L(s) = 1 | − 2.01·2-s − 3-s + 2.07·4-s + 2.01·6-s + 1.01·7-s − 0.153·8-s + 9-s + 4.75·11-s − 2.07·12-s − 0.103·13-s − 2.05·14-s − 3.84·16-s − 5.83·17-s − 2.01·18-s − 0.724·19-s − 1.01·21-s − 9.60·22-s − 9.07·23-s + 0.153·24-s + 0.209·26-s − 27-s + 2.11·28-s − 3.98·29-s + 1.06·31-s + 8.06·32-s − 4.75·33-s + 11.7·34-s + ⋯ |
L(s) = 1 | − 1.42·2-s − 0.577·3-s + 1.03·4-s + 0.824·6-s + 0.385·7-s − 0.0541·8-s + 0.333·9-s + 1.43·11-s − 0.599·12-s − 0.0287·13-s − 0.549·14-s − 0.960·16-s − 1.41·17-s − 0.475·18-s − 0.166·19-s − 0.222·21-s − 2.04·22-s − 1.89·23-s + 0.0312·24-s + 0.0411·26-s − 0.192·27-s + 0.399·28-s − 0.740·29-s + 0.191·31-s + 1.42·32-s − 0.828·33-s + 2.02·34-s + ⋯ |
Λ(s)=(=(1875s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(1875s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+T |
| 5 | 1 |
good | 2 | 1+2.01T+2T2 |
| 7 | 1−1.01T+7T2 |
| 11 | 1−4.75T+11T2 |
| 13 | 1+0.103T+13T2 |
| 17 | 1+5.83T+17T2 |
| 19 | 1+0.724T+19T2 |
| 23 | 1+9.07T+23T2 |
| 29 | 1+3.98T+29T2 |
| 31 | 1−1.06T+31T2 |
| 37 | 1−4.02T+37T2 |
| 41 | 1−7.20T+41T2 |
| 43 | 1−8.62T+43T2 |
| 47 | 1+8.19T+47T2 |
| 53 | 1+4.36T+53T2 |
| 59 | 1+4.91T+59T2 |
| 61 | 1−6.96T+61T2 |
| 67 | 1+9.91T+67T2 |
| 71 | 1+10.7T+71T2 |
| 73 | 1−8.63T+73T2 |
| 79 | 1−2.48T+79T2 |
| 83 | 1−4.24T+83T2 |
| 89 | 1+18.3T+89T2 |
| 97 | 1−6.69T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.994526277468455021398467826058, −8.137902315445695142568240574491, −7.45799215653662537188243434312, −6.53797655296275849526972161110, −6.03720706488065652230960942451, −4.58986776968159248544434546122, −4.02029631003388117466887923934, −2.20779470816680977735835228784, −1.35661194388039420385169106014, 0,
1.35661194388039420385169106014, 2.20779470816680977735835228784, 4.02029631003388117466887923934, 4.58986776968159248544434546122, 6.03720706488065652230960942451, 6.53797655296275849526972161110, 7.45799215653662537188243434312, 8.137902315445695142568240574491, 8.994526277468455021398467826058