Properties

Label 1875.2
Level 1875
Weight 2
Dimension 85632
Nonzero newspaces 12
Sturm bound 500000
Trace bound 4

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 1875 = 3 \cdot 5^{4} \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 12 \)
Sturm bound: \(500000\)
Trace bound: \(4\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(1875))\).

Total New Old
Modular forms 127200 87168 40032
Cusp forms 122801 85632 37169
Eisenstein series 4399 1536 2863

Trace form

\( 85632 q - 160 q^{3} - 320 q^{4} - 288 q^{6} - 320 q^{7} - 160 q^{9} - 400 q^{10} - 160 q^{12} - 320 q^{13} - 200 q^{15} - 544 q^{16} + 20 q^{17} - 150 q^{18} - 280 q^{19} - 268 q^{21} - 240 q^{22} + 40 q^{23}+ \cdots - 150 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(1875))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
1875.2.a \(\chi_{1875}(1, \cdot)\) 1875.2.a.a 2 1
1875.2.a.b 2
1875.2.a.c 2
1875.2.a.d 2
1875.2.a.e 4
1875.2.a.f 4
1875.2.a.g 4
1875.2.a.h 4
1875.2.a.i 6
1875.2.a.j 6
1875.2.a.k 6
1875.2.a.l 6
1875.2.a.m 8
1875.2.a.n 8
1875.2.a.o 8
1875.2.a.p 8
1875.2.b \(\chi_{1875}(1249, \cdot)\) 1875.2.b.a 4 1
1875.2.b.b 4
1875.2.b.c 8
1875.2.b.d 8
1875.2.b.e 12
1875.2.b.f 12
1875.2.b.g 16
1875.2.b.h 16
1875.2.e \(\chi_{1875}(182, \cdot)\) n/a 288 2
1875.2.g \(\chi_{1875}(376, \cdot)\) n/a 320 4
1875.2.i \(\chi_{1875}(124, \cdot)\) n/a 320 4
1875.2.l \(\chi_{1875}(68, \cdot)\) n/a 1184 8
1875.2.m \(\chi_{1875}(76, \cdot)\) n/a 1480 20
1875.2.o \(\chi_{1875}(49, \cdot)\) n/a 1520 20
1875.2.r \(\chi_{1875}(32, \cdot)\) n/a 5760 40
1875.2.s \(\chi_{1875}(16, \cdot)\) n/a 12600 100
1875.2.v \(\chi_{1875}(4, \cdot)\) n/a 12400 100
1875.2.x \(\chi_{1875}(2, \cdot)\) n/a 49600 200

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(1875))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(1875)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(75))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(125))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(375))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(625))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(1875))\)\(^{\oplus 1}\)