\)
\(882\) −44205.7 −1.68762
\(883\) 31839.7 1.21347 0.606733 0.794906i \(-0.292480\pi\)
0.606733 + 0.794906i \(0.292480\pi\)
\(884\) 0 0
\(885\) −12106.3 −0.459829
\(886\) −71273.8 −2.70258
\(887\) −28582.5 −1.08197 −0.540985 0.841032i \(-0.681949\pi\)
−0.540985 + 0.841032i \(0.681949\pi\)
\(888\) −22656.8 −0.856208
\(889\) −21318.2 −0.804262
\(890\) 37182.6 1.40041
\(891\) 3108.47 0.116877
\(892\) 40922.8 1.53609
\(893\) −81414.2 −3.05086
\(894\) 29434.8 1.10117
\(895\) 6126.78 0.228822
\(896\) 87490.2 3.26210
\(897\) 0 0
\(898\) −23821.2 −0.885215
\(899\) 1457.21 0.0540609
\(900\) 12944.0 0.479407
\(901\) 8117.48 0.300147
\(902\) 13556.4 0.500421
\(903\) 4917.30 0.181215
\(904\) −37342.7 −1.37389
\(905\) −28229.7 −1.03689
\(906\) −19263.5 −0.706388
\(907\) 1181.49 0.0432532 0.0216266 0.999766i \(-0.493116\pi\)
0.0216266 + 0.999766i \(0.493116\pi\)
\(908\) −16537.6 −0.604426
\(909\) −20182.8 −0.736438
\(910\) 0 0
\(911\) 5094.51 0.185279 0.0926393 0.995700i \(-0.470470\pi\)
0.0926393 + 0.995700i \(0.470470\pi\)
\(912\) −29367.9 −1.06630
\(913\) 6778.98 0.245730
\(914\) −47321.6 −1.71254
\(915\) 7141.99 0.258040
\(916\) 11620.0 0.419143
\(917\) 31031.1 1.11749
\(918\) −14471.3 −0.520287
\(919\) −16185.3 −0.580960 −0.290480 0.956881i \(-0.593815\pi\)
−0.290480 + 0.956881i \(0.593815\pi\)
\(920\) 13209.6 0.473378
\(921\) 17865.0 0.639167
\(922\) −28001.3 −1.00019
\(923\) 0 0
\(924\) 22575.5 0.803764
\(925\) 11342.6 0.403181
\(926\) 49021.8 1.73969
\(927\) −14380.1 −0.509497
\(928\) 1763.88 0.0623947
\(929\) −25919.4 −0.915378 −0.457689 0.889112i \(-0.651323\pi\)
−0.457689 + 0.889112i \(0.651323\pi\)
\(930\) −3955.84 −0.139481
\(931\) −110581. −3.89276
\(932\) −38060.4 −1.33767
\(933\) 20676.1 0.725513
\(934\) −53965.0 −1.89057
\(935\) −1577.06 −0.0551607
\(936\) 0 0
\(937\) 2913.18 0.101568 0.0507842 0.998710i \(-0.483828\pi\)
0.0507842 + 0.998710i \(0.483828\pi\)
\(938\) −103697. −3.60963
\(939\) 15360.3 0.533829
\(940\) 65605.4 2.27640
\(941\) −36762.9 −1.27358 −0.636788 0.771039i \(-0.719737\pi\)
−0.636788 + 0.771039i \(0.719737\pi\)
\(942\) 20521.9 0.709810
\(943\) −12588.5 −0.434718
\(944\) −22528.3 −0.776731
\(945\) 37094.2 1.27690
\(946\) 1987.57 0.0683104
\(947\) −9413.68 −0.323024 −0.161512 0.986871i \(-0.551637\pi\)
−0.161512 + 0.986871i \(0.551637\pi\)
\(948\) −23689.7 −0.811609
\(949\) 0 0
\(950\) 49045.9 1.67501
\(951\) −33592.1 −1.14542
\(952\) −24220.5 −0.824570
\(953\) −18094.1 −0.615031 −0.307515 0.951543i \(-0.599498\pi\)
−0.307515 + 0.951543i \(0.599498\pi\)
\(954\) −23154.8 −0.785813
\(955\) 4776.35 0.161842
\(956\) 43648.7 1.47667
\(957\) 2208.92 0.0746125
\(958\) 62933.2 2.12242
\(959\) −9593.15 −0.323023
\(960\) −16969.3 −0.570502
\(961\) −28978.6 −0.972731
\(962\) 0 0
\(963\) 13477.3 0.450987
\(964\) 190.428 0.00636231
\(965\) −4095.59 −0.136624
\(966\) −31754.0 −1.05763
\(967\) −28961.4 −0.963119 −0.481559 0.876413i \(-0.659929\pi\)
−0.481559 + 0.876413i \(0.659929\pi\)
\(968\) 4428.21 0.147033
\(969\) −10861.1 −0.360072
\(970\) −39439.6 −1.30549
\(971\) −19721.3 −0.651790 −0.325895 0.945406i \(-0.605666\pi\)
−0.325895 + 0.945406i \(0.605666\pi\)
\(972\) 46327.3 1.52875
\(973\) 7834.85 0.258144
\(974\) −43185.5 −1.42069
\(975\) 0 0
\(976\) 13290.3 0.435874
\(977\) 30135.2 0.986807 0.493403 0.869801i \(-0.335753\pi\)
0.493403 + 0.869801i \(0.335753\pi\)
\(978\) 6198.00 0.202648
\(979\) −11574.6 −0.377862
\(980\) 89108.9 2.90457
\(981\) 14486.4 0.471474
\(982\) 25706.4 0.835360
\(983\) 25989.9 0.843285 0.421642 0.906762i \(-0.361454\pi\)
0.421642 + 0.906762i \(0.361454\pi\)
\(984\) −36509.7 −1.18281
\(985\) 5506.41 0.178121
\(986\) −4883.50 −0.157730
\(987\) −76531.9 −2.46812
\(988\) 0 0
\(989\) −1845.67 −0.0593416
\(990\) 4498.50 0.144416
\(991\) −17046.1 −0.546404 −0.273202 0.961957i \(-0.588083\pi\)
−0.273202 + 0.961957i \(0.588083\pi\)
\(992\) 983.323 0.0314723
\(993\) −40346.2 −1.28937
\(994\) −117267. −3.74194
\(995\) 18102.4 0.576769
\(996\) −37621.1 −1.19686
\(997\) −38846.7 −1.23399 −0.616995 0.786967i \(-0.711650\pi\)
−0.616995 + 0.786967i \(0.711650\pi\)
\(998\) 81397.5 2.58176
\(999\) 23880.3 0.756297
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1859.4.a.l.1.34 36
13.2 odd 12 143.4.j.a.56.34 yes 72
13.7 odd 12 143.4.j.a.23.34 72
13.12 even 2 1859.4.a.m.1.3 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
143.4.j.a.23.34 72 13.7 odd 12
143.4.j.a.56.34 yes 72 13.2 odd 12
1859.4.a.l.1.34 36 1.1 even 1 trivial
1859.4.a.m.1.3 36 13.12 even 2