Properties

Label 1950.2.y.g
Level 19501950
Weight 22
Character orbit 1950.y
Analytic conductor 15.57115.571
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1950,2,Mod(49,1950)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1950, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1950.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1950=235213 1950 = 2 \cdot 3 \cdot 5^{2} \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1950.y (of order 66, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 15.570828394115.5708283941
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: Q(ζ12)\Q(\zeta_{12})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x2+1 x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 78)
Sato-Tate group: SU(2)[C6]\mathrm{SU}(2)[C_{6}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ12\zeta_{12}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(ζ122+1)q2ζ12q3ζ122q4+(ζ123ζ12)q6+(ζ123+ζ122ζ12)q7q8+ζ122q9++(3ζ1232ζ122+1)q99+O(q100) q + ( - \zeta_{12}^{2} + 1) q^{2} - \zeta_{12} q^{3} - \zeta_{12}^{2} q^{4} + (\zeta_{12}^{3} - \zeta_{12}) q^{6} + ( - \zeta_{12}^{3} + \zeta_{12}^{2} - \zeta_{12}) q^{7} - q^{8} + \zeta_{12}^{2} q^{9} + \cdots + ( - 3 \zeta_{12}^{3} - 2 \zeta_{12}^{2} + 1) q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+2q22q4+2q74q8+2q96q11+10q13+4q142q16+6q17+4q186q196q2218q23+14q26+2q282q29+2q32+6q33+6q98+O(q100) 4 q + 2 q^{2} - 2 q^{4} + 2 q^{7} - 4 q^{8} + 2 q^{9} - 6 q^{11} + 10 q^{13} + 4 q^{14} - 2 q^{16} + 6 q^{17} + 4 q^{18} - 6 q^{19} - 6 q^{22} - 18 q^{23} + 14 q^{26} + 2 q^{28} - 2 q^{29} + 2 q^{32} + 6 q^{33}+ \cdots - 6 q^{98}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1950Z)×\left(\mathbb{Z}/1950\mathbb{Z}\right)^\times.

nn 301301 13011301 13271327
χ(n)\chi(n) ζ122\zeta_{12}^{2} 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
49.1
0.866025 0.500000i
−0.866025 + 0.500000i
0.866025 + 0.500000i
−0.866025 0.500000i
0.500000 + 0.866025i −0.866025 + 0.500000i −0.500000 + 0.866025i 0 −0.866025 0.500000i −0.366025 + 0.633975i −1.00000 0.500000 0.866025i 0
49.2 0.500000 + 0.866025i 0.866025 0.500000i −0.500000 + 0.866025i 0 0.866025 + 0.500000i 1.36603 2.36603i −1.00000 0.500000 0.866025i 0
199.1 0.500000 0.866025i −0.866025 0.500000i −0.500000 0.866025i 0 −0.866025 + 0.500000i −0.366025 0.633975i −1.00000 0.500000 + 0.866025i 0
199.2 0.500000 0.866025i 0.866025 + 0.500000i −0.500000 0.866025i 0 0.866025 0.500000i 1.36603 + 2.36603i −1.00000 0.500000 + 0.866025i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
65.l even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1950.2.y.g 4
5.b even 2 1 1950.2.y.b 4
5.c odd 4 1 78.2.i.a 4
5.c odd 4 1 1950.2.bc.d 4
13.e even 6 1 1950.2.y.b 4
15.e even 4 1 234.2.l.c 4
20.e even 4 1 624.2.bv.e 4
60.l odd 4 1 1872.2.by.h 4
65.f even 4 1 1014.2.e.g 4
65.h odd 4 1 1014.2.i.a 4
65.k even 4 1 1014.2.e.i 4
65.l even 6 1 inner 1950.2.y.g 4
65.o even 12 1 1014.2.a.i 2
65.o even 12 1 1014.2.e.i 4
65.q odd 12 1 1014.2.b.e 4
65.q odd 12 1 1014.2.i.a 4
65.r odd 12 1 78.2.i.a 4
65.r odd 12 1 1014.2.b.e 4
65.r odd 12 1 1950.2.bc.d 4
65.t even 12 1 1014.2.a.k 2
65.t even 12 1 1014.2.e.g 4
195.bc odd 12 1 3042.2.a.p 2
195.bf even 12 1 234.2.l.c 4
195.bf even 12 1 3042.2.b.i 4
195.bl even 12 1 3042.2.b.i 4
195.bn odd 12 1 3042.2.a.y 2
260.be odd 12 1 8112.2.a.bj 2
260.bg even 12 1 624.2.bv.e 4
260.bl odd 12 1 8112.2.a.bp 2
780.cw odd 12 1 1872.2.by.h 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
78.2.i.a 4 5.c odd 4 1
78.2.i.a 4 65.r odd 12 1
234.2.l.c 4 15.e even 4 1
234.2.l.c 4 195.bf even 12 1
624.2.bv.e 4 20.e even 4 1
624.2.bv.e 4 260.bg even 12 1
1014.2.a.i 2 65.o even 12 1
1014.2.a.k 2 65.t even 12 1
1014.2.b.e 4 65.q odd 12 1
1014.2.b.e 4 65.r odd 12 1
1014.2.e.g 4 65.f even 4 1
1014.2.e.g 4 65.t even 12 1
1014.2.e.i 4 65.k even 4 1
1014.2.e.i 4 65.o even 12 1
1014.2.i.a 4 65.h odd 4 1
1014.2.i.a 4 65.q odd 12 1
1872.2.by.h 4 60.l odd 4 1
1872.2.by.h 4 780.cw odd 12 1
1950.2.y.b 4 5.b even 2 1
1950.2.y.b 4 13.e even 6 1
1950.2.y.g 4 1.a even 1 1 trivial
1950.2.y.g 4 65.l even 6 1 inner
1950.2.bc.d 4 5.c odd 4 1
1950.2.bc.d 4 65.r odd 12 1
3042.2.a.p 2 195.bc odd 12 1
3042.2.a.y 2 195.bn odd 12 1
3042.2.b.i 4 195.bf even 12 1
3042.2.b.i 4 195.bl even 12 1
8112.2.a.bj 2 260.be odd 12 1
8112.2.a.bp 2 260.bl odd 12 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T742T73+6T72+4T7+4 T_{7}^{4} - 2T_{7}^{3} + 6T_{7}^{2} + 4T_{7} + 4 acting on S2new(1950,[χ])S_{2}^{\mathrm{new}}(1950, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T2T+1)2 (T^{2} - T + 1)^{2} Copy content Toggle raw display
33 T4T2+1 T^{4} - T^{2} + 1 Copy content Toggle raw display
55 T4 T^{4} Copy content Toggle raw display
77 T42T3++4 T^{4} - 2 T^{3} + \cdots + 4 Copy content Toggle raw display
1111 T4+6T3++36 T^{4} + 6 T^{3} + \cdots + 36 Copy content Toggle raw display
1313 (T25T+13)2 (T^{2} - 5 T + 13)^{2} Copy content Toggle raw display
1717 T46T3++169 T^{4} - 6 T^{3} + \cdots + 169 Copy content Toggle raw display
1919 T4+6T3++36 T^{4} + 6 T^{3} + \cdots + 36 Copy content Toggle raw display
2323 T4+18T3++676 T^{4} + 18 T^{3} + \cdots + 676 Copy content Toggle raw display
2929 T4+2T3++121 T^{4} + 2 T^{3} + \cdots + 121 Copy content Toggle raw display
3131 T4+32T2+64 T^{4} + 32T^{2} + 64 Copy content Toggle raw display
3737 T4+14T3++1369 T^{4} + 14 T^{3} + \cdots + 1369 Copy content Toggle raw display
4141 T436T3++11449 T^{4} - 36 T^{3} + \cdots + 11449 Copy content Toggle raw display
4343 T4+30T3++5476 T^{4} + 30 T^{3} + \cdots + 5476 Copy content Toggle raw display
4747 (T2+6T18)2 (T^{2} + 6 T - 18)^{2} Copy content Toggle raw display
5353 T4+42T2+9 T^{4} + 42T^{2} + 9 Copy content Toggle raw display
5959 T464T2+4096 T^{4} - 64T^{2} + 4096 Copy content Toggle raw display
6161 T48T3++121 T^{4} - 8 T^{3} + \cdots + 121 Copy content Toggle raw display
6767 T42T3++21316 T^{4} - 2 T^{3} + \cdots + 21316 Copy content Toggle raw display
7171 T46T3++36 T^{4} - 6 T^{3} + \cdots + 36 Copy content Toggle raw display
7373 (T216T+61)2 (T^{2} - 16 T + 61)^{2} Copy content Toggle raw display
7979 (T212T+24)2 (T^{2} - 12 T + 24)^{2} Copy content Toggle raw display
8383 (T210T2)2 (T^{2} - 10 T - 2)^{2} Copy content Toggle raw display
8989 T412T3++576 T^{4} - 12 T^{3} + \cdots + 576 Copy content Toggle raw display
9797 (T2+6T+36)2 (T^{2} + 6 T + 36)^{2} Copy content Toggle raw display
show more
show less