L(s) = 1 | − 3.73i·5-s + (−2.36 + 1.36i)7-s + (1.09 + 0.633i)11-s + (−2.59 + 2.5i)13-s + (2.86 + 4.96i)17-s + (−4.09 + 2.36i)19-s + (2.09 − 3.63i)23-s − 8.92·25-s + (−2.23 + 3.86i)29-s − 1.46i·31-s + (5.09 + 8.83i)35-s + (3.06 + 1.76i)37-s + (−8.13 − 4.69i)41-s + (4.83 + 8.36i)43-s − 2.19i·47-s + ⋯ |
L(s) = 1 | − 1.66i·5-s + (−0.894 + 0.516i)7-s + (0.331 + 0.191i)11-s + (−0.720 + 0.693i)13-s + (0.695 + 1.20i)17-s + (−0.940 + 0.542i)19-s + (0.437 − 0.757i)23-s − 1.78·25-s + (−0.414 + 0.717i)29-s − 0.262i·31-s + (0.861 + 1.49i)35-s + (0.503 + 0.290i)37-s + (−1.27 − 0.733i)41-s + (0.736 + 1.27i)43-s − 0.320i·47-s + ⋯ |
Λ(s)=(=(1872s/2ΓC(s)L(s)(0.265−0.964i)Λ(2−s)
Λ(s)=(=(1872s/2ΓC(s+1/2)L(s)(0.265−0.964i)Λ(1−s)
Degree: |
2 |
Conductor: |
1872
= 24⋅32⋅13
|
Sign: |
0.265−0.964i
|
Analytic conductor: |
14.9479 |
Root analytic conductor: |
3.86626 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1872(433,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1872, ( :1/2), 0.265−0.964i)
|
Particular Values
L(1) |
≈ |
0.8900275008 |
L(21) |
≈ |
0.8900275008 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 13 | 1+(2.59−2.5i)T |
good | 5 | 1+3.73iT−5T2 |
| 7 | 1+(2.36−1.36i)T+(3.5−6.06i)T2 |
| 11 | 1+(−1.09−0.633i)T+(5.5+9.52i)T2 |
| 17 | 1+(−2.86−4.96i)T+(−8.5+14.7i)T2 |
| 19 | 1+(4.09−2.36i)T+(9.5−16.4i)T2 |
| 23 | 1+(−2.09+3.63i)T+(−11.5−19.9i)T2 |
| 29 | 1+(2.23−3.86i)T+(−14.5−25.1i)T2 |
| 31 | 1+1.46iT−31T2 |
| 37 | 1+(−3.06−1.76i)T+(18.5+32.0i)T2 |
| 41 | 1+(8.13+4.69i)T+(20.5+35.5i)T2 |
| 43 | 1+(−4.83−8.36i)T+(−21.5+37.2i)T2 |
| 47 | 1+2.19iT−47T2 |
| 53 | 1−6.46T+53T2 |
| 59 | 1+(6.92−4i)T+(29.5−51.0i)T2 |
| 61 | 1+(−4.59−7.96i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−11.3−6.56i)T+(33.5+58.0i)T2 |
| 71 | 1+(−4.09+2.36i)T+(35.5−61.4i)T2 |
| 73 | 1−6.26iT−73T2 |
| 79 | 1−2.53T+79T2 |
| 83 | 1+0.196iT−83T2 |
| 89 | 1+(−8.19−4.73i)T+(44.5+77.0i)T2 |
| 97 | 1+(5.19−3i)T+(48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.346186156061080273315979023549, −8.643283884392320091544962346986, −8.126711545095316445409112120493, −6.94384481378956860495678577596, −6.10319589174468896248413298343, −5.36713891312074962798839302427, −4.45967987150735224544544887405, −3.75712707449025414375243915440, −2.31863657989459619960299699898, −1.23330870726592085771285865537,
0.34156125650097746099352801886, 2.34667998785262292360818744669, 3.14276534913239257187332781737, 3.73781223880333018593921508335, 5.07717583428523280393702250212, 6.08173485506847640583162557992, 6.86332458161479582813863519860, 7.23549015905815311025147182605, 8.065915433573776297068582115981, 9.421111605227269641797062503631