Properties

Label 1875.2.a.j
Level $1875$
Weight $2$
Character orbit 1875.a
Self dual yes
Analytic conductor $14.972$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1875,2,Mod(1,1875)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1875, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1875.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1875 = 3 \cdot 5^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1875.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(14.9719503790\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.44400625.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 11x^{4} - x^{3} + 29x^{2} + 3x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 75)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} - q^{3} + (\beta_{4} - \beta_{3} + 1) q^{4} + \beta_1 q^{6} + (\beta_1 - 1) q^{7} + (\beta_{3} - \beta_{2} - 2 \beta_1) q^{8} + q^{9} + ( - \beta_{5} + \beta_1) q^{11} + ( - \beta_{4} + \beta_{3} - 1) q^{12}+ \cdots + ( - \beta_{5} + \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{3} + 10 q^{4} - 6 q^{7} - 3 q^{8} + 6 q^{9} + 3 q^{11} - 10 q^{12} - 6 q^{13} - 22 q^{14} + 18 q^{16} - 13 q^{17} + 11 q^{19} + 6 q^{21} - 16 q^{22} - 13 q^{23} + 3 q^{24} - 28 q^{26} - 6 q^{27}+ \cdots + 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 11x^{4} - x^{3} + 29x^{2} + 3x - 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{5} - \nu^{4} - 6\nu^{3} + 5\nu^{2} - 1 ) / 4 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{5} - \nu^{4} - 10\nu^{3} + 5\nu^{2} + 24\nu - 1 ) / 4 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{5} - \nu^{4} - 10\nu^{3} + 9\nu^{2} + 24\nu - 13 ) / 4 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( \nu^{5} + \nu^{4} - 12\nu^{3} - 7\nu^{2} + 34\nu + 3 ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{4} - \beta_{3} + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -\beta_{3} + \beta_{2} + 6\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{5} + 6\beta_{4} - 9\beta_{3} + \beta_{2} + \beta _1 + 16 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( \beta_{5} + \beta_{4} - 10\beta_{3} + 11\beta_{2} + 37\beta _1 + 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.68704
2.01887
0.141689
−0.246759
−2.16056
−2.44028
−2.68704 −1.00000 5.22020 0 2.68704 1.68704 −8.65280 1.00000 0
1.2 −2.01887 −1.00000 2.07584 0 2.01887 1.01887 −0.153106 1.00000 0
1.3 −0.141689 −1.00000 −1.97992 0 0.141689 −0.858311 0.563913 1.00000 0
1.4 0.246759 −1.00000 −1.93911 0 −0.246759 −1.24676 −0.972011 1.00000 0
1.5 2.16056 −1.00000 2.66802 0 −2.16056 −3.16056 1.44329 1.00000 0
1.6 2.44028 −1.00000 3.95498 0 −2.44028 −3.44028 4.77071 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(5\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1875.2.a.j 6
3.b odd 2 1 5625.2.a.p 6
5.b even 2 1 1875.2.a.k 6
5.c odd 4 2 1875.2.b.f 12
15.d odd 2 1 5625.2.a.q 6
25.d even 5 2 75.2.g.c 12
25.e even 10 2 375.2.g.c 12
25.f odd 20 4 375.2.i.d 24
75.j odd 10 2 225.2.h.d 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
75.2.g.c 12 25.d even 5 2
225.2.h.d 12 75.j odd 10 2
375.2.g.c 12 25.e even 10 2
375.2.i.d 24 25.f odd 20 4
1875.2.a.j 6 1.a even 1 1 trivial
1875.2.a.k 6 5.b even 2 1
1875.2.b.f 12 5.c odd 4 2
5625.2.a.p 6 3.b odd 2 1
5625.2.a.q 6 15.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{6} - 11T_{2}^{4} + T_{2}^{3} + 29T_{2}^{2} - 3T_{2} - 1 \) acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1875))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} - 11 T^{4} + \cdots - 1 \) Copy content Toggle raw display
$3$ \( (T + 1)^{6} \) Copy content Toggle raw display
$5$ \( T^{6} \) Copy content Toggle raw display
$7$ \( T^{6} + 6 T^{5} + \cdots + 20 \) Copy content Toggle raw display
$11$ \( T^{6} - 3 T^{5} + \cdots + 244 \) Copy content Toggle raw display
$13$ \( T^{6} + 6 T^{5} + \cdots + 101 \) Copy content Toggle raw display
$17$ \( T^{6} + 13 T^{5} + \cdots + 4639 \) Copy content Toggle raw display
$19$ \( T^{6} - 11 T^{5} + \cdots - 380 \) Copy content Toggle raw display
$23$ \( T^{6} + 13 T^{5} + \cdots - 2020 \) Copy content Toggle raw display
$29$ \( T^{6} + 3 T^{5} + \cdots + 2105 \) Copy content Toggle raw display
$31$ \( T^{6} + 11 T^{5} + \cdots - 2900 \) Copy content Toggle raw display
$37$ \( T^{6} + 21 T^{5} + \cdots - 6025 \) Copy content Toggle raw display
$41$ \( T^{6} + T^{5} + \cdots - 82655 \) Copy content Toggle raw display
$43$ \( T^{6} + 2 T^{5} + \cdots - 6284 \) Copy content Toggle raw display
$47$ \( T^{6} + 14 T^{5} + \cdots + 2284 \) Copy content Toggle raw display
$53$ \( T^{6} + 23 T^{5} + \cdots - 34495 \) Copy content Toggle raw display
$59$ \( T^{6} - 9 T^{5} + \cdots + 3920 \) Copy content Toggle raw display
$61$ \( T^{6} - 11 T^{5} + \cdots + 168269 \) Copy content Toggle raw display
$67$ \( T^{6} + 8 T^{5} + \cdots + 14684 \) Copy content Toggle raw display
$71$ \( T^{6} + 8 T^{5} + \cdots - 196 \) Copy content Toggle raw display
$73$ \( T^{6} + 13 T^{5} + \cdots + 22205 \) Copy content Toggle raw display
$79$ \( T^{6} + 5 T^{5} + \cdots - 8000 \) Copy content Toggle raw display
$83$ \( T^{6} - 20 T^{5} + \cdots + 41036 \) Copy content Toggle raw display
$89$ \( T^{6} + 4 T^{5} + \cdots - 377055 \) Copy content Toggle raw display
$97$ \( T^{6} - 7 T^{5} + \cdots + 2399 \) Copy content Toggle raw display
show more
show less