Properties

Label 1950.2.y.g
Level $1950$
Weight $2$
Character orbit 1950.y
Analytic conductor $15.571$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1950,2,Mod(49,1950)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1950, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1950.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1950 = 2 \cdot 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1950.y (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.5708283941\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 78)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{12}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \zeta_{12}^{2} + 1) q^{2} - \zeta_{12} q^{3} - \zeta_{12}^{2} q^{4} + (\zeta_{12}^{3} - \zeta_{12}) q^{6} + ( - \zeta_{12}^{3} + \zeta_{12}^{2} - \zeta_{12}) q^{7} - q^{8} + \zeta_{12}^{2} q^{9} + \cdots + ( - 3 \zeta_{12}^{3} - 2 \zeta_{12}^{2} + 1) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} - 2 q^{4} + 2 q^{7} - 4 q^{8} + 2 q^{9} - 6 q^{11} + 10 q^{13} + 4 q^{14} - 2 q^{16} + 6 q^{17} + 4 q^{18} - 6 q^{19} - 6 q^{22} - 18 q^{23} + 14 q^{26} + 2 q^{28} - 2 q^{29} + 2 q^{32} + 6 q^{33}+ \cdots - 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1950\mathbb{Z}\right)^\times\).

\(n\) \(301\) \(1301\) \(1327\)
\(\chi(n)\) \(\zeta_{12}^{2}\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
49.1
0.866025 0.500000i
−0.866025 + 0.500000i
0.866025 + 0.500000i
−0.866025 0.500000i
0.500000 + 0.866025i −0.866025 + 0.500000i −0.500000 + 0.866025i 0 −0.866025 0.500000i −0.366025 + 0.633975i −1.00000 0.500000 0.866025i 0
49.2 0.500000 + 0.866025i 0.866025 0.500000i −0.500000 + 0.866025i 0 0.866025 + 0.500000i 1.36603 2.36603i −1.00000 0.500000 0.866025i 0
199.1 0.500000 0.866025i −0.866025 0.500000i −0.500000 0.866025i 0 −0.866025 + 0.500000i −0.366025 0.633975i −1.00000 0.500000 + 0.866025i 0
199.2 0.500000 0.866025i 0.866025 + 0.500000i −0.500000 0.866025i 0 0.866025 0.500000i 1.36603 + 2.36603i −1.00000 0.500000 + 0.866025i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
65.l even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1950.2.y.g 4
5.b even 2 1 1950.2.y.b 4
5.c odd 4 1 78.2.i.a 4
5.c odd 4 1 1950.2.bc.d 4
13.e even 6 1 1950.2.y.b 4
15.e even 4 1 234.2.l.c 4
20.e even 4 1 624.2.bv.e 4
60.l odd 4 1 1872.2.by.h 4
65.f even 4 1 1014.2.e.g 4
65.h odd 4 1 1014.2.i.a 4
65.k even 4 1 1014.2.e.i 4
65.l even 6 1 inner 1950.2.y.g 4
65.o even 12 1 1014.2.a.i 2
65.o even 12 1 1014.2.e.i 4
65.q odd 12 1 1014.2.b.e 4
65.q odd 12 1 1014.2.i.a 4
65.r odd 12 1 78.2.i.a 4
65.r odd 12 1 1014.2.b.e 4
65.r odd 12 1 1950.2.bc.d 4
65.t even 12 1 1014.2.a.k 2
65.t even 12 1 1014.2.e.g 4
195.bc odd 12 1 3042.2.a.p 2
195.bf even 12 1 234.2.l.c 4
195.bf even 12 1 3042.2.b.i 4
195.bl even 12 1 3042.2.b.i 4
195.bn odd 12 1 3042.2.a.y 2
260.be odd 12 1 8112.2.a.bj 2
260.bg even 12 1 624.2.bv.e 4
260.bl odd 12 1 8112.2.a.bp 2
780.cw odd 12 1 1872.2.by.h 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
78.2.i.a 4 5.c odd 4 1
78.2.i.a 4 65.r odd 12 1
234.2.l.c 4 15.e even 4 1
234.2.l.c 4 195.bf even 12 1
624.2.bv.e 4 20.e even 4 1
624.2.bv.e 4 260.bg even 12 1
1014.2.a.i 2 65.o even 12 1
1014.2.a.k 2 65.t even 12 1
1014.2.b.e 4 65.q odd 12 1
1014.2.b.e 4 65.r odd 12 1
1014.2.e.g 4 65.f even 4 1
1014.2.e.g 4 65.t even 12 1
1014.2.e.i 4 65.k even 4 1
1014.2.e.i 4 65.o even 12 1
1014.2.i.a 4 65.h odd 4 1
1014.2.i.a 4 65.q odd 12 1
1872.2.by.h 4 60.l odd 4 1
1872.2.by.h 4 780.cw odd 12 1
1950.2.y.b 4 5.b even 2 1
1950.2.y.b 4 13.e even 6 1
1950.2.y.g 4 1.a even 1 1 trivial
1950.2.y.g 4 65.l even 6 1 inner
1950.2.bc.d 4 5.c odd 4 1
1950.2.bc.d 4 65.r odd 12 1
3042.2.a.p 2 195.bc odd 12 1
3042.2.a.y 2 195.bn odd 12 1
3042.2.b.i 4 195.bf even 12 1
3042.2.b.i 4 195.bl even 12 1
8112.2.a.bj 2 260.be odd 12 1
8112.2.a.bp 2 260.bl odd 12 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{4} - 2T_{7}^{3} + 6T_{7}^{2} + 4T_{7} + 4 \) acting on \(S_{2}^{\mathrm{new}}(1950, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} - T + 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} - 2 T^{3} + \cdots + 4 \) Copy content Toggle raw display
$11$ \( T^{4} + 6 T^{3} + \cdots + 36 \) Copy content Toggle raw display
$13$ \( (T^{2} - 5 T + 13)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} - 6 T^{3} + \cdots + 169 \) Copy content Toggle raw display
$19$ \( T^{4} + 6 T^{3} + \cdots + 36 \) Copy content Toggle raw display
$23$ \( T^{4} + 18 T^{3} + \cdots + 676 \) Copy content Toggle raw display
$29$ \( T^{4} + 2 T^{3} + \cdots + 121 \) Copy content Toggle raw display
$31$ \( T^{4} + 32T^{2} + 64 \) Copy content Toggle raw display
$37$ \( T^{4} + 14 T^{3} + \cdots + 1369 \) Copy content Toggle raw display
$41$ \( T^{4} - 36 T^{3} + \cdots + 11449 \) Copy content Toggle raw display
$43$ \( T^{4} + 30 T^{3} + \cdots + 5476 \) Copy content Toggle raw display
$47$ \( (T^{2} + 6 T - 18)^{2} \) Copy content Toggle raw display
$53$ \( T^{4} + 42T^{2} + 9 \) Copy content Toggle raw display
$59$ \( T^{4} - 64T^{2} + 4096 \) Copy content Toggle raw display
$61$ \( T^{4} - 8 T^{3} + \cdots + 121 \) Copy content Toggle raw display
$67$ \( T^{4} - 2 T^{3} + \cdots + 21316 \) Copy content Toggle raw display
$71$ \( T^{4} - 6 T^{3} + \cdots + 36 \) Copy content Toggle raw display
$73$ \( (T^{2} - 16 T + 61)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} - 12 T + 24)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} - 10 T - 2)^{2} \) Copy content Toggle raw display
$89$ \( T^{4} - 12 T^{3} + \cdots + 576 \) Copy content Toggle raw display
$97$ \( (T^{2} + 6 T + 36)^{2} \) Copy content Toggle raw display
show more
show less