Properties

Label 2-1875-1.1-c1-0-44
Degree $2$
Conductor $1875$
Sign $-1$
Analytic cond. $14.9719$
Root an. cond. $3.86936$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.01·2-s − 3-s + 2.07·4-s + 2.01·6-s + 1.01·7-s − 0.153·8-s + 9-s + 4.75·11-s − 2.07·12-s − 0.103·13-s − 2.05·14-s − 3.84·16-s − 5.83·17-s − 2.01·18-s − 0.724·19-s − 1.01·21-s − 9.60·22-s − 9.07·23-s + 0.153·24-s + 0.209·26-s − 27-s + 2.11·28-s − 3.98·29-s + 1.06·31-s + 8.06·32-s − 4.75·33-s + 11.7·34-s + ⋯
L(s)  = 1  − 1.42·2-s − 0.577·3-s + 1.03·4-s + 0.824·6-s + 0.385·7-s − 0.0541·8-s + 0.333·9-s + 1.43·11-s − 0.599·12-s − 0.0287·13-s − 0.549·14-s − 0.960·16-s − 1.41·17-s − 0.475·18-s − 0.166·19-s − 0.222·21-s − 2.04·22-s − 1.89·23-s + 0.0312·24-s + 0.0411·26-s − 0.192·27-s + 0.399·28-s − 0.740·29-s + 0.191·31-s + 1.42·32-s − 0.828·33-s + 2.02·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1875 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1875 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1875\)    =    \(3 \cdot 5^{4}\)
Sign: $-1$
Analytic conductor: \(14.9719\)
Root analytic conductor: \(3.86936\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1875,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
5 \( 1 \)
good2 \( 1 + 2.01T + 2T^{2} \)
7 \( 1 - 1.01T + 7T^{2} \)
11 \( 1 - 4.75T + 11T^{2} \)
13 \( 1 + 0.103T + 13T^{2} \)
17 \( 1 + 5.83T + 17T^{2} \)
19 \( 1 + 0.724T + 19T^{2} \)
23 \( 1 + 9.07T + 23T^{2} \)
29 \( 1 + 3.98T + 29T^{2} \)
31 \( 1 - 1.06T + 31T^{2} \)
37 \( 1 - 4.02T + 37T^{2} \)
41 \( 1 - 7.20T + 41T^{2} \)
43 \( 1 - 8.62T + 43T^{2} \)
47 \( 1 + 8.19T + 47T^{2} \)
53 \( 1 + 4.36T + 53T^{2} \)
59 \( 1 + 4.91T + 59T^{2} \)
61 \( 1 - 6.96T + 61T^{2} \)
67 \( 1 + 9.91T + 67T^{2} \)
71 \( 1 + 10.7T + 71T^{2} \)
73 \( 1 - 8.63T + 73T^{2} \)
79 \( 1 - 2.48T + 79T^{2} \)
83 \( 1 - 4.24T + 83T^{2} \)
89 \( 1 + 18.3T + 89T^{2} \)
97 \( 1 - 6.69T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.994526277468455021398467826058, −8.137902315445695142568240574491, −7.45799215653662537188243434312, −6.53797655296275849526972161110, −6.03720706488065652230960942451, −4.58986776968159248544434546122, −4.02029631003388117466887923934, −2.20779470816680977735835228784, −1.35661194388039420385169106014, 0, 1.35661194388039420385169106014, 2.20779470816680977735835228784, 4.02029631003388117466887923934, 4.58986776968159248544434546122, 6.03720706488065652230960942451, 6.53797655296275849526972161110, 7.45799215653662537188243434312, 8.137902315445695142568240574491, 8.994526277468455021398467826058

Graph of the $Z$-function along the critical line