Properties

Label 1872.2.by.h
Level 18721872
Weight 22
Character orbit 1872.by
Analytic conductor 14.94814.948
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1872,2,Mod(433,1872)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1872, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1872.433");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1872=243213 1872 = 2^{4} \cdot 3^{2} \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1872.by (of order 66, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 14.947995258414.9479952584
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: Q(ζ12)\Q(\zeta_{12})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x2+1 x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a13]\Z[a_1, \ldots, a_{13}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 78)
Sato-Tate group: SU(2)[C6]\mathrm{SU}(2)[C_{6}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ12\zeta_{12}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(2ζ123+2ζ1221)q5+(ζ122ζ121)q7+(3ζ123+ζ122+2)q11+(ζ1233ζ12)q13+6ζ12q97+O(q100) q + (2 \zeta_{12}^{3} + 2 \zeta_{12}^{2} - 1) q^{5} + ( - \zeta_{12}^{2} - \zeta_{12} - 1) q^{7} + ( - 3 \zeta_{12}^{3} + \zeta_{12}^{2} + \cdots - 2) q^{11} + ( - \zeta_{12}^{3} - 3 \zeta_{12}) q^{13}+ \cdots - 6 \zeta_{12} q^{97} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q6q76q11+8q176q192q238q252q29+10q3512q3736q41+2q436q49+12q53+6q55+8q61+20q65+42q67+6q71++18q95+O(q100) 4 q - 6 q^{7} - 6 q^{11} + 8 q^{17} - 6 q^{19} - 2 q^{23} - 8 q^{25} - 2 q^{29} + 10 q^{35} - 12 q^{37} - 36 q^{41} + 2 q^{43} - 6 q^{49} + 12 q^{53} + 6 q^{55} + 8 q^{61} + 20 q^{65} + 42 q^{67} + 6 q^{71}+ \cdots + 18 q^{95}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1872Z)×\left(\mathbb{Z}/1872\mathbb{Z}\right)^\times.

nn 145145 209209 469469 703703
χ(n)\chi(n) 1ζ1221 - \zeta_{12}^{2} 11 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
433.1
0.866025 0.500000i
−0.866025 + 0.500000i
−0.866025 0.500000i
0.866025 + 0.500000i
0 0 0 3.73205i 0 −2.36603 + 1.36603i 0 0 0
433.2 0 0 0 0.267949i 0 −0.633975 + 0.366025i 0 0 0
1297.1 0 0 0 0.267949i 0 −0.633975 0.366025i 0 0 0
1297.2 0 0 0 3.73205i 0 −2.36603 1.36603i 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.e even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1872.2.by.h 4
3.b odd 2 1 624.2.bv.e 4
4.b odd 2 1 234.2.l.c 4
12.b even 2 1 78.2.i.a 4
13.e even 6 1 inner 1872.2.by.h 4
39.h odd 6 1 624.2.bv.e 4
39.k even 12 1 8112.2.a.bj 2
39.k even 12 1 8112.2.a.bp 2
52.i odd 6 1 234.2.l.c 4
52.i odd 6 1 3042.2.b.i 4
52.j odd 6 1 3042.2.b.i 4
52.l even 12 1 3042.2.a.p 2
52.l even 12 1 3042.2.a.y 2
60.h even 2 1 1950.2.bc.d 4
60.l odd 4 1 1950.2.y.b 4
60.l odd 4 1 1950.2.y.g 4
156.h even 2 1 1014.2.i.a 4
156.l odd 4 1 1014.2.e.g 4
156.l odd 4 1 1014.2.e.i 4
156.p even 6 1 1014.2.b.e 4
156.p even 6 1 1014.2.i.a 4
156.r even 6 1 78.2.i.a 4
156.r even 6 1 1014.2.b.e 4
156.v odd 12 1 1014.2.a.i 2
156.v odd 12 1 1014.2.a.k 2
156.v odd 12 1 1014.2.e.g 4
156.v odd 12 1 1014.2.e.i 4
780.cb even 6 1 1950.2.bc.d 4
780.cw odd 12 1 1950.2.y.b 4
780.cw odd 12 1 1950.2.y.g 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
78.2.i.a 4 12.b even 2 1
78.2.i.a 4 156.r even 6 1
234.2.l.c 4 4.b odd 2 1
234.2.l.c 4 52.i odd 6 1
624.2.bv.e 4 3.b odd 2 1
624.2.bv.e 4 39.h odd 6 1
1014.2.a.i 2 156.v odd 12 1
1014.2.a.k 2 156.v odd 12 1
1014.2.b.e 4 156.p even 6 1
1014.2.b.e 4 156.r even 6 1
1014.2.e.g 4 156.l odd 4 1
1014.2.e.g 4 156.v odd 12 1
1014.2.e.i 4 156.l odd 4 1
1014.2.e.i 4 156.v odd 12 1
1014.2.i.a 4 156.h even 2 1
1014.2.i.a 4 156.p even 6 1
1872.2.by.h 4 1.a even 1 1 trivial
1872.2.by.h 4 13.e even 6 1 inner
1950.2.y.b 4 60.l odd 4 1
1950.2.y.b 4 780.cw odd 12 1
1950.2.y.g 4 60.l odd 4 1
1950.2.y.g 4 780.cw odd 12 1
1950.2.bc.d 4 60.h even 2 1
1950.2.bc.d 4 780.cb even 6 1
3042.2.a.p 2 52.l even 12 1
3042.2.a.y 2 52.l even 12 1
3042.2.b.i 4 52.i odd 6 1
3042.2.b.i 4 52.j odd 6 1
8112.2.a.bj 2 39.k even 12 1
8112.2.a.bp 2 39.k even 12 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(1872,[χ])S_{2}^{\mathrm{new}}(1872, [\chi]):

T54+14T52+1 T_{5}^{4} + 14T_{5}^{2} + 1 Copy content Toggle raw display
T74+6T73+14T72+12T7+4 T_{7}^{4} + 6T_{7}^{3} + 14T_{7}^{2} + 12T_{7} + 4 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 T4 T^{4} Copy content Toggle raw display
55 T4+14T2+1 T^{4} + 14T^{2} + 1 Copy content Toggle raw display
77 T4+6T3++4 T^{4} + 6 T^{3} + \cdots + 4 Copy content Toggle raw display
1111 T4+6T3++36 T^{4} + 6 T^{3} + \cdots + 36 Copy content Toggle raw display
1313 T4T2+169 T^{4} - T^{2} + 169 Copy content Toggle raw display
1717 T48T3++169 T^{4} - 8 T^{3} + \cdots + 169 Copy content Toggle raw display
1919 T4+6T3++36 T^{4} + 6 T^{3} + \cdots + 36 Copy content Toggle raw display
2323 T4+2T3++676 T^{4} + 2 T^{3} + \cdots + 676 Copy content Toggle raw display
2929 T4+2T3++121 T^{4} + 2 T^{3} + \cdots + 121 Copy content Toggle raw display
3131 T4+32T2+64 T^{4} + 32T^{2} + 64 Copy content Toggle raw display
3737 T4+12T3++1369 T^{4} + 12 T^{3} + \cdots + 1369 Copy content Toggle raw display
4141 T4+36T3++11449 T^{4} + 36 T^{3} + \cdots + 11449 Copy content Toggle raw display
4343 T42T3++5476 T^{4} - 2 T^{3} + \cdots + 5476 Copy content Toggle raw display
4747 T4+72T2+324 T^{4} + 72T^{2} + 324 Copy content Toggle raw display
5353 (T26T3)2 (T^{2} - 6 T - 3)^{2} Copy content Toggle raw display
5959 T464T2+4096 T^{4} - 64T^{2} + 4096 Copy content Toggle raw display
6161 T48T3++121 T^{4} - 8 T^{3} + \cdots + 121 Copy content Toggle raw display
6767 T442T3++21316 T^{4} - 42 T^{3} + \cdots + 21316 Copy content Toggle raw display
7171 T46T3++36 T^{4} - 6 T^{3} + \cdots + 36 Copy content Toggle raw display
7373 T4+134T2+3721 T^{4} + 134T^{2} + 3721 Copy content Toggle raw display
7979 (T212T+24)2 (T^{2} - 12 T + 24)^{2} Copy content Toggle raw display
8383 T4+104T2+4 T^{4} + 104T^{2} + 4 Copy content Toggle raw display
8989 T412T3++576 T^{4} - 12 T^{3} + \cdots + 576 Copy content Toggle raw display
9797 T436T2+1296 T^{4} - 36T^{2} + 1296 Copy content Toggle raw display
show more
show less