from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1875, base_ring=CyclotomicField(250))
M = H._module
chi = DirichletCharacter(H, M([0,2]))
chi.galois_orbit()
[g,chi] = znchar(Mod(16,1875))
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Basic properties
Modulus: | \(1875\) | |
Conductor: | \(625\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(125\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from 625.j | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Related number fields
Field of values: | $\Q(\zeta_{125})$ |
Fixed field: | Number field defined by a degree 125 polynomial (not computed) |
First 31 of 100 characters in Galois orbit
Character | \(-1\) | \(1\) | \(2\) | \(4\) | \(7\) | \(8\) | \(11\) | \(13\) | \(14\) | \(16\) | \(17\) | \(19\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{1875}(16,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{1}{125}\right)\) | \(e\left(\frac{2}{125}\right)\) | \(e\left(\frac{22}{25}\right)\) | \(e\left(\frac{3}{125}\right)\) | \(e\left(\frac{101}{125}\right)\) | \(e\left(\frac{14}{125}\right)\) | \(e\left(\frac{111}{125}\right)\) | \(e\left(\frac{4}{125}\right)\) | \(e\left(\frac{48}{125}\right)\) | \(e\left(\frac{43}{125}\right)\) |
\(\chi_{1875}(31,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{12}{125}\right)\) | \(e\left(\frac{24}{125}\right)\) | \(e\left(\frac{14}{25}\right)\) | \(e\left(\frac{36}{125}\right)\) | \(e\left(\frac{87}{125}\right)\) | \(e\left(\frac{43}{125}\right)\) | \(e\left(\frac{82}{125}\right)\) | \(e\left(\frac{48}{125}\right)\) | \(e\left(\frac{76}{125}\right)\) | \(e\left(\frac{16}{125}\right)\) |
\(\chi_{1875}(46,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{108}{125}\right)\) | \(e\left(\frac{91}{125}\right)\) | \(e\left(\frac{1}{25}\right)\) | \(e\left(\frac{74}{125}\right)\) | \(e\left(\frac{33}{125}\right)\) | \(e\left(\frac{12}{125}\right)\) | \(e\left(\frac{113}{125}\right)\) | \(e\left(\frac{57}{125}\right)\) | \(e\left(\frac{59}{125}\right)\) | \(e\left(\frac{19}{125}\right)\) |
\(\chi_{1875}(61,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{114}{125}\right)\) | \(e\left(\frac{103}{125}\right)\) | \(e\left(\frac{8}{25}\right)\) | \(e\left(\frac{92}{125}\right)\) | \(e\left(\frac{14}{125}\right)\) | \(e\left(\frac{96}{125}\right)\) | \(e\left(\frac{29}{125}\right)\) | \(e\left(\frac{81}{125}\right)\) | \(e\left(\frac{97}{125}\right)\) | \(e\left(\frac{27}{125}\right)\) |
\(\chi_{1875}(91,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{31}{125}\right)\) | \(e\left(\frac{62}{125}\right)\) | \(e\left(\frac{7}{25}\right)\) | \(e\left(\frac{93}{125}\right)\) | \(e\left(\frac{6}{125}\right)\) | \(e\left(\frac{59}{125}\right)\) | \(e\left(\frac{66}{125}\right)\) | \(e\left(\frac{124}{125}\right)\) | \(e\left(\frac{113}{125}\right)\) | \(e\left(\frac{83}{125}\right)\) |
\(\chi_{1875}(106,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{92}{125}\right)\) | \(e\left(\frac{59}{125}\right)\) | \(e\left(\frac{24}{25}\right)\) | \(e\left(\frac{26}{125}\right)\) | \(e\left(\frac{42}{125}\right)\) | \(e\left(\frac{38}{125}\right)\) | \(e\left(\frac{87}{125}\right)\) | \(e\left(\frac{118}{125}\right)\) | \(e\left(\frac{41}{125}\right)\) | \(e\left(\frac{81}{125}\right)\) |
\(\chi_{1875}(121,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{113}{125}\right)\) | \(e\left(\frac{101}{125}\right)\) | \(e\left(\frac{11}{25}\right)\) | \(e\left(\frac{89}{125}\right)\) | \(e\left(\frac{38}{125}\right)\) | \(e\left(\frac{82}{125}\right)\) | \(e\left(\frac{43}{125}\right)\) | \(e\left(\frac{77}{125}\right)\) | \(e\left(\frac{49}{125}\right)\) | \(e\left(\frac{109}{125}\right)\) |
\(\chi_{1875}(136,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{44}{125}\right)\) | \(e\left(\frac{88}{125}\right)\) | \(e\left(\frac{18}{25}\right)\) | \(e\left(\frac{7}{125}\right)\) | \(e\left(\frac{69}{125}\right)\) | \(e\left(\frac{116}{125}\right)\) | \(e\left(\frac{9}{125}\right)\) | \(e\left(\frac{51}{125}\right)\) | \(e\left(\frac{112}{125}\right)\) | \(e\left(\frac{17}{125}\right)\) |
\(\chi_{1875}(166,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{61}{125}\right)\) | \(e\left(\frac{122}{125}\right)\) | \(e\left(\frac{17}{25}\right)\) | \(e\left(\frac{58}{125}\right)\) | \(e\left(\frac{36}{125}\right)\) | \(e\left(\frac{104}{125}\right)\) | \(e\left(\frac{21}{125}\right)\) | \(e\left(\frac{119}{125}\right)\) | \(e\left(\frac{53}{125}\right)\) | \(e\left(\frac{123}{125}\right)\) |
\(\chi_{1875}(181,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{47}{125}\right)\) | \(e\left(\frac{94}{125}\right)\) | \(e\left(\frac{9}{25}\right)\) | \(e\left(\frac{16}{125}\right)\) | \(e\left(\frac{122}{125}\right)\) | \(e\left(\frac{33}{125}\right)\) | \(e\left(\frac{92}{125}\right)\) | \(e\left(\frac{63}{125}\right)\) | \(e\left(\frac{6}{125}\right)\) | \(e\left(\frac{21}{125}\right)\) |
\(\chi_{1875}(196,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{118}{125}\right)\) | \(e\left(\frac{111}{125}\right)\) | \(e\left(\frac{21}{25}\right)\) | \(e\left(\frac{104}{125}\right)\) | \(e\left(\frac{43}{125}\right)\) | \(e\left(\frac{27}{125}\right)\) | \(e\left(\frac{98}{125}\right)\) | \(e\left(\frac{97}{125}\right)\) | \(e\left(\frac{39}{125}\right)\) | \(e\left(\frac{74}{125}\right)\) |
\(\chi_{1875}(211,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{99}{125}\right)\) | \(e\left(\frac{73}{125}\right)\) | \(e\left(\frac{3}{25}\right)\) | \(e\left(\frac{47}{125}\right)\) | \(e\left(\frac{124}{125}\right)\) | \(e\left(\frac{11}{125}\right)\) | \(e\left(\frac{114}{125}\right)\) | \(e\left(\frac{21}{125}\right)\) | \(e\left(\frac{2}{125}\right)\) | \(e\left(\frac{7}{125}\right)\) |
\(\chi_{1875}(241,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{91}{125}\right)\) | \(e\left(\frac{57}{125}\right)\) | \(e\left(\frac{2}{25}\right)\) | \(e\left(\frac{23}{125}\right)\) | \(e\left(\frac{66}{125}\right)\) | \(e\left(\frac{24}{125}\right)\) | \(e\left(\frac{101}{125}\right)\) | \(e\left(\frac{114}{125}\right)\) | \(e\left(\frac{118}{125}\right)\) | \(e\left(\frac{38}{125}\right)\) |
\(\chi_{1875}(256,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{2}{125}\right)\) | \(e\left(\frac{4}{125}\right)\) | \(e\left(\frac{19}{25}\right)\) | \(e\left(\frac{6}{125}\right)\) | \(e\left(\frac{77}{125}\right)\) | \(e\left(\frac{28}{125}\right)\) | \(e\left(\frac{97}{125}\right)\) | \(e\left(\frac{8}{125}\right)\) | \(e\left(\frac{96}{125}\right)\) | \(e\left(\frac{86}{125}\right)\) |
\(\chi_{1875}(271,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{123}{125}\right)\) | \(e\left(\frac{121}{125}\right)\) | \(e\left(\frac{6}{25}\right)\) | \(e\left(\frac{119}{125}\right)\) | \(e\left(\frac{48}{125}\right)\) | \(e\left(\frac{97}{125}\right)\) | \(e\left(\frac{28}{125}\right)\) | \(e\left(\frac{117}{125}\right)\) | \(e\left(\frac{29}{125}\right)\) | \(e\left(\frac{39}{125}\right)\) |
\(\chi_{1875}(286,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{29}{125}\right)\) | \(e\left(\frac{58}{125}\right)\) | \(e\left(\frac{13}{25}\right)\) | \(e\left(\frac{87}{125}\right)\) | \(e\left(\frac{54}{125}\right)\) | \(e\left(\frac{31}{125}\right)\) | \(e\left(\frac{94}{125}\right)\) | \(e\left(\frac{116}{125}\right)\) | \(e\left(\frac{17}{125}\right)\) | \(e\left(\frac{122}{125}\right)\) |
\(\chi_{1875}(316,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{121}{125}\right)\) | \(e\left(\frac{117}{125}\right)\) | \(e\left(\frac{12}{25}\right)\) | \(e\left(\frac{113}{125}\right)\) | \(e\left(\frac{96}{125}\right)\) | \(e\left(\frac{69}{125}\right)\) | \(e\left(\frac{56}{125}\right)\) | \(e\left(\frac{109}{125}\right)\) | \(e\left(\frac{58}{125}\right)\) | \(e\left(\frac{78}{125}\right)\) |
\(\chi_{1875}(331,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{82}{125}\right)\) | \(e\left(\frac{39}{125}\right)\) | \(e\left(\frac{4}{25}\right)\) | \(e\left(\frac{121}{125}\right)\) | \(e\left(\frac{32}{125}\right)\) | \(e\left(\frac{23}{125}\right)\) | \(e\left(\frac{102}{125}\right)\) | \(e\left(\frac{78}{125}\right)\) | \(e\left(\frac{61}{125}\right)\) | \(e\left(\frac{26}{125}\right)\) |
\(\chi_{1875}(346,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{3}{125}\right)\) | \(e\left(\frac{6}{125}\right)\) | \(e\left(\frac{16}{25}\right)\) | \(e\left(\frac{9}{125}\right)\) | \(e\left(\frac{53}{125}\right)\) | \(e\left(\frac{42}{125}\right)\) | \(e\left(\frac{83}{125}\right)\) | \(e\left(\frac{12}{125}\right)\) | \(e\left(\frac{19}{125}\right)\) | \(e\left(\frac{4}{125}\right)\) |
\(\chi_{1875}(361,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{84}{125}\right)\) | \(e\left(\frac{43}{125}\right)\) | \(e\left(\frac{23}{25}\right)\) | \(e\left(\frac{2}{125}\right)\) | \(e\left(\frac{109}{125}\right)\) | \(e\left(\frac{51}{125}\right)\) | \(e\left(\frac{74}{125}\right)\) | \(e\left(\frac{86}{125}\right)\) | \(e\left(\frac{32}{125}\right)\) | \(e\left(\frac{112}{125}\right)\) |
\(\chi_{1875}(391,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{26}{125}\right)\) | \(e\left(\frac{52}{125}\right)\) | \(e\left(\frac{22}{25}\right)\) | \(e\left(\frac{78}{125}\right)\) | \(e\left(\frac{1}{125}\right)\) | \(e\left(\frac{114}{125}\right)\) | \(e\left(\frac{11}{125}\right)\) | \(e\left(\frac{104}{125}\right)\) | \(e\left(\frac{123}{125}\right)\) | \(e\left(\frac{118}{125}\right)\) |
\(\chi_{1875}(406,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{37}{125}\right)\) | \(e\left(\frac{74}{125}\right)\) | \(e\left(\frac{14}{25}\right)\) | \(e\left(\frac{111}{125}\right)\) | \(e\left(\frac{112}{125}\right)\) | \(e\left(\frac{18}{125}\right)\) | \(e\left(\frac{107}{125}\right)\) | \(e\left(\frac{23}{125}\right)\) | \(e\left(\frac{26}{125}\right)\) | \(e\left(\frac{91}{125}\right)\) |
\(\chi_{1875}(421,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{8}{125}\right)\) | \(e\left(\frac{16}{125}\right)\) | \(e\left(\frac{1}{25}\right)\) | \(e\left(\frac{24}{125}\right)\) | \(e\left(\frac{58}{125}\right)\) | \(e\left(\frac{112}{125}\right)\) | \(e\left(\frac{13}{125}\right)\) | \(e\left(\frac{32}{125}\right)\) | \(e\left(\frac{9}{125}\right)\) | \(e\left(\frac{94}{125}\right)\) |
\(\chi_{1875}(436,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{14}{125}\right)\) | \(e\left(\frac{28}{125}\right)\) | \(e\left(\frac{8}{25}\right)\) | \(e\left(\frac{42}{125}\right)\) | \(e\left(\frac{39}{125}\right)\) | \(e\left(\frac{71}{125}\right)\) | \(e\left(\frac{54}{125}\right)\) | \(e\left(\frac{56}{125}\right)\) | \(e\left(\frac{47}{125}\right)\) | \(e\left(\frac{102}{125}\right)\) |
\(\chi_{1875}(466,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{56}{125}\right)\) | \(e\left(\frac{112}{125}\right)\) | \(e\left(\frac{7}{25}\right)\) | \(e\left(\frac{43}{125}\right)\) | \(e\left(\frac{31}{125}\right)\) | \(e\left(\frac{34}{125}\right)\) | \(e\left(\frac{91}{125}\right)\) | \(e\left(\frac{99}{125}\right)\) | \(e\left(\frac{63}{125}\right)\) | \(e\left(\frac{33}{125}\right)\) |
\(\chi_{1875}(481,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{117}{125}\right)\) | \(e\left(\frac{109}{125}\right)\) | \(e\left(\frac{24}{25}\right)\) | \(e\left(\frac{101}{125}\right)\) | \(e\left(\frac{67}{125}\right)\) | \(e\left(\frac{13}{125}\right)\) | \(e\left(\frac{112}{125}\right)\) | \(e\left(\frac{93}{125}\right)\) | \(e\left(\frac{116}{125}\right)\) | \(e\left(\frac{31}{125}\right)\) |
\(\chi_{1875}(496,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{13}{125}\right)\) | \(e\left(\frac{26}{125}\right)\) | \(e\left(\frac{11}{25}\right)\) | \(e\left(\frac{39}{125}\right)\) | \(e\left(\frac{63}{125}\right)\) | \(e\left(\frac{57}{125}\right)\) | \(e\left(\frac{68}{125}\right)\) | \(e\left(\frac{52}{125}\right)\) | \(e\left(\frac{124}{125}\right)\) | \(e\left(\frac{59}{125}\right)\) |
\(\chi_{1875}(511,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{69}{125}\right)\) | \(e\left(\frac{13}{125}\right)\) | \(e\left(\frac{18}{25}\right)\) | \(e\left(\frac{82}{125}\right)\) | \(e\left(\frac{94}{125}\right)\) | \(e\left(\frac{91}{125}\right)\) | \(e\left(\frac{34}{125}\right)\) | \(e\left(\frac{26}{125}\right)\) | \(e\left(\frac{62}{125}\right)\) | \(e\left(\frac{92}{125}\right)\) |
\(\chi_{1875}(541,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{86}{125}\right)\) | \(e\left(\frac{47}{125}\right)\) | \(e\left(\frac{17}{25}\right)\) | \(e\left(\frac{8}{125}\right)\) | \(e\left(\frac{61}{125}\right)\) | \(e\left(\frac{79}{125}\right)\) | \(e\left(\frac{46}{125}\right)\) | \(e\left(\frac{94}{125}\right)\) | \(e\left(\frac{3}{125}\right)\) | \(e\left(\frac{73}{125}\right)\) |
\(\chi_{1875}(556,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{72}{125}\right)\) | \(e\left(\frac{19}{125}\right)\) | \(e\left(\frac{9}{25}\right)\) | \(e\left(\frac{91}{125}\right)\) | \(e\left(\frac{22}{125}\right)\) | \(e\left(\frac{8}{125}\right)\) | \(e\left(\frac{117}{125}\right)\) | \(e\left(\frac{38}{125}\right)\) | \(e\left(\frac{81}{125}\right)\) | \(e\left(\frac{96}{125}\right)\) |
\(\chi_{1875}(571,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{18}{125}\right)\) | \(e\left(\frac{36}{125}\right)\) | \(e\left(\frac{21}{25}\right)\) | \(e\left(\frac{54}{125}\right)\) | \(e\left(\frac{68}{125}\right)\) | \(e\left(\frac{2}{125}\right)\) | \(e\left(\frac{123}{125}\right)\) | \(e\left(\frac{72}{125}\right)\) | \(e\left(\frac{114}{125}\right)\) | \(e\left(\frac{24}{125}\right)\) |