Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1950,2,Mod(49,1950)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1950, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 3, 5]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1950.49");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 1950.y (of order , degree , not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 78) |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a primitive root of unity . We also show the integral -expansion of the trace form.
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
49.1 |
|
0.500000 | + | 0.866025i | −0.866025 | + | 0.500000i | −0.500000 | + | 0.866025i | 0 | −0.866025 | − | 0.500000i | −0.366025 | + | 0.633975i | −1.00000 | 0.500000 | − | 0.866025i | 0 | ||||||||||||||||||
49.2 | 0.500000 | + | 0.866025i | 0.866025 | − | 0.500000i | −0.500000 | + | 0.866025i | 0 | 0.866025 | + | 0.500000i | 1.36603 | − | 2.36603i | −1.00000 | 0.500000 | − | 0.866025i | 0 | |||||||||||||||||||
199.1 | 0.500000 | − | 0.866025i | −0.866025 | − | 0.500000i | −0.500000 | − | 0.866025i | 0 | −0.866025 | + | 0.500000i | −0.366025 | − | 0.633975i | −1.00000 | 0.500000 | + | 0.866025i | 0 | |||||||||||||||||||
199.2 | 0.500000 | − | 0.866025i | 0.866025 | + | 0.500000i | −0.500000 | − | 0.866025i | 0 | 0.866025 | − | 0.500000i | 1.36603 | + | 2.36603i | −1.00000 | 0.500000 | + | 0.866025i | 0 | |||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
65.l | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1950.2.y.g | 4 | |
5.b | even | 2 | 1 | 1950.2.y.b | 4 | ||
5.c | odd | 4 | 1 | 78.2.i.a | ✓ | 4 | |
5.c | odd | 4 | 1 | 1950.2.bc.d | 4 | ||
13.e | even | 6 | 1 | 1950.2.y.b | 4 | ||
15.e | even | 4 | 1 | 234.2.l.c | 4 | ||
20.e | even | 4 | 1 | 624.2.bv.e | 4 | ||
60.l | odd | 4 | 1 | 1872.2.by.h | 4 | ||
65.f | even | 4 | 1 | 1014.2.e.g | 4 | ||
65.h | odd | 4 | 1 | 1014.2.i.a | 4 | ||
65.k | even | 4 | 1 | 1014.2.e.i | 4 | ||
65.l | even | 6 | 1 | inner | 1950.2.y.g | 4 | |
65.o | even | 12 | 1 | 1014.2.a.i | 2 | ||
65.o | even | 12 | 1 | 1014.2.e.i | 4 | ||
65.q | odd | 12 | 1 | 1014.2.b.e | 4 | ||
65.q | odd | 12 | 1 | 1014.2.i.a | 4 | ||
65.r | odd | 12 | 1 | 78.2.i.a | ✓ | 4 | |
65.r | odd | 12 | 1 | 1014.2.b.e | 4 | ||
65.r | odd | 12 | 1 | 1950.2.bc.d | 4 | ||
65.t | even | 12 | 1 | 1014.2.a.k | 2 | ||
65.t | even | 12 | 1 | 1014.2.e.g | 4 | ||
195.bc | odd | 12 | 1 | 3042.2.a.p | 2 | ||
195.bf | even | 12 | 1 | 234.2.l.c | 4 | ||
195.bf | even | 12 | 1 | 3042.2.b.i | 4 | ||
195.bl | even | 12 | 1 | 3042.2.b.i | 4 | ||
195.bn | odd | 12 | 1 | 3042.2.a.y | 2 | ||
260.be | odd | 12 | 1 | 8112.2.a.bj | 2 | ||
260.bg | even | 12 | 1 | 624.2.bv.e | 4 | ||
260.bl | odd | 12 | 1 | 8112.2.a.bp | 2 | ||
780.cw | odd | 12 | 1 | 1872.2.by.h | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
78.2.i.a | ✓ | 4 | 5.c | odd | 4 | 1 | |
78.2.i.a | ✓ | 4 | 65.r | odd | 12 | 1 | |
234.2.l.c | 4 | 15.e | even | 4 | 1 | ||
234.2.l.c | 4 | 195.bf | even | 12 | 1 | ||
624.2.bv.e | 4 | 20.e | even | 4 | 1 | ||
624.2.bv.e | 4 | 260.bg | even | 12 | 1 | ||
1014.2.a.i | 2 | 65.o | even | 12 | 1 | ||
1014.2.a.k | 2 | 65.t | even | 12 | 1 | ||
1014.2.b.e | 4 | 65.q | odd | 12 | 1 | ||
1014.2.b.e | 4 | 65.r | odd | 12 | 1 | ||
1014.2.e.g | 4 | 65.f | even | 4 | 1 | ||
1014.2.e.g | 4 | 65.t | even | 12 | 1 | ||
1014.2.e.i | 4 | 65.k | even | 4 | 1 | ||
1014.2.e.i | 4 | 65.o | even | 12 | 1 | ||
1014.2.i.a | 4 | 65.h | odd | 4 | 1 | ||
1014.2.i.a | 4 | 65.q | odd | 12 | 1 | ||
1872.2.by.h | 4 | 60.l | odd | 4 | 1 | ||
1872.2.by.h | 4 | 780.cw | odd | 12 | 1 | ||
1950.2.y.b | 4 | 5.b | even | 2 | 1 | ||
1950.2.y.b | 4 | 13.e | even | 6 | 1 | ||
1950.2.y.g | 4 | 1.a | even | 1 | 1 | trivial | |
1950.2.y.g | 4 | 65.l | even | 6 | 1 | inner | |
1950.2.bc.d | 4 | 5.c | odd | 4 | 1 | ||
1950.2.bc.d | 4 | 65.r | odd | 12 | 1 | ||
3042.2.a.p | 2 | 195.bc | odd | 12 | 1 | ||
3042.2.a.y | 2 | 195.bn | odd | 12 | 1 | ||
3042.2.b.i | 4 | 195.bf | even | 12 | 1 | ||
3042.2.b.i | 4 | 195.bl | even | 12 | 1 | ||
8112.2.a.bj | 2 | 260.be | odd | 12 | 1 | ||
8112.2.a.bp | 2 | 260.bl | odd | 12 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .