Properties

Label 1859.4.a.l
Level 18591859
Weight 44
Character orbit 1859.a
Self dual yes
Analytic conductor 109.685109.685
Analytic rank 11
Dimension 3636
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1859,4,Mod(1,1859)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1859, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1859.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 1859=11132 1859 = 11 \cdot 13^{2}
Weight: k k == 4 4
Character orbit: [χ][\chi] == 1859.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 109.684550701109.684550701
Analytic rank: 11
Dimension: 3636
Twist minimal: no (minimal twist has level 143)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

The algebraic qq-expansion of this newform has not been computed, but we have computed the trace expansion.

Tr(f)(q)=\operatorname{Tr}(f)(q) = 36q4q2+12q3+152q440q598q656q784q8+360q956q10396q11+66q12+164q14120q15+644q16+138q17+28q18498q19+3960q99+O(q100) 36 q - 4 q^{2} + 12 q^{3} + 152 q^{4} - 40 q^{5} - 98 q^{6} - 56 q^{7} - 84 q^{8} + 360 q^{9} - 56 q^{10} - 396 q^{11} + 66 q^{12} + 164 q^{14} - 120 q^{15} + 644 q^{16} + 138 q^{17} + 28 q^{18} - 498 q^{19}+ \cdots - 3960 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1 −5.40970 9.04984 21.2648 14.9789 −48.9569 −21.1440 −71.7586 54.8996 −81.0315
1.2 −5.37051 6.42352 20.8423 −1.04643 −34.4976 −14.1100 −68.9699 14.2616 5.61984
1.3 −5.31556 −6.97612 20.2552 −11.0780 37.0820 −15.5383 −65.1431 21.6662 58.8858
1.4 −4.91072 4.96902 16.1152 −14.5097 −24.4015 24.8330 −39.8514 −2.30886 71.2531
1.5 −4.68862 −2.64231 13.9831 −16.8988 12.3888 −13.2904 −28.0526 −20.0182 79.2322
1.6 −4.48294 −3.05507 12.0967 15.8460 13.6957 14.1972 −18.3654 −17.6666 −71.0368
1.7 −3.97184 1.90642 7.77550 18.9601 −7.57198 23.8934 0.891668 −23.3656 −75.3066
1.8 −3.52500 6.60993 4.42564 −15.7848 −23.3000 −35.5340 12.5996 16.6911 55.6415
1.9 −3.45591 −5.41746 3.94332 9.57590 18.7223 −27.8655 14.0195 2.34888 −33.0934
1.10 −3.25823 −8.58536 2.61606 2.74949 27.9731 −10.9805 17.5421 46.7084 −8.95848
1.11 −3.04437 6.04232 1.26822 6.26745 −18.3951 22.1223 20.4941 9.50964 −19.0805
1.12 −2.93776 9.49640 0.630432 −20.5709 −27.8981 −4.19587 21.6500 63.1815 60.4323
1.13 −2.56135 −1.18355 −1.43947 −4.85042 3.03148 6.35045 24.1778 −25.5992 12.4237
1.14 −1.74560 −4.37143 −4.95287 −9.81487 7.63078 18.0536 22.6106 −7.89058 17.1329
1.15 −1.63327 3.36108 −5.33243 4.44226 −5.48955 −30.4921 21.7754 −15.7031 −7.25541
1.16 −0.851378 5.53627 −7.27515 7.50257 −4.71346 8.31728 13.0049 3.65026 −6.38753
1.17 −0.236535 −7.74253 −7.94405 11.7890 1.83138 5.71517 3.77132 32.9468 −2.78850
1.18 0.231915 8.68804 −7.94622 −0.297636 2.01489 −7.88297 −3.69817 48.4820 −0.0690264
1.19 0.665052 −3.21477 −7.55771 −10.5229 −2.13799 −28.9946 −10.3467 −16.6653 −6.99830
1.20 0.677132 5.62189 −7.54149 21.4343 3.80677 −10.4645 −10.5236 4.60569 14.5139
See all 36 embeddings
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.36
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
1111 +1 +1
1313 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1859.4.a.l 36
13.b even 2 1 1859.4.a.m 36
13.f odd 12 2 143.4.j.a 72
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
143.4.j.a 72 13.f odd 12 2
1859.4.a.l 36 1.a even 1 1 trivial
1859.4.a.m 36 13.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T236+4T235212T234820T233+20423T232+75918T231+43206514311168 T_{2}^{36} + 4 T_{2}^{35} - 212 T_{2}^{34} - 820 T_{2}^{33} + 20423 T_{2}^{32} + 75918 T_{2}^{31} + \cdots - 43206514311168 acting on S4new(Γ0(1859))S_{4}^{\mathrm{new}}(\Gamma_0(1859)). Copy content Toggle raw display