Defining parameters
Level: | \( N \) | = | \( 1875 = 3 \cdot 5^{4} \) |
Weight: | \( k \) | = | \( 2 \) |
Nonzero newspaces: | \( 12 \) | ||
Sturm bound: | \(500000\) | ||
Trace bound: | \(4\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(1875))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 127200 | 87168 | 40032 |
Cusp forms | 122801 | 85632 | 37169 |
Eisenstein series | 4399 | 1536 | 2863 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(1875))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
1875.2.a | \(\chi_{1875}(1, \cdot)\) | 1875.2.a.a | 2 | 1 |
1875.2.a.b | 2 | |||
1875.2.a.c | 2 | |||
1875.2.a.d | 2 | |||
1875.2.a.e | 4 | |||
1875.2.a.f | 4 | |||
1875.2.a.g | 4 | |||
1875.2.a.h | 4 | |||
1875.2.a.i | 6 | |||
1875.2.a.j | 6 | |||
1875.2.a.k | 6 | |||
1875.2.a.l | 6 | |||
1875.2.a.m | 8 | |||
1875.2.a.n | 8 | |||
1875.2.a.o | 8 | |||
1875.2.a.p | 8 | |||
1875.2.b | \(\chi_{1875}(1249, \cdot)\) | 1875.2.b.a | 4 | 1 |
1875.2.b.b | 4 | |||
1875.2.b.c | 8 | |||
1875.2.b.d | 8 | |||
1875.2.b.e | 12 | |||
1875.2.b.f | 12 | |||
1875.2.b.g | 16 | |||
1875.2.b.h | 16 | |||
1875.2.e | \(\chi_{1875}(182, \cdot)\) | n/a | 288 | 2 |
1875.2.g | \(\chi_{1875}(376, \cdot)\) | n/a | 320 | 4 |
1875.2.i | \(\chi_{1875}(124, \cdot)\) | n/a | 320 | 4 |
1875.2.l | \(\chi_{1875}(68, \cdot)\) | n/a | 1184 | 8 |
1875.2.m | \(\chi_{1875}(76, \cdot)\) | n/a | 1480 | 20 |
1875.2.o | \(\chi_{1875}(49, \cdot)\) | n/a | 1520 | 20 |
1875.2.r | \(\chi_{1875}(32, \cdot)\) | n/a | 5760 | 40 |
1875.2.s | \(\chi_{1875}(16, \cdot)\) | n/a | 12600 | 100 |
1875.2.v | \(\chi_{1875}(4, \cdot)\) | n/a | 12400 | 100 |
1875.2.x | \(\chi_{1875}(2, \cdot)\) | n/a | 49600 | 200 |
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(1875))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_1(1875)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(75))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(125))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(375))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(625))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(1875))\)\(^{\oplus 1}\)