Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1859,4,Mod(1,1859)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1859, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1859.1");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 1859 = 11 \cdot 13^{2} \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 1859.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | \(109.684550701\) |
Analytic rank: | \(1\) |
Dimension: | \(36\) |
Twist minimal: | no (minimal twist has level 143) |
Fricke sign: | \(-1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 | −5.40970 | 9.04984 | 21.2648 | 14.9789 | −48.9569 | −21.1440 | −71.7586 | 54.8996 | −81.0315 | ||||||||||||||||||
1.2 | −5.37051 | 6.42352 | 20.8423 | −1.04643 | −34.4976 | −14.1100 | −68.9699 | 14.2616 | 5.61984 | ||||||||||||||||||
1.3 | −5.31556 | −6.97612 | 20.2552 | −11.0780 | 37.0820 | −15.5383 | −65.1431 | 21.6662 | 58.8858 | ||||||||||||||||||
1.4 | −4.91072 | 4.96902 | 16.1152 | −14.5097 | −24.4015 | 24.8330 | −39.8514 | −2.30886 | 71.2531 | ||||||||||||||||||
1.5 | −4.68862 | −2.64231 | 13.9831 | −16.8988 | 12.3888 | −13.2904 | −28.0526 | −20.0182 | 79.2322 | ||||||||||||||||||
1.6 | −4.48294 | −3.05507 | 12.0967 | 15.8460 | 13.6957 | 14.1972 | −18.3654 | −17.6666 | −71.0368 | ||||||||||||||||||
1.7 | −3.97184 | 1.90642 | 7.77550 | 18.9601 | −7.57198 | 23.8934 | 0.891668 | −23.3656 | −75.3066 | ||||||||||||||||||
1.8 | −3.52500 | 6.60993 | 4.42564 | −15.7848 | −23.3000 | −35.5340 | 12.5996 | 16.6911 | 55.6415 | ||||||||||||||||||
1.9 | −3.45591 | −5.41746 | 3.94332 | 9.57590 | 18.7223 | −27.8655 | 14.0195 | 2.34888 | −33.0934 | ||||||||||||||||||
1.10 | −3.25823 | −8.58536 | 2.61606 | 2.74949 | 27.9731 | −10.9805 | 17.5421 | 46.7084 | −8.95848 | ||||||||||||||||||
1.11 | −3.04437 | 6.04232 | 1.26822 | 6.26745 | −18.3951 | 22.1223 | 20.4941 | 9.50964 | −19.0805 | ||||||||||||||||||
1.12 | −2.93776 | 9.49640 | 0.630432 | −20.5709 | −27.8981 | −4.19587 | 21.6500 | 63.1815 | 60.4323 | ||||||||||||||||||
1.13 | −2.56135 | −1.18355 | −1.43947 | −4.85042 | 3.03148 | 6.35045 | 24.1778 | −25.5992 | 12.4237 | ||||||||||||||||||
1.14 | −1.74560 | −4.37143 | −4.95287 | −9.81487 | 7.63078 | 18.0536 | 22.6106 | −7.89058 | 17.1329 | ||||||||||||||||||
1.15 | −1.63327 | 3.36108 | −5.33243 | 4.44226 | −5.48955 | −30.4921 | 21.7754 | −15.7031 | −7.25541 | ||||||||||||||||||
1.16 | −0.851378 | 5.53627 | −7.27515 | 7.50257 | −4.71346 | 8.31728 | 13.0049 | 3.65026 | −6.38753 | ||||||||||||||||||
1.17 | −0.236535 | −7.74253 | −7.94405 | 11.7890 | 1.83138 | 5.71517 | 3.77132 | 32.9468 | −2.78850 | ||||||||||||||||||
1.18 | 0.231915 | 8.68804 | −7.94622 | −0.297636 | 2.01489 | −7.88297 | −3.69817 | 48.4820 | −0.0690264 | ||||||||||||||||||
1.19 | 0.665052 | −3.21477 | −7.55771 | −10.5229 | −2.13799 | −28.9946 | −10.3467 | −16.6653 | −6.99830 | ||||||||||||||||||
1.20 | 0.677132 | 5.62189 | −7.54149 | 21.4343 | 3.80677 | −10.4645 | −10.5236 | 4.60569 | 14.5139 | ||||||||||||||||||
See all 36 embeddings |
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(11\) | \( +1 \) |
\(13\) | \( -1 \) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1859.4.a.l | 36 | |
13.b | even | 2 | 1 | 1859.4.a.m | 36 | ||
13.f | odd | 12 | 2 | 143.4.j.a | ✓ | 72 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
143.4.j.a | ✓ | 72 | 13.f | odd | 12 | 2 | |
1859.4.a.l | 36 | 1.a | even | 1 | 1 | trivial | |
1859.4.a.m | 36 | 13.b | even | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{36} + 4 T_{2}^{35} - 212 T_{2}^{34} - 820 T_{2}^{33} + 20423 T_{2}^{32} + 75918 T_{2}^{31} + \cdots - 43206514311168 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1859))\).